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Abstract: Whole-genome sequencing (WGS) of bacterial pathogens is widely conducted in microbio-
logical, medical, and clinical research to explore genetic insights that could impact clinical treatment
and molecular epidemiology. However, analyzing WGS data of bacteria can pose challenges for
microbiologists, clinicians, and researchers, as it requires the application of several bioinformatics
pipelines to extract genetic information from raw data. In this paper, we present BacSeq, an auto-
mated bioinformatic pipeline for the analysis of next-generation sequencing data of bacterial genomes.
BacSeq enables the assembly, annotation, and identification of crucial genes responsible for multidrug
resistance, virulence factors, and plasmids. Additionally, the pipeline integrates comparative analysis
among isolates, offering phylogenetic tree analysis and identification of single-nucleotide polymor-
phisms (SNPs). To facilitate easy analysis in a single step and support the processing of multiple
isolates, BacSeq provides a graphical user interface (GUI) based on the JAVA platform. It is designed
to cater to users without extensive bioinformatics skills.

Keywords: whole-genome sequencing; BacSeq; assembly; annotation; bioinformatics

1. Introduction

High-throughput sequencing (HTS) technologies have revolutionized the field of
genomics by allowing researchers to analyze large quantities of genetic material in a
relatively short amount of time [1,2]. Short-read sequencing (SRS) and long-read sequencing
(LRS) are powerful tools to study the entire genomes of bacteria [2]. The sequence reads
from these technologies are generated as a fastq file, which needs bioinformatics tools for
further analysis. Command-line, web-based, and program-based tools are currently used
for sequence analyses [3]. Among them, command-line tools provide maximum flexibility
and are highly customizable, but require a higher level of technical expertise and may be
more time-consuming for certain tasks. Web-based tools, on the other hand, are generally
more user-friendly and accessible to users without extensive bioinformatics training, but
may have limitations in terms of customization and flexibility. Program-based tools provide
a balance between the two, offering a graphical user interface that is more accessible than
command-line tools while still providing a high degree of flexibility.

In a previous study, Quijada et al., (2019) developed automated pipelines called
TORMES for analyzing whole-genome sequencing (WGS) data of bacteria generated by
Illumina platforms [4]. TORMES automates the bioinformatic analysis steps, including
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sequence quality filtering, de novo assembly, draft genome ordering against a reference,
genome annotation, multi-locus sequence typing (MLST), searching for antibiotic resistance
and virulence genes, and pan-genome comparisons. The pipeline can be used for any set
of bacteria from any species and origin, and more extensive analyses for Escherichia and
Salmonella can be enabled using the −g/− genera option. Once the analysis is finished,
TORMES generates an interactive web-like report that can be opened in any web browser,
and shared and revised by researchers in a simple manner. However, it should be noted
that TORMES may not be suitable for all types of WGS data, and researchers probably
consider using other inputs, such as short-read sequences and long-read sequences from
different platforms, to obtain a more comprehensive understanding of their bacterial
genomes. Additionally, many researchers may not have the necessary bioinformaticians
to fully utilize TORMES or other sequencing analysis tools. We then aimed to generate
and improve an easy-to-use automated pipeline for WGS and bioinformatics analyses of
bacterial genomes, which is beneficial for non-bioinformatician users.

2. Materials and Methods
2.1. Bioinformatics Pipeline

BacSeq integrates several frequently used open-source bioinformatics tools to perform
a single-step analysis including assembly, assembly quality evaluation, gene prediction,
functional annotation, specific gene identification, and pan-genome analysis. The pipeline
begins with loading compressed raw read files (.fastq.gz; accessed on 5 May 2023) and
checking the quality via FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/; accessed on 5 May 2023), and the results are imported into MultiQC [5] to generate
summary reports. The trimming step is then performed using fastp [6] to remove the
adapter sequence, cut low-quality bases, and trim all reads at the 5’ and 3’ ends. Next,
SPAdes [7] is used for assembling the filtered sequences into contigs and scaffolds using
various k-mer lengths.

