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Abstract: Aluminium alloys have a wide range of applications, mainly due to their advantageous
strength-to-weight ratio, denoted as specific strength and corrosion resistance. In recent decades,
there has been a notable surge in the usage of recycled alloys, attributed to their reduced production
costs and emissions. One of the conditions for secondary production is the optimal sorting of used
scrap. Once the aluminium scrap has been melted, it is tough to reduce the content of the various
additives. Copper is the primary alloying element in some aluminium alloys, which leads to an
increased amount of copper in the aluminium scrap. Therefore, it is important to investigate its effect
on the properties of aluminium alloys in which it is not commonly present. For this reason, this paper
is concerned with the influence of copper on the microstructure and properties of the secondary
aluminium alloy AlZn10Si8Mg. Specifically, it compares two melts of self-hardening AlZn10Si8Mg
alloys differing in copper content (0.019% and 1.72%). A complex quantitative and metallographic
analysis by optical and electron microscopy has been performed. Mechanical properties were
investigated by tensile test, Brinell hardness, and Vickers microhardness measurements. The corrosion
resistance of the individual melts was verified by the Audi test.

Keywords: recycled aluminium; secondary aluminium alloys; AlZn10Si8Mg; self-hardening alloys;
effect of Cu; tensile; hardness; microhardness; corrosion resistance; Audi test

1. Introduction

In recent decades, recycling has been increasingly used for aluminium production to
protect the environment. This production methodology offers substantial benefits including
reduced carbon dioxide emissions, significant energy savings, and conservation of the
resources. Approximately 10 to 15 times less energy is required for secondary production.
As bauxite is only found in a small number of countries in the world, the production of
secondary alloys enables other countries to reduce at least part of their dependence on
the supply of this resource. Western countries, particularly in the transport sector, have
high aluminium recycling rates, exceeding 95%. Notably, a significant portion of recycled
aluminium is used in producing Al-Si alloys, predominantly in the automotive industry.
The proportion of secondary aluminium alloys is expected to increase [1,2].

Many different types of aluminium alloys are used, the chemical composition of which
depends on the required properties. Alongside desired alloying elements, aluminium
alloys invariably contain impurities, with Fe being the most prevalent in both primary
and secondary alloys. It is a major problem, especially in recycled materials, because it
is technologically difficult to remove so its content in the alloy gradually increases with
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repeated recycling cycles. In aluminium casting alloys, it forms intermetallic phases such
as Al3Fe, Al8Fe2Si, β-Al5FeSi, etc. The most detrimental of these are the β—Al5FeSi phases.
These large-sized particles have the shape of thin plates which are visible as needles in the
metallographic plane. The Al5FeSi phases have a weak bond with the matrix and act as
stress concentrators. They adversely affect the mechanical properties, causing brittleness,
reduced ductility, and castability. The negative effect of the presence of Fe on the fatigue
properties of aluminium alloys is widely acknowledged [3–6].

The addition of Mn as an alloying element affects the morphology of ferrous phases,
thereby reducing the negative impact of Fe. Under the influence of Mn, intermetallic
phases in the shape of Chinese script, skeletons, or polyhedrons are formed instead of
the harmful brittle plate-like Al5FeSi phase. This change has a positive effect on both
mechanical and fatigue properties. Structural refinement ensues with an optimally chosen
Mn content, characterised by a reduction in the Secondary Dendrite Arm Spacing (SDAS).
This phenomenon underscores the potential for Mn alloying to enhance the performance of
aluminium alloys [3,7].

Cu is one of the most important alloying additives in aluminium alloys due to its
high solubility and strengthening effect. Many commercial alloys contain Cu either as
the main additive or as one of the main alloying elements. The presence of Cu notably
enhances strength and hardness in both as-cast and heat-treated conditions by facilitating
the formation of Al2Cu precipitates. Typically, alloys aiming for optimal hardenability are
alloyed with 4–6% Cu. To improve hardenability, Cu is often used in combination with Mg.
However, Cu generally reduces resistance to general corrosion and, in specific compositions
and material conditions, heightens susceptibility to stress corrosion. Cu additions also
reduce resistance to hot tearing and reduce castability [3,7,8].

