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Abstract: Quantitative analyses of structural resistance are useful during the design process to prevent
the occurrence of progressive collapse. Buildings subjected to continuous instances of expected/non-
expected loadings due to extreme events (e.g., earthquakes, explosions, floods, hurricanes) can
collapse. A lack of specific knowledge from the designer and poor maintenance can affect collapse
analyses. In this paper, the probability of failure for pancake collapse with respect to bending collapse
for reinforced concrete (RC) multi-storey buildings is estimated. New combinations regarding
the elastic/plastic behaviour of the material under distributed loadings on beams are proposed.
Numerical 2D finite element method (FEM) analyses are carried out to model these buildings. Also,
simplified dynamic analyses are carried out. The outputs are plotted in terms of the probability of
failure for pancake collapse as a function of column compressive strength and the number of removed
columns. The results show that the presence of elastic beams can influence the pancake collapse of
columns, and, for buildings composed of several elements, the elimination of few elements has little
impact on their stability.

Keywords: pancake collapse; bending collapse; reliability analyses; RC buildings; elastic/plastic material

1. Introduction

The collapse of the Ronan Point building in 1968 due to an internal gas explosion is
considered a classic example of progressive collapse [1,2]. The collapse of structures can be
caused by different events, e.g., earthquakes, impact loadings, explosions, etc. Particular
attention to the latter event is necessary since it can be caused by terrorist attacks [3–5],
as registered in New York (2001), Madrid (2004), Stockholm (2010), Moscow (2011), and
Boston (2013).

Studies of these events regarding structural collapse have shown the great vulnerability
of these structures and inappropriateness of their design [6]. The concept of robustness,
often associated with collapse, is related to a structure’s ability to not suffer excessive
damage in a disproportionate way to the causative event. Unless the structure is designed
to remain in service after one of its columns is collapsed by an explosion, it is usually strong
enough to withstand such an attack without collapsing, adopting specific details.

Several engineers and researchers have focused on this issue and its mechanisms (e.g.,
bending and pancake, discussed in the present paper [4,7]).

Some codes [8] recommend prescriptive strategies for limiting or even avoiding pro-
gressive collapse. These strategies require minimum amounts of ductility, redundancy, and
special structural arrangements, e.g., using the (i) high toughness of structural members
and their interconnections [9], and (ii) the alternative load path method [10,11], which
involves suddenly removing one key element and measuring the extent of the subsequent
collapse [12].
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These measures do not indicate steps to achieve progressive collapse and they are not
always enough to prevent progressive collapse [13,14]. Hence, structures are first designed
and subsequently tested against those robustness criteria. This means that progressive
collapse is not considered a priori, but mostly at the design phase [4].

Regarding structural redundancy, i.e., the capacity to redistribute the loads when a
damage process acts on some parts of a structure, in the literature, the lack of this capacity
is considered a main cause for collapse [6,15]. In particular, “passive” redundancy can be a
strong mechanism to guarantee the robustness of the structure and avoid collapse. Passive
redundancy regards the structural elements as being in a “stand-by” situation but states
that they come into operation when any structural element fails.

In anti-seismic codes [16,17], the capacity design requires a hierarchy of the structural
elements, ensuring that earthquakes can only provoke ductile collapse of the horizontal beams,
whereas the failure of columns and brittle ruptures attributable to shear are inhibited.

Strategies to improve progressive collapse resistance include the following: (i) compart-
mentalization of the structure (i.e., to decide what are the expendable parts of a building)
and (ii) the delocalization of stresses after local damage. The delocalization of stresses
can be achieved by improving moment-resisting connections in pile-beam nodes, e.g., for
precast concrete structures [12] and steel structures [13,18,19]. Moreover, (iii) catenary
effects in the floor slabs can remarkably improve robustness, as discussed in [14].

More recently, these themes have been treated in different ways. In [2], progressive
collapse was studied by considering the effects of novel and alternative structural detailing
for reinforced concrete (RC). In [3], the influence of the infilled walls in prestressed RC
elements on progressive collapse was analyzed. In [5], the potential progressive collapse
behaviour of innovative steel fibre-reinforced rubberized concrete was evaluated. In [11],
progressive collapse was assessed by considering the torsional effects for monolithic precast
concrete. Finally, in [20,21], the authors also highlighted the concept of pounding with
neighbouring buildings as a potential factor contributing to the collapse of columns or
beam frames within structures.

