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Simple Summary: This study synthesizes reports on body conformation traits in dairy cows, empha-
sizing their importance in dairy farming. It elucidates the potential role of these traits in enhancing
dairy cattle breeding programs by summarizing their genetic parameters and impact on size, confor-
mation, production, health, and fitness. The review underscores the use of genome-wide association
studies (GWAS), a powerful genetic tool that identifies specific genes and genomic regions influencing
body conformation. By integrating global research on these genetic markers, the study offers valuable
insights for advancing the selection and breeding of dairy cows, ultimately benefiting farmers and
the dairy industry through more informed breeding strategies and improved herd quality.

Abstract: Body shape traits are very important and play a crucial role in the economic development
of dairy farming. By improving the accuracy of selection for body size traits, we can enhance
economic returns across the dairy industry and on farms, contributing to the future profitability of
the dairy sector. Registered body conformation traits are reliable and cost-effective tools for use in
national cattle breeding selection programs. These traits are significantly related to the production,
longevity, mobility, health, fertility, and environmental adaptation of dairy cows. Therefore, they
can be considered indirect indicators of economically important traits in dairy cows. Utilizing
efficacious genetic methods, such as genome-wide association studies (GWASs), allows for a deeper
understanding of the genetic architecture of complex traits through the identification and application
of genetic markers. In the current review, we summarize information on candidate genes and genomic
regions associated with body conformation traits in dairy cattle worldwide. The manuscript also
reviews the importance of body conformation, the relationship between body conformation traits
and other traits, heritability, influencing factors, and the genetics of body conformation traits. The
information on candidate genes related to body conformation traits provided in this review may be
helpful in selecting potential genetic markers for the genetic improvement of body conformation
traits in dairy cattle.

Keywords: body linear type traits; GWAS; genetic markers; genomic selection; dairy cows

1. Introduction

Body linear type traits in dairy cattle are widely recognized as one of the most crucial
economic traits. These traits not only play a pivotal role in dairy cow selection but are also
integral to evaluating other production-related traits such as milk production, reproduction,
mobility, longevity, and feed intake [1]. Serving as indirect predictors, these traits facilitate
the selection process for improving productivity and health in dairy herds [2]. Research
estimates that dairy cows have a natural lifespan of about 20 years. However, they are often
culled much earlier, primarily due to low milk production or health issues. Interestingly,
while cows with lower milk production are culled at a higher rate, high-producing cows are
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not without their risks, facing significant health challenges that can also lead to culling [3].
These dynamic underscores the importance of balancing productivity with health and
longevity to maximize corporate profits and sustainability. In this light, the dairy industry,
facing expanding pastures and rising labor costs, increasingly prioritizes key adaptive
characteristics such as health, fertility, and survival. Longer-lived cows not only produce
more milk over their lifetimes but also reduce replacement costs and disease risk, enhancing
the economic and environmental sustainability of farms. In China, the culling of most
Holstein dairy cows before their third calving, due to reproductive issues, limb and hoof
diseases, udder health concerns, and kidney disease, highlights the importance of these
traits [4]. Monitoring body linear type traits from an early stage, particularly during the
first lactation, provides valuable indirect indicators of a cow’s potential productive life [5].
Studies have demonstrated a strong correlation between specific body linear type traits’
aspects—like body size, rump structure, leg and foot configuration, and udder system—and
animal longevity [6]. For instance, cows with straight legs and steeper foot angles tend to
have longer productive lives, while a smaller body size is associated with increased lifespan.
Conversely, animals exhibiting narrow chests, short rump heights, severely sickled legs,
and low foot angles face a higher risk of culling [7].

Understanding the genetics underlying body linear type traits is as crucial as under-
standing production traits from an economic perspective. With the goal of enhancing the
profitability of the dairy industry, selecting for body linear type traits emerges as a feasible
strategy. Recent advances in dairy cattle genetic improvement programs worldwide have
leaned towards selecting traits related to body linear type traits, driven by their growing
economic significance. The success of these programs hinges on the identification of genetic
markers, quantitative trait loci (QTL), and genes associated with body conformation.

The advent of high-density array technologies has paved the way for identifying
novel genetic markers critical to economically important traits in cattle, including single
nucleotide polymorphisms (SNPs) [8]. Given their stability, heritability, and abundance
across species genomes, SNPs have been widely utilized in GWASs to uncover the genetic
architecture of crucial economic traits [9,10]. A GWAS, an established method in the animal
production industry, leverages phenotype and genotype data to identify causal genetic
markers for various economic traits using appropriate statistical models [11,12]. Extensive
research across different breeds and regions has aimed to identify genetic markers for body
linear type traits in cattle, underscoring the global effort to enhance dairy cattle productivity
and health through genetic insights.

This review aims to comprehensively evaluate the effectiveness of GWASs in iden-
tifying key candidate genes and genomic regions related to body conformation traits in
dairy cows. It explores the significance of these traits, their relationships with other traits,
heritability, influencing factors, and underlying genetics, and provides potential genetic
markers for improving body conformation traits, thereby promoting the economic and
sustainable development of the dairy industry.

2. The Importance of Body Linear Type Traits

Selecting the correct cow body linear characteristics is critical to improving the produc-
tivity and health of the dairy herd. This section delves into the utility of body linear type
traits in dairy cattle, examining their role as indicators of various functional efficiencies,
including feed efficiency, longevity, milk production, reproductive health, and overall
animal welfare [13–16]. By capturing the diverse applications of these traits in genetic
selection and herd management, we illuminate how they contribute to the sustainable
optimization of dairy operations. Some of the results on the effects of body shape traits on
dairy cow production are summarized in Table S1.

2.1. Body Linear Type Traits as Feed Efficiency Indicators

Recording body linear type traits, typically conducted during a cow’s first lacta-
tion [17], is an essential component of dairy recording programs and serves as a viable
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strategy for assessing feed efficiency. The dairy industry faces challenges and high costs in
measuring individual feed intakes, which restrict the scope of genetic studies on feed intake
and utilization [18]. Nonetheless, body linear type traits offer a promising alternative,
providing insights into feed intake and utilization through indirect selection based on
traits that have moderate to strong correlations with individual feed consumption [18]. For
instance, cows with optimal body condition and udder traits are often more efficient at
utilizing feed, supporting higher milk production without excessive feed intake [19]. Traits
such as body size, stature, body condition, and udder conformation are significantly related
to body weight and play a vital role in regulating feed efficiency and energy balance, which
is essential for the financial and biological efficiency of dairy production [20]. Additionally,
traits indicating dairy angularity and muscularity may signal issues stemming from a
negative energy balance or specific metabolic reserves. Manafiazar’s research underlines
the potential of combining conformation traits—stature, dairy strength, chest width, rear
udder attachment, and pin width—which exhibit moderate to strong genetic correlations
with feed efficiency traits, particularly residual feed intake [18]. Leveraging these indicators
allows farmers and breeders to identify cows that not only produce milk more efficiently
but also contribute to more sustainable dairy farming practices by minimizing waste and
enhancing herd efficiency.