In addition to the chemical composition, other parameters also influence the properties.
One of the most important factors is the presence of casting defects. The origin of casting
defects can be different. In aluminium alloys, gas-induced pores and shrinkage are most
found. Shrinkage cavities are defects that occur because of dimensional shrinkage during
solidification, typically occurring in regions with inadequate melt volume. Gas-related
defects are pores which are caused by the entrapment of air or gas mixtures within the mate-
rial [9,10]. In conventional casting methods, gas porosity is most often caused by hydrogen.
These hydrogen-induced pores are typically small and evenly distributed throughout the
casting, arising from the rapid decrease in hydrogen solubility as temperature declines
during solidification [9–11].

By comparing the mechanical properties of the primary and secondary aluminium
alloy AlSi10MnMg(Fe), it was found that the presence of casting defects reduces the
ductility of both alloys. The secondary alloy was more susceptible to pore formation due
to its increased Fe content. For the samples in which the formation of casting defects was
avoided, similar mechanical properties were measured as in the primary alloy [12].

The cooling rate is an important factor that affects the microstructure and, consequently,
the properties of aluminium alloys. It depends on the type of mould, the thickness of the
casting, or mould preheating. Rapid heat removal contributes to the formation of a fine-
grained microstructure, which causes a significant improvement in mechanical properties,
especially ductility, toughness, and hardness, but also corrosion resistance. It was found
that the tensile strength of A356 alloy was improved with increasing cooling rate, due to the
transformation of the Al5FeSi to Al18Fe2Mg7Si10 phases. The growth and coarsening time
of the β-Al5FeSi plate-like phases was also shortened. The maximum UTS of 225.3 MPa
was reached by this alloy at a cooling rate of 1.11 ◦C/s. On the contrary, employing too
high cooling rate resulted in degraded mechanical properties due to localised subcooling.
At a cooling rate of 1.95 ◦C/s, a UTS of only 212.59 MPa was achieved [13,14]. When
casting A356 alloy into preheated moulds at different temperatures, a clear improvement in
mechanical properties was found at higher cooling rates. This improvement stemmed from
the refinement of α-phase dendrites due to a larger number of nucleation units. At the same
time, the morphology of the eutectic Si changed, with Si gaining the form of short rods
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or rounded grains in the microstructure at higher cooling rates. As the mould preheating
temperature increased from 25 ◦C to 400 ◦C, the average width of eutectic silicon gradually
increased from 3.4 µm to 4 µm. Average length of eutectic Si grew from 9.1 µm to 10.9 µm.
The average grain size of α-Al increased from 507 µm to 571 µm [15].

Excellent corrosion resistance is one of the fundamental features of aluminium alloys,
rendering them indispensable in industries such as automotive and aerospace, where
resilience against atmospheric corrosion is crucial. Within the pH range of 4.0 to 8.5,
aluminium demonstrates passivation, forming a protective layer of Al2O3 with a thickness
spanning from 1 to 10 nm on its surface. This layer has high stability and prevents
direct contact of the material with the environment, thus significantly slowing down
corrosion processes. If the Al2O3 layer is mechanically or chemically damaged, cathodic and
anodic reactions are immediately initiated to restore it. In more aggressive environments,
particularly those containing acids, chlorides, or alkalis, dissolution of the passive Al2O3
layer can occur, leading to local corrosion. In the case of aluminium casting alloys, attack by
pitting corrosion is most common. The pits enlarge over time and can cause damage to the
material to a great depth. Failure of the protective layer generally occurs in areas with locally
reduced corrosion resistance. These locations are most often various intermetallic phases.
The problem is their different potentials. Most intermetallic phases behave cathodically
regarding the aluminium matrix, leading to the formation of microgalvanic cells. In terms
of corrosion resistance, the most undesirable intermetallic phase is Al5FeSi, but Cu- and
Zn-based phases can also have a negative effect [16–23].