All these analyses contain several uncertainties which cannot be neglected when more
accurate predictions of collapse are needed. In this regard, the assessment of some impor-
tant parameters, which control (e.g., column removal time [12]) and give information on
the status of the collapse process (e.g., external loadings and internal stresses), should be
carried out via probabilistic approaches to better predict the durability of RC structures
in a more accurate way. Most uncertainties can be modelled as random variables. Relia-
bility analyses estimate the probability of collapse by accounting for several parameters.
Therefore, these probabilistic approaches consider the uncertainties and their effects more
consistently, providing more detailed information to better make decisions in engineering
projects, especially when durability aspects are present.

This paper studies progressive collapse by using probabilistic methods. In particular,
the probability of failure for pancake collapse with respect to bending collapse for RC
multi-storey buildings is estimated. The considered behaviour of the material is elastic and
plastic. The general concept is to understand the 2D structural behaviour of three building
types after the removal of some columns. Iterative dynamic analyses are also developed.

This paper represents an extension of [10]; in this sense, the main novelties of this
paper consist of developing new combinations for pancake collapse in a global system and
proposing a new limit state (LS) function for reliability analyses.

2. Structural Scheme
2.1. Dynamic Equilibrium

The scheme is represented by a 2D hierarchical structure. A structure is called “hierar-
chical” when it has a primary structure, which is made of some massive structural elements
that support a secondary one. The studied structure is formed by reinforced concrete (RC)
elements with horizontal beams (floors) and vertical columns fixed on the ground [22]. A
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2D framed structure should be enough to reveal different local rupture modes, as already
discussed in [10,23].

The structural equilibrium is represented by a simplified dynamic scheme, whereas
the behaviour of the material can be elastic or plastic (discussed in Section 2.2). The external
actions come from the ground horizontal accelerations,

..
xe(t).

For each degree-of-freedom (DOF), the dynamic equilibrium in the time, t, is expressed
by the following [24]:

M ..
x(t) +C .

x(t) +K x(t) = −M l
..
xe(t) (1)

where M ∈ Rn×n and K ∈ Rn×n are the mass and stiffness matrices, respectively. The
former matrix is formed by coefficients mj > 0 (j = 1, 2, . . ., n), which represent the j-th floor
lumped masses where j = 1 refers to the first floor, whereas the latter matrix is formed by
kj > 0, which denotes the elastic stiffness coefficients between j-th and (j + 1)-th floor [22].
The damping matrix, C ∈ Rn×n, formed by coefficients, cj, is expressed under the classical
Rayleigh damping assumption.

The components of x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn are the floor displacements

which refer to the ground level. Variables
.
x(t) and

..
x(t) represent the first and second time

derivate of x(t), respectively. Matrix l = [1, 1, . . . , 1]T ∈ Rn accounts for the distribution of
the external action

..
xe(t) = [xe,1(t), xe,2(t), . . . , xe,n(t)]

T ∈ Rn.
Figure 1 shows an example of a studied building (columns + beams) and two collapse

mechanisms, i.e., bending and pancake collapse (explained in Section 2.2), that can occur in
the structure. The formation of the plastic hinges is indicated by red points.
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Figure 1. Illustration of the studied collapses for a 2D building [25].

During shaking, the intact structure is equilibrated under gravity loadings. If some
elements fail during this initial phase, the structure is incapable of carrying the service
loadings, and the dynamic motion stops [14,26].

This scheme is valid only for the elimination of the central columns; thus, the elim-
ination of edge columns is not considered here [13]. Therefore, the scheme allows for
elimination up nc − 2 columns, where nc ∈ N is the number of columns of the struc-
ture [10].

2.2. Collapse Loadings

The columns transmit vertical concentrated forces to other columns at a lower storey
and to the beams over the damage area. Concrete buildings with typical structural configu-
rations are subjected to progressive collapse by local failure of a vertical support member [5].
In this sense, it is necessary to evaluate different models to capture the interaction between
bending moment and compressive force.
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Collapse loadings generate a localized failure of a primary load-bearing element,
which affects multiple adjacent portions of the structure [16]. The sudden loss of a column
generates two main effects: (i) increase in the beam length supported by the columns
and (ii) downward inertial amplification of gravity forces [16,25]. In both situations, the
structural elements must redistribute the amplified loadings to the neigh elements to
re-achieve equilibrium [16].

Gravity and external aleatory loadings generate the developing of axial, shear, bending
moments, and torsional moments in structural members. These forces determine the static
equilibrium state of the structure; for this, they are considered during the conventional
design stage. However, aleatory events provide the unknown redistribution of these forces
in terms of magnitudes and directions.

Knowledge of the redistribution of the stresses in the structural elements produced by
column removal is crucial before estimating the progressive collapse assessment. The key is
to individuate the positions of the loadings in the damaged structure (i.e., without columns).
It is assumed that the sudden application of the gravity load without the columns captures
the response of the structure to progressive collapse. In this sense, in the approach used in
this paper, the modelling of the internal reaction forces is not required.