Next, genome assembly assessment and completeness evaluation are performed using
QUAST [8] and BUSCO [9], respectively. For the annotation process, Prokka [10] is called
to identify genomic features of interest in the assembled genome. Functional annotation is
then performed with eggNOG-mapper [11] which combines HMMER [12], DIAMOND [13],
MMSEQS2 [14], and PRODIGAL [15] to search against several databases including Clusters
of Orthologous Groups of proteins (COGs) [16], Gene Ontology (GO) [17], Protein family
(PFAM) [18], and Kyoto Encyclopedia of Genes and Genomes (KEGG) [19]. Next, the down-
stream analysis to identify pathogenic-related genes starts by running the ABRicate pipeline
(https://github.com/tseemann/abricate/; accessed on 5 May 2023) to search against several
databases including the Comprehensive Antibiotic Resistance Database (CARD) [20], Res-
Finder [21], Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) [22], MEGARes [23],
Virulence Factor Database (VFDB) [24], PlasmidFinder [25], and ISfinder [26]. Carbohydrate-
active enzymes (CAZyme) and Clustered Regularly Interspaced Short Palindromic Repeats
and CRISPR-associated proteins (CRISPR-Cas) are then searched via automated CAZyme
annotation [27,28] and CRISPRCasFinder [29], respectively.

A pan-genome analysis was then performed by Roary [30] to identify the core and
accessory genes from a collection of assembled genomes. Single-nucleotide polymorphisms
(SNPs) of core genes are called by SNP-sites [31] and constructed the phylogenetic tree
using FastTree [32]. All analysis reports are finally generated by combining all results into
web format and Comma-Separated Values (CSV) files. The overall bioinformatics workflow
is presented in Figure 1.

2.2. Requirements

BacSeq is a JAVA-based application for analyzing WGS data using paired-end reads
and supports either single or multiple genomes in one analysis. BacSeq can automatically
complete assembling, annotating, identifying target genes, and analyzing comparative
genomes. To start analysis using BacSeq, raw paired-end reads of the sample(s) are required.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/tseemann/abricate/
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To run this tool, Conda (https://docs.anaconda.com/; accessed on 5 May 2023), an open-
source package management system, is required to install BacSeq version 1.0 and all
prerequisite software. BacSeq only supports Linux systems and requires a minimum space
capacity of 1 Gb for installation.
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2.3. Pipeline Customization

BacSeq offers two modes i.e., quick and advanced modes for novice and expert users,
respectively. In quick mode, all results can be easily analyzed with a single click without
further configuration. Default parameters are set in all tools in this mode for convenience.
However, manual configuration can be used in the advanced mode. All bioinformatics
tools can be configured parameters using a graphical user interface (GUI). In addition,
expert users can optionally use any bioinformatics tools integrated into BacSeq via a
command-line interface.

3. Results and Discussion
3.1. Graphical User Interface (GUI)

The BacSeq pipeline was deployed as a JAVA-based application, enabling users to
interact directly with the graphical user interface (GUI) for performing bioinformatics
analysis, as shown in Figure 2. To start using BacSeq, users can simply select the directory
containing the genome data and execute the program to complete the analysis in a single
step. Users only need to use the command-line interface once for program installation.
The pipeline supports both single files and multiple files in one analysis by just providing
the absolute path of the directory of the file. However, all files must be prepared and
renamed to an allowed pattern for the program to recognize the files and import them into
the pipeline.
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3.2. Use Case: Draft Genome Sequences of Acinetobacter baumannii Isolates