Self-hardening aluminium alloys, such as AlZn10Si8Mg, represent a category of alu-
minium alloys distinguished by their optimal properties without the need for additional
heat treatment. These materials age naturally at room temperature. The required precipi-
tation period resulting in suitable mechanical and fatigue properties is 7–10 days. In the
automotive industry, self-hardening alloys are gaining in popularity thanks to the possibil-
ity of avoiding the heat treatment process. In the automotive industry, they are mainly used
to produce cyclically loaded components, displacing AlSi7Mg0.3 and AlSi7Mg0.6 alloys.
Compared to these materials, self-hardening AlZn10Si8Mg alloys have higher fatigue
resistance due to the more favourable morphology of the individual structural components,
particularly the eutectic Si. Thus, they are mainly used in those components where superior
fatigue resistance is required. For these reasons, the self-hardening alloy AlZn10Si8Mg
emerges as a highly promising alternative [24–27].

Currently, two variants of the self-hardening alloy AlZn10Si8Mg are used in the in-
dustry. They differ significantly in Fe and Mn content (Table 1) [28]. In Unifont alloys, the
Cu content is notably limited. The aim of this study is to verify whether it is possible to
use an AlZn10Si8Mg alloy with a higher Cu content and to describe its influence on the
mechanical properties and corrosion resistance. Unifont 94 alloy with higher Fe content is
produced only by high-pressure die casting. Therefore, the aim is to investigate the influ-
ence of the casting method on the structure and properties of these higher Fe AlZn10Si8Mg
secondary alloys.

Table 1. Chemical composition of Unifont alloys [29] and experimental material [wt.%].

Alloy Zn Si Mg Fe Mn Cu Ti Al

Unifont 90 9–10 8.5–9.5 0.3–0.5 0.15 0.10 0.03 0.15 ball.
Unifont 94 9–10 8.5–9.5 0.3–0.5 0.40 0.40 0.03 0.10 ball.

A 9.299 8.949 0.309 0.840 0.743 0.019 0.117 ball.
B 11.590 8.360 0.250 0.620 0.570 1.720 0.040 ball.

2. Materials and Methods

The experimental material was a self-hardening secondary aluminium alloy AlZn10Si8Mg
with increased iron content. Due to the high iron content, manganese was introduced into
both compared melts to avoid the negative effect of iron. The investigated alloys differ
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significantly in copper and zinc content. Melt B has a higher percentage of these alloying
elements. The complete chemical composition is given in Table 1.

Alloy A was cast by company UNEKO, Ltd., Zátor, Czech Republic. The alloy was
provided in the form of round bars with a diameter of 20 mm and a length of 300 mm.
Casting was conducted in sand moulds at temperatures ranging from 700 to 710 ◦C,
followed by refinement using ECOSAL AL 113S salt (KVS EKODIVIZE a.s, Horní Benešov,
Czechia) at temperatures ranging from 695 to 705 ◦C. This alloy naturally precipitates
within 7–10 days after casting. Alloy B was cast at the pilot casting plant of the TECNALIA,
Irun, Spain. It was made using only recycled aluminium post-consumer scrap supplied by
a local recycler. The scrap was melted and slagged in an induction furnace at temperature
up to 800 ◦C. Subsequently, after the aluminium melt was slagged and skimmed, the melt
was transferred to an electric resistance furnace and the alloying elements were adjusted to
achieve the target composition in Table 1. The melt was refined with Al-Ti-B and modified
with Al-Sr at 620 ◦C. Finally, the melt was poured into a preheated permanent steel mould
at 200 ◦C.

The castings were sampled with an ATM Brillant 240 (ATM Qness GmbH, Mam-
melzen, Germany) saw for metallographic and quantitative microstructural analysis. The
samples were embedded in dentacryl using a Struers CitoPress-1 embedder (Struers S.A.S.,
Champigny sur Marne, France). Subsequently, they underwent grinding and polishing
using a Struers TegraPol-15 automatic machine, following a dedicated procedure to prepare
Al-Si alloys. The different steps of this process vary in duration, sandpaper type, and
environment. Before microstructure observation, the samples were etched with 0.5% HF
and Dix–Keller.

A NEOPHOT 32 optical microscope (Carl Zeiss, Jena, Germany) was used for metal-
lographic analysis of the individual melts. The microstructure images were taken with a
Nikon DS-FI 1 camera (Nikon, Tokyo, Japan) and NIS Elements 5.20 software. The aim
of the metallographic analysis was to identify the basic phases present in the structure of
each melt. The distribution of these phases and casting defects was also studied. The same
equipment was used for quantitative analysis to measure the structural parameters. The
SDAS factor (Secondary Dendrite Arm Spacing), the area fraction of eutectic silicon, the
size and area fraction of different ferrous phases, and the size and area fraction of casting
defects were evaluated. All characteristics were observed at a minimum of 20 sample spots
to ensure comprehensive analysis and reliable data collection.