2.2. Body Linear Type Traits and Longevity

Cow longevity is critical to economic performance and herd sustainability [21], en-
compassing a combination of characteristics that influence a cow’s ability to remain in the
herd over the long term [22]. Selection for longevity is challenged by its low heritability
and myriad influencing factors, leading to a focus on linear body traits as indirect but valid
indicators [5]. Dairy professionals worldwide are working to extend cattle lifespan by
optimally scoring conformation characteristics that correlate with longevity [22], including
chest width, body height, rump width, and specific mammary system traits such as teat
length and udder depth, all of which demonstrate a strong genetic correlation [23]. These
traits reflect not only an animal’s current health and productivity but also predict long-term
viability, help mitigate common health problems, and enhance reproductive performance.
Selection practices favoring desirable linear body traits improve the genetic quality of the
herd, producing cows with higher milk production, better recovery from stress and disease,
and an extended productive life [24]. This holistic approach reduces the need for frequent
replacements and enhances animal welfare, underscoring the intricate link between linear
body characteristics and cow longevity [5].

2.3. Predicting Milk Production Using Body Linear Type Features

The primary goal of cattle breeding programs is to increase milk production. Utilizing
body linear type characteristics to predict milk production offers a practical method for
the dairy farming industry. Accurate measurement and prediction of milk production are
crucial for the economic viability of the dairy industry [25]. Measuring body size linear traits
early, before calculating the estimated breeding value (EBV) for milk production, allows
these traits to serve as important indicators of milk production EBV. If these predictors
do not adversely affect cow profitability, mating decisions can incorporate conformational
features [26]. Studies have shown genetic correlations between body linear type traits
and first lactation milk production, ranging from 0.48 to 0.54, highlighting the importance
of understanding these relationships for improving milk production and body linear
traits [27]. The relationship between milk production traits and body weight is complex
and influenced by the size of the cow and linear body traits [28]. Studies have highlighted a
negative genetic relationship between body weight at first calving and milk, fat, and protein
production [29]. Genetically heavier cattle tend to show lower post-calving production but
higher conception rates. Conformational features of the mammary system, such as teat
position, udder attachment, and udder mass, are critical to maximizing milk production and
its composition, promoting efficient milking, and ensuring product longevity [30]. Cows
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with higher milk production typically exhibit taller hind udders, shallower udder depth,
and more pronounced central udder ligaments than lower-producing cows. Focusing
selection on mammary system scoring may improve not only milk production but also
milking comfort, teat health, and udder health, thus providing an integrated approach to
enhancing dairy cow productivity through genetic and conformational considerations [31].
Therefore, the analysis of linear characteristics of body size provides a valuable tool for
predicting and improving milk production, ensuring the economic viability, and promoting
the environmental sustainability of dairy farming.

2.4. The Effect of Body Linear Type Traits on Reproduction

In dairy cows, the pelvic region and loin structures serve as crucial links between the
lumbar region, abdomen, and the extremities, including the feet, legs, and the mammary
system [32]. The structural integrity of these areas is crucial for a cow’s productive lifespan,
as weaknesses can significantly impact fertility and mobility. Specifically, the design of
the pelvic structure influences calving ease and calf survival—key factors that affect the
profitability of dairy farming due to the economic losses associated with them [33]. Dystocia,
or difficult calving, adversely affects several key performance indicators, including the
number of services per conception, the duration of open days, cow mortality, and the yields
of milk, fat, and protein during lactation [34]. Optimal pelvic configurations, which are
characterized by a wide and appropriately sloped rump, facilitate smoother calf delivery
and efficient drainage of post-calving fluids, thereby reducing the risks of fertility issues
and metritis. The ideal rump phenotype for facilitating calving includes pin bones that
are slightly lower than the hook bones, coupled with a long, wide rump that possesses a
distinctive shape and a vulva that presents almost vertically from the side. Conversely,
elevated pin bones lead to an undesirable inclination of the vaginal canal, increasing the
risk of infections due to inefficient drainage. These anatomical predispositions, particularly
in cows with narrow rumps and elevated pin bones, are genetically linked to longer
calving intervals and increased calving difficulties, and also predispose them to retained
placentas [35,36].

Research has elucidated the correlation between specific body linear type traits, partic-
ularly those associated with milk yield, and fertility parameters like the calving interval [37]
Findings by Melendez et al. and Wall et al. indicate that poor conformation of legs and feet
negatively impacts calving intervals [38]. An unfavorable genetic correlation with rump
angle suggests that animals with elevated pin bones experience prolonged intervals be-
tween calvings. These insights highlight the significance of incorporating body linear type
traits into breeding strategies, emphasizing their influence not only on milk production but
also on reproductive efficiency and overall herd health, thereby fostering more sustainable
dairy farming practices.

2.5. Movement and Health of Feet and Legs

An increasing number of animal breeders and breeding programs are focusing on
structural features related to the feet and legs of animals to improve productivity and
profitability [39]. For dairy cows, foot and leg problems are the third most common reason
for slaughter, following reproductive issues and udder health problems [14]. Efficient pro-
duction, reproduction, health, and welfare are all directly related to adequate exercise [40].
Several studies have measured structural traits of feet and legs in dairy cows using various
indicator traits. These include the posterior view of the hind leg, the lateral view of the
hind leg, foot angle, and bone mass [1]. Genetic studies have found moderate to high
correlations between the architectural characteristics of the feet and legs and the prevalence
of health problems such as lameness and claw disease in these areas [41]. This suggests
that these characteristics may serve as indirect selection criteria for preventing foot and leg
health problems.
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2.6. Health of Mammary System in Dairy Cattle

Mammary system traits play an important economic role in dairy cattle. Infection
of the mammary gland is the main cause of mastitis in dairy cows. Udder tissue serves
as the primary natural defense against the entry of pathogens through the teat ducts,
counteracting negative effects on the animal’s udder health. Several studies have shown
that intramammary infections pose a significant threat to the dairy industry. Udder health
diseases can cause severe economic losses and significantly impact dairy cow welfare and
productivity [42]. When aiming for type improvement, mammary gland traits should
receive more selective emphasis, as these traits are directly related to udder health and,
consequently, to the economic impact on the dairy herd [43]. Genetic correlations between
fitness and conformational traits generally range from moderately negative to moderately
positive (−0.32 to 0.37), suggesting that selection for improved udder conformation can
reduce somatic cell counts and the incidence of clinical mastitis [44]. Selecting for con-
formational features can enhance overall health; notably, animals with superior udder
architecture are less susceptible to mastitis, experience less trauma, and have increased
milk production [45].

2.7. Effects of Environmental Factors on Body Size Linear Traits

Extreme environmental factors can adversely affect dairy cow production. Therefore,
it is essential to monitor closely the environmental impact on economically important
traits. Understanding body size linear traits provides a genetic basis for inter-individual
variation and is fundamental in animal production areas such as reproduction, health, and
other economically relevant traits. This knowledge is crucial for identifying mechanisms of
environmental adaptation in livestock [46]. According to a publication on cattle genetic
resources, Tibetan cattle residing on the Qinghai–Tibet Plateau are among the shortest
of the native Chinese breeds [47]. This observation underscores the significant role of
body size in adapting to harsh environments. Lower temperatures may result in increased
birth weights in calves, as the cow’s physiological response to cold includes enhancing
blood flow to vital internal organs, including the uterus. This adaptation maintains the
calf’s body temperature and nutrient supply, optimizing heat conservation and nutrient
uptake. Research has shown that factors like high altitudes, plains, and forested mountains
significantly correlate with an increased weaning weight and yearling weight in cattle [48].
Consequently, it is imperative to adjust performance evaluations based on desired traits
and to customize breeding programs to suit the specific environmental conditions where
the animals are raised.