In the present analysis, two types of collapse, including loading, have been considered.
The first is called “bending collapse”, where beams collapse for flexure and the structure
is subjected to being pushed upwards [27]; in this case, columns are stiffer than beams.
The second is called “pancake collapse”, where columns are subjected to buckling under
compressive forces. In this case, columns exert a push toward the outside. This division is
consistent with the classic requirement to find “strong-column-weak-beam”, as discussed
in [2].

The loadings are considered to be uniformly distributed, q, on the horizontal beams,
which transmit the loadings on the vertical columns.

Figure 2 shows the sequences used to carry out the collapse analysis, from the identi-
fication of collapse types to the identification of geometrical systems. The sequences are
divided into the following: (i) collapse types as bending, pancake [10], hammering, drag,
base cutting [4]; (ii) collapse moments, which refer to the time, i.e., before and after damage;
(iii) behaviour of the structural elements, which can be prefect brittleness (henceforth called
“elastic”) and ideal plasticity (henceforth called “plastic”); and (iv) systems, which define
the geometric references.
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Figure 2. Sequences of the collapse analysis (the conditions studied in this paper are in blue).

Progressive collapse of framed structures after damage consists of an initial triggering
and thus a subsequent damage propagation. If the initial damage is small, collapse initiation
is generally a local phenomenon only affecting the surroundings of the initially damaged
area. Global mechanisms can occur only in thin structures with enough stiffness capacity to
avoid the compartmentalization effect produced by ruptures. Nevertheless, if the starting
damage is more serious than the removal of a single column, global mechanisms can be
expected also for larger and more plastic structures.
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The parameters used to define the collapse are the moment yield threshold, By, in the
beams neglecting shear and axial forces and the compressive strength, Rc, in the columns.
Therefore, when element strength is reached, two possible scenarios, as already mentioned,
regarding the behaviour can happen.

In the following Sections 2.2.1 and 2.2.2, the analytical relations are shown in accor-
dance with the literature [10,23].

2.2.1. Bending Mechanisms

The bending mechanism (superscript “B”) is defined by a simplified static scheme,
which is represented by a bi-fixed beam to the columns subjected to distributed loading, q.
With these conditions, the elastic (superscript “el”) loading that refers to the intact structure
(subscript “i”) before damage can be expressed as follows:

qB,el
i =

12 By

L2 (2)

where L is length of the beam (By has been already defined). By considering the triple-hinge
plastic mechanism in the beam (two plastic hinges at the ends and one in the middle), the
plastic (superscripts “pl”) loading that refers to the intact structure before damage can be
expressed as follows:

qB,pl
i =

16 By

L2 (3)

After damage, the static scheme changes; in particular, the beam is fixed at one end,
and at the other end only the vertical displacement is free. In addition to loading q, there
is a concentred external force at the free end (=0.5 q L (nr,c − 1), where nr,c is the number
of the removed column). Here, the elastic loading after damage (subscript “d”) can be
expressed as follows:

qB,el
d =

12 By

L2(6 nr,c + 1)
(4)

For several plastic hinges at the ends of the beam, the plastic loading after damage is
as follows:

qB,pl
d =

4By

L2 nr,c
(5)

The concentration of the bending moment is the connection between a beam hanging
above the damage area, and the first intact column depends on nr,c number.

2.2.2. Pancake Mechanisms

The pancake mechanism (superscript “P”) is here described. The elastic loading before
damage is expressed as follows:

qP,el
i =

Rc

L ns
(6)

where ns is the number of storeys of the structure (Rc has been already defined). In the
after-damage situation, two reference systems have been identified: local (superscript “loc”)
and global (superscript “gl”). The elastic loading in the local and global system is defined
by, respectively, the following:

qP,el,loc
d =

Rc

L ns

1
(1 + nr,c)

(7)

qP,el,gl
d =

Rc

L ns

(
1 − fr

1 + fr

)
(8)
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where fr is the fraction of columns removed at one storey, which is defined by the following
ratio fr = nr,c/nc < 1. Finally, the plastic loading in the local and global system is defined by,
respectively, the following:

qP,pl,loc
d =

Rc

L ns

2
(2 + nr,c)

(9)

qP,pl,gl
d =

Rc

L ns
(1 − fr) (10)

2.2.3. Activation of Collapse Mechanisms

To individuate the more critical collapse loading (bending or pancake), it is necessary
to find the collapse mechanism to be activated in the structure. The activation of the
collapse mechanism can be estimated by the mechanism parameter, mp [10]:

mp =
Rc L
By ns

(11)