The microstructure was further observed and documented with a TESCAN VEGA
LMU II scanning electron microscope (TESCAN VEGA, Kohoutovice, Czech Republic). For
this purpose, samples of each melt were prepared by a standard procedure. In addition to
etching with 0.5% HF, the samples were deeply etched with concentrated HCl, enabling
the 3D morphology of the individual phases to be observed after the alpha phase was
etched away.

Brinell hardness tests were performed according to ISO 6506-1 [30] using CV-3000LDB
hardness tester (LFC PTE LTD, Batam, Indonesia). A 5 mm diameter hard-metal ball
was pressed for 10 s under a load of 250 kp. The reported hardness values represent
the average of five measurements gained from the specimen. All measurements were
performed at room temperature. Vickers microhardness was measured according to ISO
6507-1 [31] with a Zwick/Roell ZHµ microhardness tester (ZwickRoell, Ulm, Germany).
A load of 10 g was applied for 10 s, with five indentations made for each phase. The
resulting value represents the average of these measurements, ensuring a robust and
accurate microhardness evaluation. Two samples of each alloy were used for microstructure
observation and hardness measurements.

The tensile strength test was carried out according to ISO 6892-1 [32] by Instron 5985
(Instron, Norwood, MA, USA). Test bars were made from the castings of the tested melts
by chip machining. For each melt, 3 proportional test bars with a diameter of 8 mm and
an initial measured length Lo of 40 mm were produced. The fracture surfaces after tensile
tests were evaluated using a selective electron microscope.
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The corrosion resistance of the tested alloys was evaluated by the Audi test, which is an
immersion gravimetric corrosion resistance test known for its efficiency. Three cylindrical
samples of each alloy with a diameter of 15 mm and a height of 15 mm were produced by
chip machining. They were carefully cleaned with distilled water and ethanol, then dried
and weighed with high precision. To prevent contamination, the samples were handled
exclusively with gloves or tweezers. The samples were then immersed in a solution of
25.6 mL of 35% HCl, 7.5 g of NaCl and 0.375 l of distilled water. The temperature of the
solution during the test was 20 ± 2 ◦C. After two hours, the samples were again cleaned
with distilled water and ethanol, dried, and weighed. Corrosion resistance was determined
based on the weight loss of the samples during the test. The resulting weight change
represents the average of three samples of a single alloy.

3. Results
3.1. Metallographic and Quantitative Analysis
3.1.1. Microstructure

Metallographic analysis was used to identify the phases that form the microstructure
of the studied alloys. Figures 1 and 2 show the structure of alloy A. The largest area fraction
is formed by dendrites of the alpha phase, representing the substitution solid solution of
zinc in aluminium, visible as bright spots (Figure 1b). Interdendritic spaces host a eutectic
formation characterised by crystals of eutectic silicon and alpha phase, visible as dark areas
(Figure 1b).
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Figure 1. Microstructure of alloy A, etch. Dix–Keller: (a) α-phase, eutectic, and Al5FeSi needles;
(b) α-phase, eutectic, and sludge phases.

Additionally, the structure of Alloy A comprises intermetallic phases. Plate/needle
phases of Al5FeSi (Figures 1a and 2c), skeletal phases of Al15FeMn3Si2 (Figure 2a), and
sludge phases based on Al-Fe-Mn (Figures 1b and 2c) are observed. The presence of
manganese alloying contributes to the formation of sludge and skeletal iron phases within
the structure. Furthermore, ternary eutectic Al-Mg2Zn-Zn phases (Figure 2d) and Mg2Si
phases (Figure 2b,c) are identified, with Mg2Si phases occasionally observed as dark skeletal
units within the structure.

The microstructure of Alloy B, like Alloy A, is mostly composed of alpha-phase
dendrites and eutectics in the interdendritic spaces (Figure 3a). However, in comparison to
Alloy A, the structure of Alloy B is significantly finer. This difference can be attributed to
the use of grain refiner and Sr modifier, as well as to the higher cooling rate due to the use
of a metal mould. The structure contains needle/plate-like intermetallic Al5Fesi phases
(Figure 3b), skeleton-like Al15FeMn3Si2 phases (Figure 3c), Al-Fe-Mn based sludge phases
(Figure 3c,d). Skeletal Mg2Si phases are occasionally observed within the microstructure.