We used BacSeq to analyze the short-read sequencing data of 13 carbapenem-resistant
Acinetobacter baumannii (CRAB) isolates, including PA020, PA025 (JAIGYO000000000),
ST001 (JAIGSU000000000), ST009 (JAIGST000000000), ST010 (JAIGSS000000000), ST024
(JAIGSR000000000), ST028, ST032 (JAIGSQ000000000), ST034 (JAIGSP000000000), ST035
(JAIGSO000000000), ST036, YL005 (JAIGQD000000000), and YL006 (JAIGQC000000000).
The qualified genomes of 10 isolates were deposited into the NCBI GenBank, except for
the PA020, ST028, and ST036 isolates. Although the unqualified genomes existed in these
3 isolates, they were still included here as examples. The isolates were approved by the
Human Research Ethics Committee (HREC) from Prince of Songkla University, Thailand
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(reference number: 64–284-14–1, date of approval: 9 June 2021). A. baumannii is a Gram-
negative, rod-shaped, and aerobic bacterium that commonly causes hospital-acquired
infection, particularly in intensive care units (ICUs) and among critically ill patients [33]. It
has gained notoriety for its remarkable ability to acquire resistance to multiple antibiotics,
especially carbapenem, through several mechanisms [33]. Moreover, their genetic materials,
such as antibiotic resistance genes (ARGs) and virulence-associated genes (VAGs), could
be transferred between the genus and other Gram-negative bacteria [34]. The Centers for
Disease Control and Prevention (CD) have classified carbapenem-resistant Acinetobacter
spp. as an urgent threat level [35]. Thus, the entire genome of this pathogen is necessary to
be sequenced, which may provide more understanding of the genetic features related to its
molecular evolution.

3.2.1. Quality Control

According to the analysis workflow (Figure 1), quality control was initially performed
to verify the raw reads. The reports exhibited total sequences, sequences flagged as poor
quality, sequence length, %GC, total deduplicated percentage, average sequence length,
basic statistics, Per base sequence quality, Per sequence quality scores, Per base sequence
content, Per sequence GC content, Per base N content, sequence length distribution, se-
quence duplication levels, overrepresented sequences, and adapter content (Table S1). The
results were reported as quantity or quality (pass, warn, and fail). As shown in Table S1
and Figure 3, the quality of most isolates was acceptable, while Per sequence GC content
of the ST028 genome failed. This failure occurs when the cumulative deviations from the
normal distribution of GC content in the reads exceed 30% [36].
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3.2.2. Genome Assembly, Assembly Quality Assessments, and Genome Annotation

The assembled sequences were subjected to quality assessments using QUAST, which
reported the number of contigs, total sequence lengths, %GC, N50, N90, L50, and L90
(Table 1). We found that assembly of the ST036 genome provided a high number (n = 818)
of total contigs, which generally indicates a more fragmented assembly. It means that the
genome was not fully reconstructed into large, contiguous sequences but rather fragmented
into numerous smaller pieces. This may occur due to various reasons, including repetitive
or complex regions in the genome, sequencing errors, low coverage depth, or difficulties in
resolving repetitive sequences [37]. However, a high number of contigs might be acceptable
for some applications, such as comparative genomic analysis or identification of gene
families; it is often desirable to have fewer contigs for a more complete and accurate
representation of the genome. We also found that the PA020 and ST028 genomes consist of
9,243,789 bp and 9,539,281 bp, which is over the common length (approximately 3.7–4.4 bp)
of the A. baumannii genome [38]. The reason may be the contamination of other bacterial
genomes. However, these contaminant genomes were still included in further analyses,
which could be used to compare it to other clean genomes. In addition, the completeness
of assembled sequences was also assessed by BUSCO, which reported the percentages
of complete, single-copy, duplicated, fragmented, and missing sequences (Figure 4). The
result demonstrated that the duplicated sequences were observed in the PA020 and ST028
genomes, while the high percentages of fragmented and missing sequences were detected
in the ST036 genome. For genome annotation, Prokka reports the amounts of tmRNA,
tRNA, rRNA, miscRNA, gene, and coding sequence (CDS), as shown in Figure 5. Unusually
high numbers of tRNA, genes, and CDS were observed in the PA020 and ST028 genomes
due to their duplicated sequences. Additionally, Prokka also provided a GFF (General
Feature Format) file that can be used as an input file in Roary for pan-genome analysis.

Table 1. A report of quality assessments by QUAST.