By combining Equations (4) and (5) with Equations (8) and (10), it is possible to
obtain four possible combinations for pancake collapse in a global system to define a new
parameter mp

P:

Combination 1 :
qP,pl,gl

d

qB,el
d

< 1 → mp < mP
p =

12
(1 − fr)(6nr,c + 1)

(12)

Combination 2 :
qP,pl,gl

d

qB,pl
d

< 1 → mp < mP
p =

4
nr,c (1 − fr)

(13)

Combination 3 :
qP,el,gl

d

qB,el
d

< 1 → mp < mP
p =

12 (1 + fr)

(1 − fr)(6nr,c + 1)
(14)

Combination 4 :
qP,el,gl

d

qB,pl
d

< 1 → mp < mP
p =

4 (1 + fr)

nr,c (1 − fr)
(15)

These combinations account for the loadings ratio that provides some types of collapse
due to plastic columns with respect to elastic/plastic beams, or elastic columns with respect
to elastic/plastic beams.

Note that only combination 1 was used in [10], whereas combinations 2, 3, and 4
represent an extension of [10]; in this sense, they can be considered new combinations and
contributions.

3. Material and Methods
3.1. Materials

Data have been collected considering a (i) determinist approach where the values
represent the geometry and material characteristics of the building and a (ii) probabilistic
approach where both parameters Rc and By represent the internal stresses of the building,
which are generated by several random variables (RVs).

Table 1 lists the deterministic parameters and their values for the three structure types.
A continuous element can be cut in ∞ different ways and, therefore, there are ∞e possible

fundamental structures, where “e” is the number of elements. In this sense, for three cases, nc
and ns are predefined to obtain three equivalent buildings in terms of H and L.

It is important to highlight that cases 1 and 2 could correspond to ideal buildings since
H and L reach very high values, whereas case 3 could be considered a real building. More
realistic scenarios would involve columns with a small cross-section and highly reinforced
tall beams [23]. The general criterium was to construct symmetric buildings with the same
total length and height, in a similar way to the literature [10].
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Table 1. Deterministic data for the three studied buildings.

Parameter
Value for Each Case

Case 1 Case 2 Case 3

Number of columns, nc (-) 3.0 6.0 12.0
Number of storeys, ns (-) 2.0 5.0 11.0

Length of the beam, L (m) a 20.0 9.0 4.0
Height of the column, H (m) a 16.50 6.50 3.0

Concrete mass density, γc (kN/m3) 25.0
a The beams and columns are dimensions of B 30.0 × 50.0 cm and C 45.0 × 45.0 cm, respectively.

Figure 3 shows the model scheme. The logic consists of estimating the effects on the
structure’s stability when some columns are removed. The removed parts can be caused
by an accidental damage event; however, the characteristics of the possible event were not
studied here [7]. After removing the structural elements, the internal stress reorganizes.
It is possible to idealize a graph of multi-directional stress associated with each element.
The search of the set of rooted trees of a graph coincides with the extraction of the set of all
possible paths of loadings where the branches are the beam and columns, and the nodes
are the beam–column intersection [6].

Buildings 2023, 13, x FOR PEER REVIEW 7 of 18 
 

Table 1. Deterministic data for the three studied buildings. 

Parameter 
Value for Each Case 

Case 1 Case 2 Case 3 
Number of columns, nc (-) 3.0 6.0 12.0 
Number of storeys, ns (-) 2.0 5.0 11.0 

Length of the beam, L (m) a 20.0 9.0 4.0 
Height of the column, H (m) a 16.50 6.50 3.0 

Concrete mass density, γc (kN/m3) 25.0 
a The beams and columns are dimensions of B 30.0 × 50.0 cm and C 45.0 × 45.0 cm, respectively. 

A continuous element can be cut in ∞ different ways and, therefore, there are ∞e pos-
sible fundamental structures, where “e” is the number of elements. In this sense, for three 
cases, nc and ns are predefined to obtain three equivalent buildings in terms of H and L. 

It is important to highlight that cases 1 and 2 could correspond to ideal buildings 
since H and L reach very high values, whereas case 3 could be considered a real building. 
More realistic scenarios would involve columns with a small cross-section and highly re-
inforced tall beams [23]. The general criterium was to construct symmetric buildings with 
the same total length and height, in a similar way to the literature [10]. 

Figure 3 shows the model scheme. The logic consists of estimating the effects on the 
structure’s stability when some columns are removed. The removed parts can be caused 
by an accidental damage event; however, the characteristics of the possible event were not 
studied here [7]. After removing the structural elements, the internal stress reorganizes. It 
is possible to idealize a graph of multi-directional stress associated with each element. The 
search of the set of rooted trees of a graph coincides with the extraction of the set of all 
possible paths of loadings where the branches are the beam and columns, and the nodes 
are the beam–column intersection [6]. 