The alloys differ visibly in the shape and size of the eutectic silicon. In Alloy A, the
eutectic silicon crystals are shaped similarly to corals, growing as rods in clusters (Figure 4a).
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In Alloy B, the eutectic silicon is significantly finer due to the use of the Sr modifier. The
silicon grows around the intermetallic phases, but its shape is unrecognisable (Figure 4b).
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Needle-like Al5FeSi phases (Figure 5a) are generally undesirable in the microstructure
of aluminium alloys. Their 3D morphology is plate-like, causing stress concentration in the
material. Additionally, Al5FeSi plates are very hard, and brittle compared to the matrix,
resulting in the degradation of mechanical and fatigue properties. Due to the manganese
alloying, the ferrous phases are found in the structure of the investigated alloys mainly
in the form of skeleton (Figure 5c) and sludge phases (Figure 5b), which have a positive
effect on the mechanical and fatigue properties. Skeleton-like Mg2Si phases are occasionally
observed within the microstructure.
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3.1.2. Quantitative Analysis

By quantitative analysis, the structural parameters of the studied alloys were com-
pared, providing deeper insight into the microstructure changes based on the chemical
composition. The individual comparisons are presented in Figures 7–9. By comparing the
area fraction of the individual phases, we found that their amount is significantly different
in the tested alloys (Figure 7). Alloy B has a higher content of eutectic silicon, with up to
a 5% increase compared to Alloy A. Sludge phases based on Al-Fe-Mn are the dominant
intermetallic phases in both alloys. However, Alloy A has twice the amount of sludge
phases (12.4%) compared to Alloy B. Due to the manganese alloying, needle-like phases
occur only in small amounts in the microstructure of both alloys with a slightly higher
area fraction observed in Alloy A. This alloy also has a significantly higher amount of
casting defects.
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The data presented in Figure 8 show that Alloy B has a significantly lower SDAS factor
compared to Alloy A. This is likely attributed to the use of grain refiner and modifier in
production combined with the higher cooling rate. The needle-like Al5FeSi phases are
longer and slightly thicker in Alloy A. Therefore, in combination with the reduced SDAS
factor, an increase in mechanical properties, especially ductility, can be expected in Alloy B.

In addition to the higher area fraction of casting defects, the pores observed in Alloy
A also have significantly larger dimensions. The casting defects in both alloys are mostly
due to shrinkage during solidification, although gas pores are also present. Quantitative
analysis confirmed that the eutectic silicon in Alloy B is notably finer, with smaller crystals,
as previously identified in metallographic analysis (Figure 4). Conversely, in Alloy A, the
ferrous sludge phases appear several times larger in size (Figure 9), contributing to the
high area fraction of sludge phases in this alloy (Figure 7).

3.2. Mechanical Properties

The microstructure of aluminium alloys consists of many phases that differ signifi-
cantly in their properties. When measuring hardness, it is important to consider that the
measured hardness is strongly influenced by the microstructure directly at the point of
indentation. Therefore, Brinell hardness measurement is recommended for cast aluminium
alloys. The relatively large ball used in this measurement covers a larger area containing
all structural phases, gaining more accurate results. Vickers microhardness HV0.01 was
measured to detect differences in the hardness of each phase (Table 2). The hardest phases
of the structure of AlZn10Si8Mg alloys are eutectic silicon and ferrous phases, while the
dendrites of the alpha phase have the lowest hardness. The eutectic is composed of very
hard crystals of eutectic silicon and soft alpha phase, resulting in higher hardness compared
to the matrix. Sludge phases, being larger than needle phases, exhibit greater resistance
when measuring hardness (Figure 10). In Alloy B, it is not possible to measure the hardness
of the eutectic silicon because its crystals are too fine. The increased hardness of the alpha
phase in Alloy B can be explained by the higher amount of eutectic in this alloy. The hard
crystals of eutectic silicon are located just below the measured area, increasing the hardness
of the matrix. The increased hardness of the eutectic is due to the tight arrangement of the
smaller eutectic silicon crystals in Alloy B.
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Table 2. Microhardness of individual phases (HV 0.01).