2.8. Heritability of Linear Body Traits

Linear body traits are intrinsically linked to milk production, reproduction, lameness,
mastitis, and herd longevity in dairy cows [49]. Accurately estimating genetic parameters
for these economically significant traits is vital for the development and execution of
effective breeding programs. Such estimations are fundamental for genomic research,
including GWASs and genomic selection (GS). Many countries incorporate linear body
traits into their dairy cattle breeding strategies; thus, precise heritability estimates are
crucial for forecasting expected selection responses and calculating breeding values [50].
Research shows that the heritability of linear body traits generally varies from low to
moderate. For instance, heritability estimates for these traits in the Italian Jersey breed are
low, whereas height displays moderate heritability at 0.32. Heritability for other traits like
hip width and hip angle spans from 0.06 to 0.14. Traits related to hooves and legs exhibit
the lowest heritability, with figures such as 0.04 for hind leg views and locomotion, and 0.07
for foot angle [51]. A study by Olasege on Chinese Holstein cattle presented heritability
estimates ranging from low (0.04 for hoof and leg traits) to moderate (0.23 for body mass),
assessed using a composite index [52]. Tables 1–4 summarize the heritability of linear body
traits in dairy cows, including body size traits (Table 1), feet and leg conformation traits
(Table 2), rump traits (Table 3), and mammary system traits (Table 4).
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Table 1. Estimated values of heritability for body size traits.

Trait Heritability Breed Number Country Ref.

ANG 0.10 ± 0.02 Holstein-Friesian 10,860 Serbia [53]
ANG 0.22 ± 0.02 Serbian Holstein 32,512 Serbia [54]
ANG 0.08 ± 0.01 Italian Jersey 6853 Italy [51]
ANG 0.10 ± 0.08 Italian Holstein 253,602 Italy [55]
ANG 0.48 ± 0.03 Chinese Holstein 1000 China [56]
ANG 0.26 ± 0.02 Holstein 4841 Canada [26]
BH 0.32 ± 0.03 Serbian Holstein 32,512 Serbia [54]
BH 0.32 ± 0.03 Italian Jersey 6853 Italy [51]
BH 0.30 ± 0.04 Chinese Holstein 7923 China [49]
BH 0.56 ± 0.12 Dual-Purpose Simmental 1000 China [57]
BH 0.33 ± 0.02 Chinese Holstein 45,517 China [52]
BH 0.53 ± 0.12 Holstein 4841 Canada [26]
CW 0.15 ± 0.02 Serbian Holstein 32,512 Serbia [54]
CW 0.12 ± 0.02 Italian Jersey 6853 Italy [51]
CW 0.24 ± 0.04 Chinese Holstein 7923 China [49]
CW 0.13 ± 0.08 Dual-Purpose Simmental 1000 China [57]
CW 0.08 ± 0.01 Chinese Holstein 45,517 China [52]
CW 0.17 ± 0.01 Chinese Holstein 1000 China [56]
CW 0.22 ± 0.02 Holstein 4841 Canada [26]
BD 0.17 ± 0.02 Serbian Holstein 32,512 Serbia [54]
BD 0.12 ± 0.02 Italian Jersey 6853 Italy [51]
BD 0.12 ± 0.02 Chinese Holstein 7923 China [49]
BD 0.17 ± 0.08 Dual-Purpose Simmental 1000 China [57]
BD 0.14 ± 0.01 Chinese Holstein 45,517 China [52]
BD 0.10 ± 0.01 Chinese Holstein 1000 China [56]
BD 0.32 ± 0.02 Holstein 4841 Canada [26]

Abbreviations: body height, BH; body depth, BD; chest width, CW; angularity, ANG.

Table 2. Estimated values of heritability for feet and leg conformation traits.

Trait Heritability Breed Number Country Ref.

HD 0.15 ± 0.01 Chinese Holstein 1000 China [58]
HD 0.37 ± 0.05 Chinese Holstein 7923 China [49]
HD 0.05 ± 0.05 Dual-Purpose Simmental 1000 China [57]
HD 0.02 ± 0.01 Chinese Holstein 45,517 China [52]
HD 0.08 ± 0.00 Holstein 4841 Canada [26]
BQ 0.05 ± 0.00 Chinese Holstein 1000 China [58]
BQ 0.37 ± 0.04 Chinese Holstein 7923 China [49]
BQ 0.07 ± 0.05 Dual-Purpose Simmental 1000 China [57]
BQ 0.05 ± 0.01 Chinese Holstein 45,517 China [52]
BQ 0.30 ± 0.03 Holstein 4841 Canada [26]

RLSV 0.17 ± 0.01 Chinese Holstein 1000 China [58]
RLSV 0.10 ± 0.02 Serbian Holstein 32,512 Serbia [54]
RLSV 0.04 ± 0.00 Italian Jersey 6853 Italy [51]
RLSV 0.09 ± 0.06 Dual-Purpose Simmental 1000 China [57]
RLSV 0.04 ± 0.01 Chinese Holstein 45,517 China [52]
RLSV 0.24 ± 0.03 Holstein 4841 Canada [26]
RLRV 0.15 ± 0.01 Chinese Holstein 1000 China [58]
RLRV 0.16 ± 0.02 Serbian Holstein 10,860 Serbia [53]
RLRV 0.13 ± 0.01 Holstein 4841 Canada [26]
RLRV 0.04 ± 0.00 Italian Jersey 6853 Italy [51]
RLRV 0.37 ± 0.04 Chinese Holstein 7923 China [49]
RLRV 0.12 ± 0.07 Dual-Purpose Simmental 1000 China [57]
RLRV 0.06 ± 0.01 Chinese Holstein 45,517 China [52]

FA 0.14 ± 0.02 Serbian Holstein 32,512 Serbia [54]
FA 0.07 ± 0.01 Italian Jersey 6853 Italy [51]
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Table 2. Cont.

Trait Heritability Breed Number Country Ref.

FA 0.14 ± 0.03 Chinese Holstein 7923 China [49]
FA 0.11 ± 0.06 Dual-Purpose Simmental 1000 China [57]
FA 0.04 ± 0.01 Chinese Holstein 45,517 China [52]
FA 0.11 ± 0.01 Holstein 4841 Canada [26]

Abbreviations: heel depth, HD; bone quality, BQ; rear leg side view, RLSV; rear leg rear view, RLRV; foot angle, FA.

Table 3. Estimated values of heritability for rump traits.

Trait Heritability Breed Number Country Ref.

RP 0.16 ± 0.02 Serbian Holstein 10,860 Serbia [53]
RW 0.18 ± 0.02 Serbian Holstein 32,512 Serbia [54]
RW 0.06 ± 0.00 Italian Jersey 6853 Italy [51]
RW 0.28 ± 0.04 Chinese Holstein 7923 China [49]
RW 0.22 ± 0.09 Dual-Purpose Simmental 1000 China [57]
RW 0.08 ± 0.01 Chinese Holstein 45,517 China [52]
RW 0.20 ± 0.02 Chinese Holstein 1000 China [59]
RW 0.34 ± 0.03 Holstein 4841 Canada [26]
RA 0.14 ± 0.02 Italian Jersey 6853 Italy [51]
RA 0.15 ± 0.07 Dual-Purpose Simmental 1000 China [57]
RA 0.11 ± 0.01 Chinese Holstein 45,517 China [52]
RA 0.22 ± 0.02 Chinese Holstein 1000 China [59]
RA 0.37 ± 0.03 Holstein 4841 Canada [26]
LS 0.32 ± 0.04 Chinese Holstein 1000 China [49]
LS 0.38 ± 0.05 Chinese Holstein 1000 China [59]
LS 0.25 ± 0.02 Holstein 4841 Canada [26]
PS 0.18 ± 0.03 Chinese Holstein 7923 China [49]
PS 0.09 ± 0.01 Holstein 4841 Canada [26]
RL 0.29 ± 0.11 Dual-Purpose Simmental 1000 China [57]

Abbreviations: rump position, RP; rump angle, RA; lion strength, LS; pin setting, PS; rump width, RW; rump
length, RL.