Isolate Code Number of Contigs Total Length %GC N50 N90 L50 L90

PA020 92 9,243,789 36.80 569,197 59,780 6 29
PA025 66 3,906,279 38.89 152,139 41,611 6 24
ST001 68 4,111,741 39.02 128,875 39,322 8 28
ST009 69 3,844,585 39.01 113,438 40,316 11 32
ST010 68 3,872,017 38.93 123,627 42,752 10 30
ST024 62 4,294,911 38.82 250,119 64,045 6 18
ST028 187 9,539,281 49.62 187,251 35,730 17 58
ST032 67 3,844,381 39.01 122,061 42,602 11 31
ST034 58 4,225,388 38.88 250,219 71,864 6 16
ST035 70 4,035,126 38.99 176,611 43,801 7 25
ST036 818 4,329,065 38.79 65,441 1278 15 255
YL005 109 3,910,735 38.91 76,044 195,99 18 55
YL006 53 3,894,856 38.99 190,977 61,096 6 19

3.2.3. Antibiotic Resistance, Also including Plasmids and Virulence Factors

For the identification of acquired ARGs, we provided an analysis against various
databases in the ABRicate pipeline, including National Center for Biotechnology Informa-
tion (NCBI), CARD, ResFinder, ARG-ANNOT, and MEGARes. Plasmid makers, VAGs,
and sequence type (ST) could be also investigated, and their results were reported together
with antibiotic resistance on the Hypertext Markup Language (HTML) page. In our case
study, we reported the results of ARGs, plasmids, and VAGs, as illustrated in Figures 6–8.
We found that all clinical isolates of CRAB carried the genes that encoded for antibiotic
efflux pumps conferring resistance to fluoroquinolone (abaQ and abeM), macrolide (amvA
and abeS), and tetracycline (adeA, adeB, adeL, adeR, and adeS) (Figure 6). They also car-
ried the genes that encoded for resistance-nodulation-cell division (RND) antibiotic efflux
pump conferring multidrug resistance to tetracycline and fluoroquinolone (adeF, adeG, and
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adeH) and to rifamycin, diaminopyrimidine, penem, carbapenem, phenicol, tetracycline,
macrolide, lincosamide, fluoroquinolone, and cephalosporin (adeI, adeJ, adeK, and adeN).
In addition, antibiotic target alteration conferring aminoglycoside resistance (armA) and
antibiotic inactivation (e.g., blaOXA-23, blaNDM-1, blaCARB-16, aph(3”)-Ib, aph(6’)-Id, mphE, msrE,
fosA6, and so on) were also detected in a high number of these CRAB isolates. Plasmid iden-
tification revealed that three plasmids, including IncFIA(HI1)_1_HI1, IncFIB(K)_1_Kpn3,
and IncFII_1_pKP91, were only observed in the ST028 isolate (Figure 7). These plasmids,
which have been classified as multidrug-resistant (MDR) plasmids, are commonly found in
the Enterobacterales family, particularly Salmonella spp. and Klebsiella spp. [39–42], imply-
ing that the ST028 isolate may be contaminated with Salmonella spp. and/or Klebsiella spp.
In virulence factor detection, we found that thiol-activated cytolysin gene (BAS3109), cyto-
toxin K (cytk), immune inhibitor A (inhA), hemolytic enterotoxin HBL complex genes (hblA,
hblC, and hblD), and non-hemolytic enterotoxin genes (nheA, nheB, and nheC) were only
harbored by the PA020 isolate (Figure 8). Enterotoxin genes (entA, entB, and fepC), outer
membrane protein A gene (ompA), and adhesive virulence genes (yagV/ecpE, yagW/ecpD,
yagX/ecpC, yagY/ecpB, yagZ/ecpA, and ykgK/ecpR) were only harbored by the ST028 isolate.
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3.2.4. Comparative Analysis