Alloy α-Phase Eutectic Eut. Silicon Sludge Phases Al5FeSi

A 101 ± 22 167 ± 35 1184 ± 151 1204 ± 146 588 ± 170
B 121 ± 31 191 ± 28 - 1355 ± 91 512 ± 36
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Figure 10. Representative microhardness measurements of: (a) Al5FeSi phase; (b) sludge phase.

By measuring the Brinell HBW 5/250/10 hardness, we found that Alloy B is signifi-
cantly harder (Figure 11). This is probably due to the lower area fraction and size of casting
defects leading to higher material resistance. Alloy B also has significantly higher Ultimate
Tensile Strength (UTS) and Yield Tensile Strength (YTS). The UTS of Alloy B is almost
double and the YTS is up to 145% that of Alloy A. Alloy B also has significantly higher UTS
and YTS. The UTS of Alloy B is almost double and the YTS is up to 145% than that of Alloy
A. These results, along with their respective tolerances, are summarised in Table 3.
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Table 3. Overview of mechanical properties.

Alloy UTS [MPa] YTS [MPa] Ductility [%] HBW 5/250/10

A 171.7 ± 11 143 ± 37 0 100 ± 3
B 380.2 ± 8 351.2 ± 14 0.47 139 ± 3

The fracture surfaces of the test specimens were analysed with a selective electron
microscope. Since the structure of AlZn10Si8Mg alloys is heterogeneous, a combination
of ductile and cleavage failure is visible on the fracture surface (Figure 12a,b). Notably,
porosity is visible on the fracture surface, with Alloy A exhibiting more extensive porosity.
Consequently, the fracture surface of Alloy A appears more segmented. The failure occurred
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in several planes because the strength of the material was locally reduced due to the
influence of the pores.
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The aluminium matrix in both alloys is fractured by transcrystalline ductile fracture
with dimpled morphology. The size and shape of the dimples is defined by the size and
shape of the eutectic silicon particles. The ferrous phases are ruptured predominantly by
transcrystalline cleavage fracture (Figure 12c,d,f). In some cases, secondary fractures occur
(Figure 12e). These different failure mechanisms arise from the different hardness of the
different structural phases (Table 2). In Alloy A, sporadic occurrences of ferrous phases
on the fracture surface are observed, which have not cleaved but instead separated at the
interfacial boundaries (Figure 12e).

3.3. Corrosion Resistance

The corrosion resistance of the studied alloys was evaluated by measuring the weight
loss following the Audi test (Figure 13). A lower weight loss indicates better corrosion resis-
tance. The results revealed that Alloy B samples exhibited a weight loss of 0.582 ± 0.02 g,
whereas Alloy A samples exhibited a weight loss of 0.792 ± 0.05 g during the test. These
findings indicate that Alloy B demonstrates greater resistance to corrosion in this environ-
ment. However, the Audi test is not sufficient to characterise the corrosion resistance, so
further research with more accurate methods is needed.
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Figure 13. Results of the Audi test.

The weighing results were further validated by examining of the sample surfaces
after the Audi test (Figure 14). Alloy A samples exhibit a greater extent of corrosion
(Figure 14a). Upon closer inspection at higher magnification, general corrosion of the
entire surface is observed. However, the surface of the specimen is attacked irregularly
(Figure 14c). Corrosion initiation occurs where the protective oxide layer has been disrupted,
particularly in the eutectic region, while the alpha-phase dendrites show better corrosion
resistance. Irregular general corrosion is also visible on the surface of Alloy B (Figure 14b,d).
Compared to Alloy A, there are fewer initiation points in this alloy with a damaged
protective layer. The corrosion attack is less extensive and there is no significant penetration
into the material.