Table 4. Estimated values of heritability for mammary system traits.

Trait Heritability Breed Number Country Ref.

FUA 0.11 ± 0.02 Holstein-Friesian 10,860 Serbia [53]
FUA 0.18 ± 0.02 Serbian Holstein 32,512 Serbia [54]
FUA 0.16 ± 0.02 Italian Jersey 6853 Italy [51]
FUA 0.19 ± 0.08 Dual-Purpose Simmental 1000 China [57]
FUA 0.11 ± 0.01 Chinese Holstein 45,517 China [52]
FUA 0.04 ± 0.00 Chinese Holstein 1000 China [60]
FUA 0.28 ± 0.02 Holstein 4841 Canada [26]
AUA 0.24 ± 0.02 Chinese Holstein 1000 China [60]
FTP 0.07 ± 0.01 Holstein-Friesian 10,860 Serbia [53]
FTP 0.13 ± 0.02 Serbian Holstein 32,512 Serbia [54]
FTP 0.08 ± 0.01 Italian Jersey 6853 Italy [51]
FTP 0.14 ± 0.03 Chinese Holstein 7923 China [49]
FTP 0.20 ± 0.08 Dual-Purpose Simmental 1000 China [57]
FTP 0.37 ± 0.04 Chinese Holstein 1000 China [58]
FTP 0.31 ± 0.03 Holstein 4841 Canada [26]
FTP 0.07 ± 0.01 Chinese Holstein 45,517 China [52]
FTL 0.16 ± 0.02 Serbian Holstein 32,512 Serbia [54]
FTL 0.10 ± 0.02 Italian Jersey 6853 Italy [51]
FTL 0.28 ± 0.04 Chinese Holstein 7923 China [49]
FTL 0.12 ± 0.06 Dual-Purpose Simmental 1000 China [57]
FTL 0.05 ± 0.01 Chinese Holstein 45,517 China [52]
TL 0.06 ± 0.01 Holstein-Friesian 10,860 Serbia [1]
TL 0.29 ± 0.02 Holstein 4841 Canada [26]
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Table 4. Cont.

Trait Heritability Breed Number Country Ref.

FTL 0.13 ± 0.01 Chinese Holstein 1000 China [58]
UD 0.08 ± 0.01 Holstein-Friesian 10,860 Serbia [53]
UD 0.22 ± 0.02 Italian Jersey 6853 Italy [51]
UD 0.21 ± 0.03 Chinese Holstein 7923 China [49]
UD 0.22 ± 0.09 Dual-Purpose Simmental 1000 China [57]
UD 0.12 ± 0.01 Chinese Holstein 45,517 China [52]
UD 0.49 ± 0.03 Chinese Holstein 1000 China [60]
UD 0.46 ± 0.03 Holstein 4841 Canada [26]

RUH 0.08 ± 0.01 Holstein-Friesian 10,860 Serbia [53]
RUH 0.17 ± 0.07 Dual-Purpose Simmental 1000 China [57]
RUH 0.10 ± 0.01 Chinese Holstein 45,517 China [52]
RUH 0.23 ± 0.02 Holstein 4841 Canada [26]
MSL 0.10 ± 0.04 Chinese Holstein 7923 China [49]
CSL 0.34 ± 0.03 Chinese Holstein 1000 China [60]
CSL 0.14 ± 0.01 Holstein 4841 Canada [26]

Abbreviations: central suspensory ligament, CSL; teat length, TL; fore teat length, FTL; anterior udder attachment,
AUA; udder depth, UD; fore udder attachment, FUA; fore teats placement, FTP; rear udder height, RUH; median
suspensory, MSL.

3. Importance of GWASs in Dairy Cattle Breeding Programs

Genomics is a pivotal method used to achieve significant genetic improvements in
animal breeding. This branch of science delves into genomes to identify genes in livestock
associated with economically significant traits [61]. It involves the genotyping of several
hundred thousand DNA markers dispersed across the genome [62]. A variety of powerful
statistical genetic tools are available for identifying alleles that govern target traits [63].
GWASs are among these methodologies, successfully deployed to pinpoint candidate
genes for key traits in dairy cattle. These studies explore the relationship between specific
molecular markers, such as SNPs or genomic regions, and the traits of interest [64]. GWASs
have revealed profound genotype–phenotype correlations and the genetic structure of
complex traits across numerous animal species, including cattle [64], buffalo [65], sheep [66],
goat [67], chicken [68], and others. GWASs’ contributions have advanced gene editing and
functional biology, enhanced the efficiency of genomic selection, and provided extensive
insights into the genetic architecture of complex traits and disease susceptibilities [69].

3.1. How to Conduct a GWAS

Several steps are required to conduct a GWAS experiment successfully, as illustrated
in Figure 1. The first step involves selecting the study population, considering a size of
appropriate individuals to minimize the negative impact on study power. The population
size is pivotal for the success of a GWAS, as it is regarded as a limiting factor for the
statistical power of the analysis. Ideally, the sample size should be increased as much as
possible to ensure sufficient statistical power to detect associations with significant effects,
acceptable frequencies within the population, and to address rare variations [70]. A GWAS’s
statistical power is defined as the probability of correctly rejecting a false null hypothesis.
The effective sample size represents the minimum number of samples required to achieve
adequate statistical power. In large-scale association studies, maintaining 80% statistical
power is crucial to minimize false-negative findings and to determine a cost-effective
sample size. Typically, in livestock genetics research, a cohort of at least 1000 individuals
is considered sufficient, achieving about 80% GWAS statistical power [71]. In contrast, a
smaller sample size compromises the reliability of the study by increasing the rate of false
negatives and reducing the detection capability of true associations. While GWASs can be
conducted with sample sizes between 100 and 500 individuals, smaller cohorts may affect
the robustness of the results [70]. However, it is important to note that proper selection
of animals, such as those with different genetic backgrounds, can significantly reduce the
required sample size while maintaining a low false discovery rate [32,72]. Specifically,
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crossbred populations, especially those from F2 breeding designs, are preferable due to
their higher linkage disequilibrium (LD). This increased LD enhances the power of GWASs,
thereby reducing the sample size needed for robust results [73,74].
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The second step, accurate phenotyping, is crucial for detecting genotype–phenotype
associations. All genotyped individuals should be phenotyped for specific traits aligned
with the study objectives [69]. To ensure analytical accuracy, deviations from normal
distribution assumptions, including outlier removal, must be addressed [71]. Boxplots
provide an efficient means to identify and exclude extreme outliers, thereby maintaining the
integrity of the analysis [63]. In this process, the heritability of a trait can be estimated from
raw phenotypes and relationships derived from pedigrees or genotypes, while potentially
accounting for factors such as environmental variation, genetic dominance, or epistatic
interactions. High heritability suggests that the trait is predominantly determined by
genetic factors, aiding in the identification of association signals [63].