 
Figure 3. Scheme of the building and its removed parts [25]. 

The 2D finite element method (FEM) by software [28] has been used to model the 
buildings, as shown in Figure 4a–c. Figure 4d shows a structural dynamic scheme already 
described by Equation (1) (developed in Section 4.2) [29]. The used values are shown in 
Table 1. 

Each element is indicated by a number, and as already mentioned, the nodes at the 
end of the columns are fixed. The buildings are composed by 9 nodes and 10 elements 
(case 1), 45 nodes and 52 elements (case 2), and 224 nodes and 243 elements (case 3). The 
x-axis and z-axis correspond to the horizontal and vertical axis, respectively. 
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The 2D finite element method (FEM) by software [28] has been used to model the
buildings, as shown in Figure 4a–c. Figure 4d shows a structural dynamic scheme already
described by Equation (1) (developed in Section 4.2) [29]. The used values are shown in
Table 1.

Each element is indicated by a number, and as already mentioned, the nodes at the
end of the columns are fixed. The buildings are composed by 9 nodes and 10 elements
(case 1), 45 nodes and 52 elements (case 2), and 224 nodes and 243 elements (case 3). The
x-axis and z-axis correspond to the horizontal and vertical axis, respectively.

In Figure 4a–c, by a rectangular red area, the removed columns are shown: for case 1,
only one column is removed, nr,c = 1.0 (element 3 in the FEM model); for cases 2 and 3, two
columns are removed, nr,c = 2.0 (elements 5 and 7 for case 2; elements 28 and 29 for case 3).

Table 2 shows the frequencies, estimated by software [28], and the masses for each case.
The frequencies, f (=1/T, where T is the structural period), refer to the predominant modal
participating mass ratio (MPMR), which ranges between 81.83 and 94.25%, in x direction.
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Table 2. Modal analyses by FEM model [28].

Case
Structural Frequency

Whole Structure nr,c = 1.0 nr,c = 2.0

Case 1 0.37 Hz (67.62 × 103 kg) 0.32 Hz (63.44 × 103 kg) -

Case 2 0.84 Hz (173.31 × 103 kg) 0.83 Hz (171.67 × 103 kg) 0.79 Hz (170.02 × 103 kg)

Case 3 1.79 Hz (373.06 × 103 kg) 1.79 Hz (372.30 × 103 kg) 1.77 Hz (371.54 × 103 kg)
Note: In brackets, the mass of the building is indicated.

Stochastic analyses have been carried out by using Monte Carlo simulation (MCS),
which consists of choosing a probability distribution in the range of RVmin to RVmax up to a
list of N random values, i.e., RVmin ≤ µ ≤ RVmax (here, N = 1.0 × 106, and RVmin = RVmax
≈ 0.80 µ). The software Mathematica has been used for this purpose [30]. Table 3 lists the
used values, where µ and σ are the mean and standard deviation values, respectively; CV
is the coefficient of variation defined by (σ/µ) × 100.

The choice of the µ values for By is similar to that used in [10], whereas the choice
of µ values for Rc is due to the fact that the probability of failure for pancake collapse, Pr
(Section 3.2.1), must be expressed between 0 and 1.0 for nr,c = 1, 2, . . ., n. Thus, By values
have been estimated a posteriori to evaluate the Pr trends. This leads to carrying out several
analyses for all cases and combinations.

Figure 5 shows the probability density functions (PDFs) for the output values (see
Table 3) by using Gaussian distributions [31].
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Table 3. Probabilistic results (By values refer to all combinations, whereas Rc values refer only to
combination 1).

Parameter Case 1 Case 2 Case 3

Moment yield threshold of the
beam, By

µ (kN × m) a 9137.17 580.18 53.97

±σ (kN × m) 1057.40 67.03 6.20

CV (%) 11.57 11.55 11.48

Compressive strength of the
column, Rc

µ (kN) 2357.91 597.46 206.34

±σ (kN) 568.88 346.59 154.43

CV (%) 24.13 58.01 74.84
a Values similar to those used in [10].
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In Figure 5, it is possible to note that the PDF curves for Rc move from left to right
(from case 1 to case 3). This indicates that for the first structure of 10 elements, By is greater
than Rc, whereas for the third structure of 243.0 elements, By is smaller than Rc. This could
be consistent with the dynamic behaviour of the structure since, for case 3, the frequency
(Table 2) suffers small variations in eliminating a small number of columns.