By comparing the cross-sections of the samples of the investigated alloys after the
Audi test, it was found that the corrosion attacked Alloy A to a significantly greater depth
(Figure 15c,d). The finer microstructure of Alloy B played a significant role. Sludge iron
phases cause eutectic dissolution because they form micro galvanic cells of two phases with
different potentials (Figure 15e–h). Al5FeSi needles have a stronger negative effect than
sludge phases, as the latter possess potentials closer to the eutectic. While alpha-phase
dendrites exhibit the highest resistance, they are also subjected to corrosion to a limited
extent (Figure 15e). The influence of the individual phases on the corrosion mechanism
did not change in the alloys studied. The enhanced corrosion resistance of Alloy B with a
higher copper content may be attributed to the use of a grain refiner and modifier, which
contributed to the fine microstructure.
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Figure 15. Documentation of the depth and mechanism of corrosion attack: (a) surface of the Alloy A
without corrosion; (b) surface of the Alloy B without corrosion; (c) irregular general corrosion in Alloy
A; (d) irregular general corrosion in Alloy B; (e) corrosion attack of eutectic in Alloy A; (f) corrosion
attack of eutectic in Alloy B; (g) corrosion around intermetallic phases in Alloy A; (h) corrosion
around Al5FeSi in Alloy B.

4. Discussion

The results of our study provide valuable insights into the microstructural characteris-
tics, mechanical properties, and corrosion behaviour of self-hardening aluminium alloys
with varying compositions. The initial hypothesis that higher copper content in Alloy B
might lead to the potential deterioration of corrosion resistance was not supported by the
findings. Instead, Alloy B exhibited superior corrosion resistance compared to Alloy A,
contrary to our expectations. This contradicts the results reported by Zhang [35], who
reports that the susceptibility to intergranular corrosion increases in an Al-Zn-Mg-(Cu)
alloy as the copper content increases from 0 to 2.6 wt.%. It should be noted, however, that
the Audi test is not a reliable method for a comprehensive characterisation of the corrosion
properties of the tested aluminium alloys. This test only provides a quick comparison of
the behaviour of materials in a very aggressive environment. Hydrochloric acid creates
an acidic environment that dissolves the protective oxide layer on the entire surface. The
formation of corrosion products and the high porosity of Alloy A, which increases the
reaction surface area of the sample, have a large influence on the observed mass loss. The
Audi test thus only serves as a basis for long-term corrosion tests in a real environment
and is insufficient to draw reliable conclusions. This unexpected outcome underscores the
complexity of alloy behaviour and highlights the need for further research, as corrosion
resistance is not only influenced by chemical composition. Rosso [27] reports that a finer
structure positively affects the corrosion resistance of the AlZn10Si8Mg alloy, aligning
with our finding of significantly improved corrosion resistance in Alloy B. Our findings
contradict the results described by Kuchariková et al. in a previous work [36], in which
the susceptibility of the AlZn10Si8Mg alloy to local corrosion is described. However, their
tests were carried out in less aggressive environments where susceptibility to local forms of
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corrosion is very likely. This corrosion was caused by the galvanic link between the eutectic
and aluminium matrix. This resulted in the eutectic dissolving.

The improved mechanical properties due to the addition of copper correspond with
the result of Wang [37], who reports that in the 2Al2 alloy with increased manganese
content, the addition of copper increased the hardness and tensile strength from 228.3 to
255.6 MPa. The increased mechanical properties are due not only to the copper content but
also to the production conditions, particularly the higher cooling rate of Alloy B due to the
use of a metal mould. This argument was confirmed by Rosso [26], stating that the higher
solidification rate promotes the formation of a finer microstructure and the improvement
of the mechanical properties of the AlZn10Si8Mg alloy. The slow cooling rate caused the
formation of larger Mg2Si phases.

Scampone [38] reports that increasing zinc concentration in the AlSi7Cu2 alloy in-
creases the eutectic content and promotes the formation of ferrous phases negatively
affecting the ductility of the alloy. On the other hand, zinc causes the self-hardening ability
due to which the mechanical properties are enhanced. Increasing zinc content reduces the
necessary natural precipitation time. The resulting mechanical properties are also better at
higher zinc contents. The matrix is harder due to the presence of zinc in the solid solution
and hardening precipitates. Thus, the findings of Scampone [38] agree with our results.
In alloy B, with higher zinc content, we found a higher proportion of eutectic (Figure 7)
and a significant decrease in ductility (Figure 11). The UTS and YTS of this alloy were
significantly higher, and the matrix hardness was also increased compared to Alloy A
(Table 3).