In the third step, the same set of phenotyped individuals must be genotyped using
DNA molecular markers. Post-genotyping, a quality control step is conducted to minimize
the risk of detecting false positive or false negative associations. A false positive association
(Type I error) occurs when an association is identified between a SNP and the trait under
study that does not actually exist. Conversely, a false negative association (Type II error)
arises when a SNP that affects the trait of interest is not identified as being associated with
the trait in the study [75]. Before performing quality control on a ‘per-marker’ basis, it
is advisable to first perform quality control at the individual level to preserve as many
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markers as possible. This method ensures that markers are not mistakenly removed due
to poor genotyping in a subset of individuals. Nevertheless, there is a risk of erroneously
excluding individuals due to poorly genotyped subsets of markers. Per-individual quality
control in GWASs involves checking for discrepancies in sex information, presence of
missing genotypes or inadequate heterozygosity rates, identifying duplicate or related
individuals, and detecting individuals with divergent ancestry [76].

There are at least three essential steps involved in GWAS data quality control for
each marker: I—Identification of SNPs with a high number of missing genotypes. This
step involves discarding SNPs with a low genotype call rate. The call rate is defined
as the percentage of individuals in the study for whom the data on a specific SNP is
available; II—Identification and removal of markers with a very low minor allele frequency
(MAF). MAF quantifies the variation of a particular SNP across the study population, and
a very low MAF indicates inadequate statistical power to detect significant associations
with the traits of interest; III—Removal of SNPs that show significant deviation (p values
ranging between 10−5 and 10−7) from the Hardy–Weinberg equilibrium (HWE). Deviations
from the HWE suggest potential population substructure or genotyping errors, and such
deviations are assessed using the Chi-square test; IV—Population Stratification in GWASs,
in which genetic markers are identified that contribute to the development and progression
of specific traits.

In the fourth step, it is essential to evaluate the population structure before proceeding
with a GWAS [77]. A GWAS typically focuses on the statistical relationships between pheno-
typic traits and genetic markers, such as SNPs. However, GWAS results can be confounded
by spurious associations if sample structures are not correctly interpreted [78]. Sample
structure, which includes family structure and cryptic relatedness, refers to the relatedness
between individuals within a population cohort. Genetic relatedness within a cohort can
prevent standard association studies from accurately identifying causal markers, leading
to false positive results [79]. Moreover, there is a greater degree of genetic relationship
among individuals sharing ancestry than among those from different ancestries. Cryp-
tic relatedness describes relationships between closely related individuals whose shared
ancestry remains unknown to researchers [80]. Indeed, population structure poses a signifi-
cant source of confounding in a GWAS [81]. Consequently, it is essential to characterize
population structure effectively to avoid false positives (Type I errors) or false negatives
(Type II errors) in SNP-trait associations. To address population stratification in a GWAS,
appropriate models must be applied to demonstrate that corrections have been made effec-
tively. The genomic inflation factor (λ) assesses the effectiveness of models in controlling for
population structure [82]. Ideally, λ should equal 1, indicating no stratification. When λ ex-
ceeds 1, GWAS results can be confounded by factors such as stratification, family structure,
or cryptic relatedness. Several methods, including principal component analysis (PCA)
and multidimensional scaling (MDS) [83], have been developed to correct for population
stratification. PCA identifies the principal components that represent the major axes of
genetic variation, effectively summarizing population structure, while MDS encompasses a
broader range of techniques, including PCA, and is used to detect underlying dimensions
that explain observed genetic distances.

The fifth step involves detecting the LD across the genome. The extent of LD across
the genome significantly influences the efficacy of a GWAS, and this extent varies among
different breeds and population groups [84]. LD between molecular markers indicates the
correlation between the genotypes of two markers or the degree of non-random association
between their alleles. Measuring LD is vital for estimating the distance between loci
and determining the necessary number of markers to adequately cover the genome [85].
A high LD suggests fewer markers are required. Moreover, understanding the allele
phase relationships between markers and QTLs is essential to ascertain the extent of LD
across populations. LD data can also shed light on population history, selective breeding
practices, and genetic mutations within specific genomic areas. The r-squared statistic (r2)
is typically employed to predict LD extent. Long-range LD can lead to false associations;
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hence, it is crucial to compute LD at the start of the association analysis to reduce such
errors. Long-range LD blocks are more prevalent in livestock, particularly in dairy cattle,
compared to humans. This prevalence is due to the selective breeding involving a limited
number of sires, which results in a smaller effective population size [86]. LD decay, the
rate at which LD diminishes with genetic or physical distance, significantly impacts the
number of markers required for an effective GWAS. Rapid LD decay necessitates a large
number of markers for comprehensive genome association analyses. LD decay can be
visualized through scatter plots and heatmap plots, which plot r2 values against genetic
or physical distances among SNP pairs throughout a genome, a chromosome, or within
specific genomic areas like QTLs.

The sixth step entails selecting the most suitable statistical model. Common methods
include the general linear model (GLM), logistic mixed model (LMM), mixed linear model
(MLM), and compressed mixed linear model (CMLM), which are primarily single-locus
analyses using fixed SNP effect mixed linear models. Given the large number of markers, a
Bonferroni correction for multiple testing is typically applied, though it may be excessively
stringent [87]. To address this, multi-locus models like the Fixed and Random Models
Cyclic Probability Unification (FarmCPU) and the multi-locus mixed linear model (MLMM)
are proposed, offering advantages in estimating three variance components, enhancing
QTLs detection, and treating SNP effects as random [78]. After selecting the GWAS model,
relevant software can be used to analyze phenotypic and genotypic data to identify alleles
associated with specific traits, and a list of available software is provided in Section 3.3
of this manuscript. It is important to recognize that genotype–environment interactions
can influence the effectiveness of association analysis. These interactions, which describe
how different genotypes respond under various environmental conditions, significantly
affect animal performance and introduce variability based on environmental context. In a
GWAS, understanding these interactions is essential for elucidating the genetic architecture
of complex traits and for accurately identifying associations between phenotypes and geno-
types [88]. Additionally, incorporating environmental effects into the analysis significantly
improves the precision of QTL detection [89].

The final step is to display GWAS results and conduct QTLs mining detection. The
significance of markers is often expressed using a threshold of −log10 p value, usually set
by the false discovery rate (FDR) or Bonferroni correction [90,91]. These methods, designed
for multiple comparisons, allow for significance testing across hundreds of thousands
to millions of markers. GWAS results are typically presented in Manhattan plots and
quantile–quantile (QQ) plots, supplemented by tables listing significant SNPs, minor allele
frequency, sample size, proportion of phenotypic variance explained by the markers (R2),
and adjusted p values (based on the significance threshold determined by either Bonferroni
correction or FDR).