3.2. Methodology
3.2.1. Probability of Failure for Pancake Collapse

The failure probability of a system with RVs, x ∈ Rn, can be expressed by the follow-
ing [32,33]:

Pf =
∫
Rn

IF(x)f(x)dx (16)
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where IF(x) is the binary indicator function, which is 1.0 if the point x is placed within the
failure domain F (F ≤ 0) or limit state (LS), and 0 if F > 0; f(x) is the PDF joint of x.

By assuming x = T(u) to express x in terms of independent standard Gaussian RVs, u,
Equation (16) can be written as follows:

Pf =
∫
Rn

IF[T(u)]φ(u)du (17)

where φ(u) is the multivariate standard Gaussian PDF.
The subset simulation solution of Equation (17) involves the construction of several

intermediate failure domains; therefore, the failure domain of interest, F, is expressed by
the following:

F = ∩M
j=1Fj (18)

where F1 ⊃ F2 ⊃ . . . ⊃ FM, and F = FM. The failure probability Pf = Pr(u ∈ F) can be written
as follows:

Pr(u ∈ F) = ∏M
j=1 Pr(u ∈ Fj|u ∈ Fj−1) (19)

where Pr(u ∈ F) = 1. Each Pr(u ∈ Fj|u ∈ Fj−1) in Equation (19) can be compute by using
the following:

Pr(u ∈ Fj|u ∈ Fj−1) =
∫
Rn

IFj(u)φ(u|Fj−1)du (20)

where φ(u|Fj−1) is the truncated φ(u). By using MCS to generate several samples N of
φ(u|Fj−1), Equation (20) is approximated as follows:

Pr(u ∈ Fj|u ∈ Fj−1) ∼=
1
N ∑N

i=1 IFj(ui) =
Nf
N

(21)

in which ui is the sample generated from conditional PDF φ(u|Fj−1), and Nf is the number
of simulations with IFj(ui) ≤ 0.

The Pr results are considered accurate when the samples N → ∞; in practise, the
number of samples N required is 1.0 × 10k, where the choice of k is defined by the
convergence analysis (as already mentioned, here k = 6.0) [31,34].

3.2.2. Proposed Limit State Function

In this analysis, the LS function has been written as the difference between mp defined
in Equation (11) and the mechanism parameter for pancake mp

P (Equations (12)–(15)) as
follows: F → G(X) = mp(X) − mp

P. To estimate the probability of failure for pancake
collapse, Pr, Equation (11) becomes the proposed Equation (22), where mp(X) is expressed
in a stochastic way:

mp(X) =
Rc(X) L
By(X) ns

(22)

Here, mp(X) is considered to be a semi-probabilistic parameter since the parameters
L and ns are a priori defined (see Table 1), whereas By(X) and Rc(X) are calculated in a
probabilistic way (see Table 3).

Figure 6 shows three domains defined by the LS function. When G(X) < 0, pancake
collapse is verified, whereas when G(X) > 0, pancake collapse is not verified, and bending
collapse starts. In this study, only pancake collapse has been quantified.

This division is purely mathematical; in fact, in a physical process, when G(X) > 0,
what is difficult is that pancake collapse is not partially activated. Also, in [3], it was shown
that, under predefined conditions, flexural collapse happens before compressive collapse.

The general methodology is explained by the following steps (see Figure 7): definition of
(1) bending and pancake mechanisms and collapse loadings (Equations (2)–(10)); (2) the col-
lapse activation by Equation (11); (3) pancake collapse combinations by Equations (12)–(15).
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In step (4), reliability analyses by using MCS (Equation (21)) have been carried out to
estimate the probability of failure for pancake collapse.

Then, it is necessary to (5) separate the LS functions to define a 3D region of failure (see
Figure 6); (6) calibrate the results (if they are satisfactory, the process finishes; otherwise,
other analyses are necessary); and (7) estimate the structural dynamic response of the three
buildings in terms of displacements by developing Equation (1).

4. Analyses and Results
4.1. Scenarios for Pancake Collapse

Here, the probability of failure, Pr, for pancake collapse with respect to bending
collapse has been estimated for several scenarios, as shown in Figure 8. Three buildings
(Figure 4), four combinations (comb. 1–4; see Equations (12)–(15)), and nr,c ≥ 1 have
been considered.
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In a physical and structural way, the remotion of only one structural column (nr,c = 1)
can generate a highly negative impact on the stability of a structure; obviously, for nr,c > 1,
the situation could get worse.

As already mentioned, the four combinations consider loadings in the following way:
comb. 1 = plastic global pancake vs. elastic bending; comb. 2 = plastic global pancake vs.
plastic bending; comb. 3 = elastic global pancake vs. elastic bending; comb. 4 = elastic
global pancake vs. plastic bending.