In comparative genomic analysis, we provided Roary for analyzing pan-genome
profiles among the studied genomes, which provide valuable insights into the genetic
complexity and adaptability of species, helping us better understand their biology and
evolution. For our case study, we found that 2509 (14.22%) core genes and 15,135 (85.78%)
accessory genes were observed from 17,644 pan genes (Figure 9). Contaminant sequences
in the PA020 and ST028 genomes resulted in the presence of high-level accessory genes
existing in the pan-genome profile. The uncommon presence of these accessory genes
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could also be observed from the results of genome annotation and downstream analysis. In
general, a large proportion of accessory genes in a pan-genome analysis can be indicative
of an open pan genome, suggesting substantial genetic diversity within the studied popula-
tion or species [43]. This observation further suggests the occurrence of horizontal gene
transfer (HGT) events, facilitating the acquisition of novel genes from different isolates,
species, or organisms [44,45]. Such pan-genome analysis provides valuable insights into
the evolutionary history of the species, including ongoing speciation processes and the
existence of subpopulations harboring distinct gene sets [44,45].
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3.2.5. Other Analysis

In BacSeq, we also provide bioinformatics tools for identifying CAZyme and CRISPR-Cas
systems, and the results are reported in the Other Analysis button. The CAZyme reported
annotated genes that encoded for the families of carbohydrate-active enzymes. Carbohydrate-
active enzymes are enzymes involved in the breakdown, biosynthesis, or modification of
carbohydrates, and they play a crucial role in various biological processes, including diges-
tion, microbial metabolism, and the degradation of complex carbohydrates [46]. This tool is
beneficial for analyzing WGS data of potential bacteria, especially probiotic strains. It can
provide insights into their ability to metabolize and interact with different carbohydrates. This
information is valuable for understanding the potential health benefits of probiotics, as carbo-
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hydrates are a significant component of the diet and can influence various aspects of human
health, including the gut microbiota composition and metabolic activities [47,48]. Meanwhile,
CRISPRCasFinder reported the location of CRISPR-Cas systems (bacterial adaptive immune
system), which included the sequences of direct repeats and spacers as well as the types of Cas
gene groups. The presence of this system could imply the adaptive evolution of the studied
genomes to foreign genetic elements, especially bacteriophage genomes [49]. This tool is good
for bacterial evolution study as well, as it could be the model of genetic engineering [50,51].
Furthermore, the identification of bacteriocin-encoding genes and restriction–modification
(R-M) sites will be implemented in the future versions of BacSeq.

3.3. Hybrid Library Assembly for Complete Genome Analysis

Long-read WGS is commonly beneficial for studying the complete genome of particu-
lar bacteria because it can be used to distinguish bacterial chromosome(s) and plasmids.
The analytical steps in BacSeq were almost similar, except for genome assembly. Here, we
used Unicycler for assembling the bacterial genome using both SRS and LRS data with a
hybrid assembly method. The complete genome probably includes the chromosome and
plasmids, which can be separated into distinct contigs or fragments. The separation of
chromosome and plasmid sequences within a complete genome assembly enhances the
understanding of the bacterial genomic structures, facilitates comparative genomics studies,
enables functional analysis of plasmid-borne elements, and supports various applications
in genetic engineering and biotechnology.

3.4. Limitation of BacSeq

In this study, we provide BacSeq as an automated pipeline for analyzing WGS data of
bacterial genomes. However, the main limitation of BacSeq is that when the user runs the
program and contaminant sequences occur in the analysis, the program cannot exclude
contaminating sequences from the studied genome. We suggest using Kraken [52] or
other tools to identify the contaminated sequences and remove them from the analysis, as
demonstrated in our previous study [38]. Nevertheless, we recommend that the researcher
avoid the contamination in the bacterial culture and pick a single isolated pure colony
for genomic DNA extraction before performing WGS and bioinformatics analysis. This
limitation will be addressed in future versions of BacSeq.

4. Conclusions

BacSeq is an open-source comprehensive pipeline integrating various bioinformatics
tools for analyzing WGS data of bacterial genomes that research communities can easily
install and implement on laptops and high-performance computers. BacSeq provided
an automated bioinformatics workflow starting from genome assembly, annotation, and
antimicrobial resistance gene identification to comparative genome analysis. Furthermore,
BacSeq can generate comprehensive reports and plots in a web form which could help
users simply explore and extract interesting information from the analysis.
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