3.2. GWAS SNP Chips

Since 2006, high-density single nucleotide polymorphism (SNP) panels have been
utilized in livestock and plant genomics, significantly enhancing genetic selection in dairy
cattle [81]. Commercial SNP arrays are diverse, developed by leading companies such
as Illumina, Neogen (formerly Geneseek), and Affymetrix, each offering platforms that
genotype SNPs at varying densities [82]. These range from the Golden Gate Bovine 3 K,
containing 2900 SNPs, to the comprehensive Bovine HD, which includes 777,962 SNPs. The
success of a GWAS hinges on the density of these SNP arrays [71]. However, the prohibitive
cost of high-density arrays can restrict the sequencing scope for extensive animal cohorts.
To circumvent this, genotype imputation is commonly employed to bridge low-density
SNP arrays to high-density versions or even whole genome sequencing, thus optimizing
costs [92]. This technique not only broadens the array of detectable variants for association
testing, including those of low frequency and rarity, but also has proven accuracy in
transitioning from lower to higher density SNP arrays or full genomic sequencing, as
validated by numerous studies [87,93].
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3.3. Genomic Databases and Software for GWAS Analysis

A variety of free software programs are available for GWAS analysis, commonly includ-
ing PLINK (http://pngu.mgh.harvard.edu/purcell/plink, accessed on 1 May 2024 [94]),
R GenABEL (https://cran.r-project.org/src/contrib/Archive/GenABEL, accessed on 1
May 2024 [95]), and GenAMap (http://cogito-b.ml.cmu.edu/genamap, accessed on 1 May
2024 [96]). These tools are essential for population stratification, quality control, LD, and
structured association mapping. Additionally, GEMMA (Genome-wide Efficient Mixed
Model Association, http://www.xzlab.org/software.html, accessed on 1 May 2024) is uti-
lized for population stratification, analysis of identical by descent (IBD), estimation of chip
heritability, and association mapping. BLUPF90 (http://nce.ads.uga.edu/wiki/doku.php?
id=documentation, accessed on 1 May 2024) facilitates GWASs, data conditioning, variance
estimation through various methods, and enhancement of breeding value accuracy using
SNP data. Publicly accessible web databases hosting genomic study data include NCBI
(National Center for Biotechnology Information Gene, https://www.ncbi.nlm.nih.gov, ac-
cessed on 1 May 2024), Animal QTLdb (Animal Quantitative Trait Loci Database, https:
//www.animalgenome.org/cgi-bin/QTLdb/index, accessed on 1 May 2024), NAGRP (Na-
tional Animal Genome Research Program, https://www.animalgenome.org, accessed on 1
May 2024), EMBL-EBI (European Molecular Biology Laboratory-European Bioinformatics In-
stitute, https://www.ebi.ac.uk, accessed on 1st May 2024), DDBJ (DNA Data Bank of Japan),
UCSC (University of California Santa Cruz Genome Browser, https://genome.ucsc.edu, ac-
cessed on 1 May 2024), RefSeq (Reference Sequence Database, same UCSC link), and VEGA
(Vertebrate Genome Annotation, http://vega.archive.ensembl.org/index.html, accessed on
1 May 2024). Some databases are specifically tailored to livestock genomics, while others
provide broad access for research across various organisms.

3.4. Post GWAS

Exploring the genetic architecture of traits necessitates conducting post-GWAS analy-
ses to understand the interactions among genomic regions and to identify SNPs and/or
regions associated with target traits. These analyses include functional evaluations such
as KEGG pathways and gene ontology terms, and the construction of biological networks.
While gene network analyses have been applied in research across various livestock species,
significant discoveries are still forthcoming. Effective use of these tools in conjunction with
sequencing data is essential for pinpointing promising candidate genes. Thus, post-GWAS
analyses are critical as they provide insights into the gene networks that influence dairy
cattle body linear type traits, as revealed by association studies.

3.5. GWAS Studies Screening Genetic Markers for Body Linear Type Traits

Recent years have seen a proliferation of GWASs focusing on body conformation traits
of Chinese Holstein cattle. In general, these studies on dairy cows have extensively explored
various traits including body size, leg and feet conformation, rump, and mammary system
traits. Across these studies, the sample sizes of animals typically range from 421 to 4841,
likely due to the high labor costs required to measure body conformation traits (Tables 5–8).
Most studies employ high-density (HD) chips or sequencing technologies for genotyping
and imputation, with HD panels being commonly used for imputation [26,97,98]. For body
size traits, research on Holstein cattle in Canada and Chinese Holsteins commonly utilized
the MLM and the GLM. For example, significant studies in Canada used sample sizes
of up to 3577 Holstein cattle genotyped with 719,200 SNPs, achieving highly significant
results [26]. In leg and feet conformation traits studies, the Gene Seek Genomic Profiler
Bovine 100 K and Illumina 54 K were frequently used, with imputation relying on mutual or
HD panels [58,99,100]. These studies predominantly employed the SMMA (Single Marker
Mixed Model Analysis) and Farm CPU (Compressed Mixed Linear Model) models, both of
which effectively manage large datasets and complex trait analyses. Studies on rump traits
also leveraged HD chips, focusing on Chinese Holsteins, with GLM and Farm CPU being
the favored analytical models (Tables 5–8).

http://pngu.mgh.harvard.edu/purcell/plink
https://cran.r-project.org/src/contrib/Archive/GenABEL
http://cogito-b.ml.cmu.edu/genamap
http://www.xzlab.org/software.html
http://nce.ads.uga.edu/wiki/doku.php?id=documentation
http://nce.ads.uga.edu/wiki/doku.php?id=documentation
https://www.ncbi.nlm.nih.gov
https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org/cgi-bin/QTLdb/index
https://www.animalgenome.org
https://www.ebi.ac.uk
https://genome.ucsc.edu
http://vega.archive.ensembl.org/index.html
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Table 5. GWAS study for screening genetic markers associated with body size traits.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

BH

rs133960300 CCND2 5 2.94 × 10−9 Illumina 50 K/HD HD panel 719,200 3577 Holstein MLM Canada [26]
rs109685956 CCND2 5 2.94 × 10−9 Illumina 50 K/HD HD panel 719,200 3577 Holstein MLM Canada [26]
rs109882115 ENSBTAG00000039491 18 1.19 × 10−9 Illumina 50 K/HD HD panel 719,200 3577 Holstein MLM Canada [26]
rs109478645 ENSBTAG00000037537 18 1.22 × 10−9 Illumina 50 K/HD HD panel 719,200 3577 Holstein MLM Canada [26]

ARS-BFGL-NGS-41612 KCNS3 11 4.93 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD1100030541 LOC789076 11 1.5 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD2300011340 NHLRC1 23 2.39 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

Hapmap38550-BTA-98603 LRRC3B 27 1.66 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

Hapmap60794-rs29022851 CPEB2 6 9.53 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTA-72885-no-rs LOC782090 29 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

rs110462304 MYH15 1 1.86 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs109930583 C6H4orf17 6 2.06 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs109824125 KHDRBS3 14 4.98 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs42188649 AIP 29 5.80 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

Hapmap60480-ss46526970 NDUFA9, KCNA1 5 1.18 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

BD

rs109478645 ENSBTAG00000037537 18 2.29 × 10−22 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

rs110801791 CTU1 18 9.73 × 10−20 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

rs135253383 CTU1 18 1.03 × 10−19 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

Hapmap40339-BTA-117016 DARC 3 8.72 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

rs133735152 DCC 24 2.33 × 10−8 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs43286429 LOC112447004 1 4.71 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]



Animals 2024, 14, 2181 14 of 34

Table 5. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

BTB-00853109 CCDC12, PTH1R 22 1.99 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

Hapmap43881-BTA-54837 PRSS45, PRSS46 22 2.02 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

CW

rs109901274 ARRDC3 7 1.47 × 10−9 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

rs109618368 ARRDC3 7 1.47 × 10−9 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

BovineHD1700010514 LOC512119 17 1.34 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BTA-110160-no-rs GAS1 8 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-115466 CDH13 18 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTA-45515-no-rs PTRF 19 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTB-00922140 POU6F2 4 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

rs110355602 SQOR 10 9.45 × 10−11 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs43615333 UBAP1L 10 1.17 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

rs42095998 VTI1A 26 8.22 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,406 984 Chinese

Holstein
Farm
CPU China [56]