In the broader context, our study underscores the significance of optimising alloy
composition and processing parameters to enhance corrosion resistance in aluminium
alloys. The findings have implications for industries reliant on aluminium components,
such as the automotive and aerospace sectors, where corrosion resistance is critical for
long-term performance and durability.

A summary of the experimentally determined structural, mechanical, and corrosion
properties of the investigated AlZn10Si8Mg alloys is presented in Table 4. The different
microstructure parameters resulted in a significant increase in UTS, YTS, and HBW in
Alloy B.

Table 4. Overview of the observed characteristics of the investigated experimental alloys.

Alloy A Alloy B

Area fraction of eutectic silicon [%] 19.4 24.4
Area fraction of Al5FeSi [%] 2 1.4

Area fraction of sludge phases [%] 12.4 6
Area fraction of casting defects [%] 3.9 0.4

SDAS factor [µm] 45.64 12.57
Length of Al5FeSi [µm] 46.5 35.23

Thickness of Al5FeSi [µm] 2.52 2.07
Size of sludge phases [µm2] 1319 119
Size of casting defects [µm2] 12372 712
Size of eutectic silicon [µm2] 6.05 3.27

HBW 5/250/10 100 139
UTS [MPa] 171.7 380.2
YTS [MPa] 143 351.2

Weight loss after Audi test [g] 0.792 0.582

5. Conclusions

The microstructure, mechanical properties, and corrosion resistance of two self-
hardening AlZn10Si8Mg alloys were compared in this study. The alloys differed sig-
nificantly in copper and zinc content and cooling rate. The following conclusions can be
drawn from our findings:
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• The microstructure of the AlZn10Si8Mg alloy consists of the alpha phase, eutectic,
intermetallic phases Al5FeSi, Al15FeMn3Si2, sludge phases Al-Fe-Mn, Al-Mg2Zn-Zn,
and Mg2Si phases. With higher Cu and Zn contents, but especially with a faster
cooling rate, the structure becomes significantly finer, and the proportion and size of
ferrous intermetallic phases and the porosity decrease. On the contrary, the fraction of
eutectic increases and the crystals of eutectic silicon are significantly finer.

• The hardness of individual phases in the AlZn10Si8Mg alloy varies significantly. The
eutectic silicon crystals (1184 HV0.01), the sludge phase (1204 HV0.01), and the Al5FeSi
phase (588 HV0.01) are the hardest. Due to the higher zinc content, the hardness of the
alpha phase is higher in Alloy B compared to Alloy A.

• The higher alpha phase hardness and eutectic hardness in Alloy B were also reflected
in the overall Brinell hardness. In addition, Alloy B has significantly higher UTS and
YTS due to the combination of higher copper and zinc content and finer microstructure.
Thus, more efficient natural precipitation occurred in Alloy B.

• Due to the high level of hardening, the ductility of Alloy B decreased significantly. This
brittleness primarily resulted from the presence of large-sized ferrous particles within
the alloy. Under tensile stress, the matrix of both alloys was ruptured by transcrys-
talline ductile fracture. The ferrous phases were fractured by cleavage or separated
along the interfacial interface. There was a noticeable porosity at the fracture surfaces.

• Contrary to expectations, Alloy B with a higher content of Cu was more corrosion-
resistant than Alloy A. This is due to the significantly finer structure of this alloy. The
corrosion resulted in the dissolution of the eutectic, which formed galvanic cells with
an alpha phase. However, corrosion resistance is a complex subject, and no reliable
conclusions can be drawn from immersion tests alone. Extensive research is therefore
needed in this area using more accurate methods.

The issue of the corrosion resistance of the self-hardening alloy AlZn10Si8Mg is
complex and requires consideration of multiple factors. Therefore, further research in
this area is important. Even though commercially utilised alloys Unifont 90 and Unifont
94 have a permissible copper content no higher than 0.03%, this study demonstrates
that with appropriate manufacturing conditions, excellent mechanical properties can be
achieved even with higher copper content. These results might be especially significant
for producers of secondary aluminium alloys when the input raw materials have a high
copper percentage.
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20. Hanza, S.; Vrsalovič, L.; Štic, L.; Liveric, L. Corrosion investigations of Al-Si casting alloys in 0.6 M NaCl solution. Eng. Rev. 2020,
41, 115–123. [CrossRef]
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