The probability of failure Pr decreases when the strength of the column Rc increases,
since Pr is evaluated for pancake collapse, i.e., for the progressive compressive failure of the
columns. In this sense, the increase in Rc opposes the instability of the structure, and the
probability of bending collapse could increase. In fact, the progressive compressive failure
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of the columns for pancake collapse occurs when the compressive strength of concrete is
set to a small value of fc

P = 0.35 MPa, whereas for bending collapse, the value reaches
fc

B = 35.0 MPa [10,23].
By considering a same Pr value in cases 2–3, Rc for only one removed column (nr,c = 1)

is greater than Rc for two or more removed columns (nr,c ≥ 2); in fact, the curve Pr
vs. Rc moves to the right. This is because a structure already subject to partial damage
should be more vulnerable under further loadings. Thus, a greater Rc could also generate
pancake collapse.

Also, the curves that provide a probability of failure for pancake collapse with low
Rc correspond to combinations 1 and 3, which refer to the plastic and elastic pancake
behaviour, respectively, with respect to elastic bending. This means that the presence of
elastic beams can actually influence the pancake collapse of the columns.

In case 3, all curves are closer to a range Rc = 75.0–230.0 kN at Pr ≈ 1.0. This means
that Pr values are high for low Rc values independently of the behaviour of the beams
and columns.

The curves of combinations 2 and 4 are wider; therefore, Rc must reduce before the
structure collapses for nr,c > 2. For theses combinations, the structure could have a large
reserve of energy probably due to the plastic behaviour of the beams. In fact, the difference
in these combinations only depends on the presence of the plastic columns (comb. 2) and
elastic columns (comb. 4).

However, in the name of safety, the Pr results to be used for preliminary structural
analyses only refer to nr,c = 1.

It is important to highlight that Equation (21) considers the probability of system
failure as a product of individual modes, i.e., the structural system can be defined by a
parallel association in active redundancy. This calculated probability corresponds to a
lower bound of the system probability; thus, the Pf of the system could be greater than
that calculated.

In Figure 9, the Pr is plotted as a function of nr,c for all cases/combinations. It is
important to repeat that this model is valid only for the elimination of central columns;
therefore, the valid curves are placed in the blue rectangle.

The curves in Figure 9 are consistent with the expected phenomenon up to a certain
nr,c, i.e., the decrease in Pr is inversely proportional to nr,c. This is more evident for case 1.

For case 3, it is possible to note that all curves coincide up to nr,c = 7; therefore, the
quantity of the columns (thus beams) does not strongly affect this type of structure, probably
due to the fact that this structure is formed by several elements; thus, the elimination of a
few elements has little impact on its stability. In fact, for nr,c > 7, this effect changes, and the
structure behaves like case 2. From a certain nr,c, the Pr curves rapidly increase; thus, the
remaining columns must support the loadings until collapse.

The solid red region indicates that pancake collapse does not happen (Pr = 0), and the
more predominant phenomenon could be bending collapse. In fact, for a certain value of
Rc, mp is higher than mp

P, contrary to Equations (12)–(15).
Finally, the first part of the curves (between 1.0 < nr,c < 2.0 for cases 2–3) could represent

an initial sign of the instability of the structure; however, for the purpose of Figure 9, it can
be neglected.

These considerations are valid since in this model, the “static” plays a more important
role that the “mechanics of materials”. In [7,10], it was discussed that after sudden column
removals, the plastic capacity of the structural elements decreases collapse loading due
to the dissipation of kinetic energy and stress redistributions. If the initial damage brings
about the loss of a single column, the structure is considered robust. If the structure
undergoes pancake collapse, triggered by the progressive failure of several columns under
compression, the damage depends on the fraction of columns that are lost at a storey. Also,
the redundancy provided by the beams combined with high levels of stiffness can reduce a
mixed vertical–horizontal wide propagation or collapse.
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4.2. Dynamic Response of the Buildings

Progressive collapse is a dynamic phenomenon which is correlated with the loss of
elements and thus the stiffness of the system [4,35,36]. The failure process proceeds until
the stiffness tends to zero (kj → 0 in Section 2.1); thus, the structure collapses.