BTB-00853109 CCDC12, PTH1R 22 1.52 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

ANG

rs109512265 SLC4A4 6 1.51 × 10−8 BovineSNP50 Bead
Chip/Illumina 50 K HD panel 601,717 4841 Holstein MLM Canada [26]

BTA-116883-no-rs LOC786124 30 1.56 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD3000032546 LOC537655 30 6.55 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD3000037672 LOC786725 30 5.10 × 10−8 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

ARS-BFGL-NGS-14022 SLC25A24 3 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-113826 HTR2A 12 9.69 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

rs135918869 CCDC59 5 1.32 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K. No 84,406 984 Chinese

Holstein
Farm
CPU China [56]
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Table 5. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

BTA-67308-no-rs GNAI3 3 6.32 × 10−6 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

ARS-BFGL-NGS-5218 AP3B1 10 2.31 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

Body
size

rs137415420 DRD3 1 5.57 × 10−10 Illumina 50 K/HD Mutual 598,016 4578 Brown
Swiss GLM Switzerland [98]

rs110574932 DBH 11 5.63 × 10−8 Illumina 50 K/HD Mutual 598,016 4578 Brown
Swiss GLM Switzerland [98]

rs42088986 BTRC 26 1.00 × 10−14 Illumina 50 K/HD Mutual 598,016 4578 Brown
Swiss GLM Switzerland [98]

BFCI

ARS–BFGL–NGS−39319 MPDZ 8 4.59 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1000015574 AQP9 10 3.07 × 10−9 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1200008803 HSPH1 12 3.72 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1300012605 PYGB 13 8.06 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

ARS–BFGL–NGS−66252 MMEL1 16 2.79 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1600023101 ATP6V1G3 16 9.44 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1700005623 SLC7A11 17 2.82 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1900015024 RBFOX3 19 4.34 × 10−7 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BTA−50244–no–rs PTGER4 20 5.84 × 10−13 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD2200000513 EOMES 22 2.09 × 10−7 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

Abbreviations: body height, BH; body depth, BD; chest width, CW; angularity, ANG; mixed linear model, MLM; generalized linear model, GLM; single marker mixed model analysis,
SMMA; reference, Ref; body form composite index, BFCI.
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Table 6. GWAS study for screening genetic markers associated with feet and leg conformation traits.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

BQ

rs109901274 ARRDC3 7 9.10 × 10−11 Bovine HD HD panel 601,717 4841 Holstein MLM Canada [26]
rs109618368 ARRDC3 7 9.10 × 10−11 Bovine HD HD panel 601,717 4841 Holstein MLM Canada [26]

BTA-87372-no-rs LOC100337296 1 9.49 × 10−3 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

BTA-117758-no-rs C8H9orf30 15 9.49 × 10−3 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs29015846 LOC112447952 8 1.99 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs133088614 TMEM229A 4 2.25 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs41845981 POLE 17 3.14 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs136017102 XKR4 14 6.22 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs110949452 CADPS 22 7.67 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

ARS-BFGL-NGS-37048 EVX1, HOXA13 4 1.49 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

Hapmap54735-ss46526095 VAMP4 16 4.31 × 10−6 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

FA

ARS-BFGL-NGS-18261 PLEKHB2 2 9.29 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-73625 NES 3 9.29 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

Hapmap48448-BTA-71823 MTPN 4 9.29 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

RLSV

ARS-BFGL-NGS-97763 DOCK10 2 9.42 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

Hapmap29973-BTA-129162 PAG1 14 9.42 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

UA-IFASA-4800 ZNF521 24 9.42 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

rs41565304 ADIPOR2 5 1.11 × 10−9 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs43656945 INPP4A 11 2.32 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs136593856 DNMT3A 11 5.07 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]
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Table 6. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

RLSV
rs42791722 ALDH1A2 10 7.40 × 10−7 Gene Seek Genomic

Profiler Bovine 100 K No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

rs42639670 PCDH7 6 9.65 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

RLRV

rs134130409 BARHL2 3 6.72 × 10−8 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs134139959 FBXL7 20 1.11 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs41638134 LOC107132214 1 6.11 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

ARS-BFGL-NGS-629 MALRD1 13 1.05 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

HD

rs137022628 ACTBL2 20 3.03 × 10−9 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs109652453 SYCP2L 23 4.22 × 10−8 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs42110372 LOC112444670 27 3.11 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs109601642 LOC101907219 20 4.64 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs41577664 LOC112441589 15 7.43 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

rs134726669 MRPL13 14 7.59 × 10−7 Gene Seek Genomic
Profiler Bovine 100 K No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

BTB-01928726 INHBA 4 2.08 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

LC
rs110597649 RSPO4 2 4.13 × 10−13 Illumina 50 K/HD HD panel 598,016 4578 Brown

Swiss GLM Switzerland [98]

rs134127590 BTRC 1 5.92 × 10−10 Illumina 50 K/HD HD panel 598,016 4578 Brown
Swiss GLM Switzerland [98]

FTLEG

BovineHD0100020157 SNX4 1 2.07 × 10−7 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

ARS–BFGL–NGS−56584 POFUT2 1 7.56 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD0300019080 ADGRL2 3 1.06 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BTB−01326707 LCORL 6 3.16 × 10−11 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]
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Table 6. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

FTLEG

BTB−00124923 FRK 9 3.42 × 10−7 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1300012605 PYGB 13 3.23 × 10−9 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

Hapmap50322–BTA−34017 CEBPB 13 8.11 × 10−8 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1600000840 KLHDC8A 16 3.74 × 10−7 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD1600008381 TMEM63A 16 7.79 × 10−9 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BovineHD2000011811 SUB1 20 4.11 × 10−11 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

BTA−14388–rs29023151 IL5RA 22 8.59 × 10−10 Illumina Bovine HD100 k
Bead Chip No 95,256 1313 Holstein Farm

CPU China [97]

Abbreviations: single nucleotide polymorphism, SNP; chromosome, Chr.; bone quality, BQ; foot angle, FA; rear leg rear view, RLRV; rear leg side view, RLSV; heel depth, HD; leg
conformation, LC; feet and leg conformation traits, FTLEG; mixed linear model, MLM; generalized linear model, GLM; single trait mixed model analysis, SMMA; reference, Ref.

Table 7. GWAS study for screening genetic markers associated with body rump traits.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

LS

BovineHD0500017277 NEDD1 5 2.90 × 10−7 50 K/HD Mutual 598,016 4578 Chinese Holstein GLM China [98]
ARS-BFGL-NGS-20197 HB6 7 5.71 × 10−7 50 K/HD Mutual 598,016 4578 Chinese Holstein GLM China [98]
BovineHD2800013502 LOC100141022 28 4.71 × 10−7 50 K/HD Mutual 598,016 4578 Chinese Holstein GLM China [98]

ARS-BFGL-NGS-70552 SERGEF 15 8.95 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

BTB-00938945 GPAM 26 8.95 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

rs42946768 CDH12 20 3.08 × 10−8 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs109073659 PCDH9 12 2.23 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs43162548 TARP 4 2.99 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]

rs133475777 DTHD1 6 4.29 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]

RA

BovineHD0100019488 CCDC14 1 4.88 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BTB-00003652 GRIK1 1 1.76 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

BovineHD0100041062 BACE2 1 2.03 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD0200037025 PDIK1L 2 6.11 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

Hapmap38371-BTA-105598 AMBN 6 1.58 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
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Table 7. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