The stiffness matrix can describe the connections between elements; thus, when the
stiffness of the beam–column connection is reliable and there is a mechanism for the
transfer of forces between the beam and column, the remaining elements of the structure
can withstand and redistribute the external load [18].
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Figure 10 shows the time-history displacements of the first floor of each building, x1(t),
where the columns are removed. The analyses have been carried out using Mathematica
software [30] by numerically solving Equation (1). The collapse dynamics recorded in these
simulations could resemble global pancake collapse [23,35,37].
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The values of the buildings are listed in Table 2 (here, proportional values have been
used), whereas the adopted acceleration is

..
xe = 0.20 g and ξ = 5.0%. The global stiffness

has been calculated a posteriori by knowing the mass and frequency. The dashed line
represents the spectral relative displacement (i.e.,

..
xe/(2 π f)2).

This simple analysis could allow for some aspects to be shown. As expected, the
whole structure provides displacements smaller than a structure with one or more columns
removed, whereas it is not obvious that for case 2, the response of the whole structure
and damaged structure (nr,c = 1) is similar. Also, for case 3, all the responses are similar.
In general, the dynamic effects (under collapse) can be ~10.0% greater than the static
responses [12].
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For case 1, the increase in the displacement in terms of percentage is ~57.0%, whereas
for case 3, it ranges between ~11.70% and ~21.0%. This phenomenon shows the impact that
removing a few elements has on more simple or articulated buildings.

Finally, it is also possible to quantify the loss of stiffness by considering the initial and
damaged stiffness, e.g., in case 1, we obtain a value of ~16.0%, whereas in cases 2 and 3, we
have obtained 6.60% and 1.51%, respectively.

In [12], a parameter that indicates the column removal time, Rt, has been proposed.
This parameter could correlate the structure collapse with its dynamic behaviour. The
general concept was that “the stability of the columns occurs when the column removal
tends to zero such that the column removal time has no impact on the response of the
structure” [12]. For this, the proposed limit for the critical response is Rt ≤ Tv/100, where
Tv is the vertical period of vibration (z-axis) of the structure under the column loss scenario.

Considering the critical interval indicated in [12] (i.e., 0.001 ≤ Rt ≤ 0.02 s), in the
present study, we have estimated (with MPMRs in z direction between 67.26 and 89.66%)
for case 3, Rt = 0.006 s (for nr,c = 1, 2), and for case 2, Rt = 0.013 s (for nr,c = 2); thus, for both
buildings, a “quasi-static” remotion could be dangerous.

5. Conclusions

In this paper, the probability of failure, Pr, for pancake collapse with respect to bending
collapse for RC buildings has been estimated. Analytical and numerical analyses have been
carried out to study several scenarios. The main conclusions are as follows:

1. Two types of collapse have been considered. The first is called “bending collapse”,
where beams collapse for flexure; thus, the columns are stiffer than beams. The second is
called “pancake collapse”, where columns are subjected to buckling under compressive
forces. The loadings are considered uniformly distributed on the horizontal beams, and the
behaviour of the material is elastic or plastic.

This study represents an extension of [10], where only Equation (12) has been carried
out in a deterministic way. In this sense, Equations (13)–(15) can be considered new
combinations. Also, Equation (22) has been proposed to carry out probabilistic analyses.

2. Probabilistic outputs have been shown in terms of Pr vs. Rc (Figure 8) and Pr vs. nr,c
(Figure 9) curves. The probability of failure Pr decreases when the strength of the column
Rc increases, since Pr is evaluated for pancake collapse. By considering the same Pr value in
cases 2–3, Rc for nr,c = 1 is greater than Rc for nr,c ≥ 2; this is because the structure already
subject to partial damage should be more vulnerable under further loadings.

It was noted that the presence of elastic beams can influence the pancake collapse of
the columns, and that Pr values are high for low Rc values independently on the behaviour
of the beams and columns.

Also, the quantity of the columns does not strongly affect case 3, probably due to
the fact that this structure is formed by several elements; thus, the elimination of a few
elements has little impact on its stability.

In general, in the name of safety, the Pr results to be used for preliminary structural
analyses only refer to nr,c = 1.

3. Dynamic analyses have been carried out. The first floor has been considered where
the columns have been removed. For case 1, the increase in the displacement in terms
of a percentage is ~57.0%, whereas for case 3, it ranges between ~11.70% and ~21.0%.
This phenomenon shows the impact that removing a few elements has on more simple or
articulated buildings. Also, a loss of stiffness has been quantified, e.g., in case 1, we obtain a
value of ~16.0%, whereas in cases 2 and 3, we have obtained 6.60% and 1.51%, respectively.

The limitations of this study mainly regard the fact that the following has not been
considered: (i) the contribution of internal walls or other non-structural elements [2] and (ii)
different loading types and their combinations. In this sense, these aspects could represent
new challenges for authors.
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Finally, this study should provide an incentive to consider progressive collapse during
the preliminary and executive design phases of a building. In this way, a structure could
comply not only with structural requirements but also with sustainability and safety protocols.
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