RA

BovineHD0700024393 MSH3 7 4.32 × 10−9 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD0700024587 SSBP2 7 1.04 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD0800030195 SVEP1 8 2.25 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

BTA-106078-no-rs HIVEP2 9 9.84 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD1000013067 MAP4K5 10 8.09 × 10−8 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD1000018043 SLC24A5 10 7.73 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

Hapmap49737-BTA-75278 PRKCH 10 6.00 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
ARS-BFGL-NGS-116541 LIG1 18 2.37 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD1800016250 SYNGR4 18 7.28 × 10−8 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
ARS-BFGL-NGS-31529 LMTK3 18 2.12 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD2200013812 CACNA1D 22 1.72 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD2200013926 RFT1 22 5.34 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

ARS-BFGL-NGS-101981 ADAP1 25 1.32 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD2600004135 LOC522146 26 1.32 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]
BovineHD3000000680 KLHL13 30 2.28 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

BTA-21001-no-rs MSL3 30 2.28 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese Holstein MLM China [101]

BTA-94299-no-rs MGST1 5 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

ARS-BFGL-NGS-54462 MIR365 25 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

ARS-BFGL-NGS-102900 AGPAT5 27 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

apmap48553-BTA-10000 LOC788619 7 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

BTB-01219012 LOC100296765 7 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

ARS-BFGL-NGS-31810 LOC536255 11 9.06 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

rs43486059 LOC781835 6 3.61 × 10−9 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs137244035 FSTL4 7 1.88 × 10−8 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs43352090 ATG4C 3 9.91 × 10−8 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs43366267 SH3BP4 3 4.11 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]

PW

rs109478645 ENSBTAG00000037537 18 6.48 × 10−9 Bovine HD HD panel 601,717 4841 Holstein MLM Canada [26]

BTB-00168895 LOC781728 4 9.17 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

Hapmap40061-BTA-28737 LOC616304 9 9.17 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese Holstein SMMA China [99]

rs109578471 USP6NL 13 1.18 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs42051017 LOC101907665 29 1.45 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
rs43430205 CNTN3 22 2.24 × 10−7 GGP Bovine 100 K No 84,407 984 Chinese Holstein Farm CPU China [59]
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Table 7. Cont.

Traits SNPs Genes Chr. p Value Genotype Imputed SNP Size Sample
Size Breed Model Country Ref.

RW

BTB-00752634 LOC614209 14 3.16 × 10−6 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean Holstein MLM Korea [100]

ARS-BFGL-BAC-26802 ANGPT1,
LOC782496 14 5.65 × 10−5 BovineSNP50 Bead

Chip/Illumina 54 K Mutual 38,720 2329 Korean Holstein MLM Korea [100]

ARS-BFGL-NGS-5369 OSBP2 17 8.45 × 10−6 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean Holstein MLM Korea [100]

Abbreviations: rump angle, RA; lion strength, LS; pin width, PW; rump width, RW; mixed linear model, MLM; generalized linear model, GLM; single marker mixed model analysis,
SMMA; reference, Ref.

Table 8. GWAS study for screening genetic markers associated with mammary system traits.

Traits SNPs Genes Chr p Value Genotype Imputed SNP
Size

Sample
Size Breed Model Country Ref.

Rear udder
RS-BFGL-NGS-111920 LOC100337279 14 8.91 × 10−3 BovineSNP50 Bead

Chip/Illumina 54 K Mutual 52,166 1314 Chinese
Holstein SMMA China [99]

Hapmap50827-BTA-94026 LOC100336384 24 8.91 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

Udder
texture

BTA-41935-no-r DRG1 17 8.72 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTB-01236227 HTR1A 20 8.72 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTB-01693574 LOC104969871 2 1.96 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

BTB-01584048 MIR2285K-4 26 7.57 × 10−7 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

CSL

BTB-00089278 LRP2 2 8.74 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTB-01007411 SEMA3E 4 8.74 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-35982 NAP1L1 5 8.74 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-29118 MACROD2 13 8.74 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

UA-IFASA-6670 GABARAPL1 5 6.37 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]
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Table 8. Cont.

Traits SNPs Genes Chr p Value Genotype Imputed SNP
Size

Sample
Size Breed Model Country Ref.

CSL

BovineHD0900026424 NOX3 9 5.03 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD1700021616 LOC531152 17 9.77 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

BovineHD3000039710 LOC782196 30 5.31 × 10−7 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

ARS-BFGL-BAC-29174 STXBP6 21 1.16 × 10−9 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

Hapmap32447-BTC-
033214 GRID2 6 2.45 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese

Holstein
Farm
CPU China [60]

BovineHD0600005127 LOC112447148 6 3.02 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

Fore
attachment

ARS-BFGL-NGS-114960 NTM 29 9.65 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

ARS-BFGL-NGS-118699 LOC511409 8 1.96 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein MLM Korea [100]

RAW
BTB-01478363 BAG1 20 9.24 × 10−3 BovineSNP50 Bead

Chip/Illumina 54 K Mutual 52,166 1314 Chinese
Holstein SMMA China [99]

Hapmap29824-BTA-
137304

SLC17A1,
LRRC16A, 23 3.76 × 10−5 BovineSNP50 Bead

Chip/Illumina 54 K Mutual 52,166 1314 Chinese
Holstein SMMA China [99]

RAH

ARS-BFGL-NGS-20052 CDK5R2 2 9.04 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

Hapmap46979-BTA-32175 LOC104973698 13 9.87 × 10−6 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein GLM Korea [100]

BTA-11097-rs29016861 CDK1,RHOBTB1 28 1.52 × 10−5 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 38,720 2329 Korean

Holstein GLM Korea [100]

rs109901274 ARRDC3 7 2.88 ×
10−10 Bovine HD HD panel 601,717 4841 Holstein MLM Canada [26]

TL
rs110137797 TMTC2 5 1.63 ×

10−12 Bovine HD HD panel 601,717 4841 Holstein MLM Canada [26]

BTB-01255458 PDIA6 10 9.11 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]



Animals 2024, 14, 2181 22 of 34

Table 8. Cont.

Traits SNPs Genes Chr p Value Genotype Imputed SNP
Size

Sample
Size Breed Model Country Ref.

FTL
BovineHD1500023818 SBF2 15 9.69 × 10−8 Bovine 100 K SNP No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

BovineHD2100009187 STXBP6 21 1.98 × 10−7 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

MGM

rs110171876 TMTC2 5 7.22 × 10−8 50 K/HD Mutual 598,016 4578 Brown
Swiss GLM Switzerland [98]

rs133549245 RASSF6 6 2.94 ×
10−29 50 K/HD Mutual 598,016 4578 Brown

Swiss GLM Switzerland [98]

rs137563207 TBX5, RBM19 17 2.62 ×
10−46 50 K/HD Mutual 598,016 4578 Brown

Swiss GLM Switzerland [98]

rs41584904 PITPNA 19 4.97 × 10−8 50 K/HD Mutual 598,016 4578 Brown
Swiss GLM Switzerland [98]

ATP

ARS-BFGL-NGS-101241 MMS22L 9 5.10 × 10−9 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

ARS-BFGL-NGS-43147 E2F8 29 4.16 × 10−7 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

BovineHD1800006781 CDH11 18 1.09 × 10−7 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

BovineHD0500031672 PEX26 5 2.54 × 10−7 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

ARS-BFGL-NGS-16048 TAMM41 22 3.14 × 10−9 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

ARS-BFGL-NGS-113245 SLC39A11 19 8.92 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

PTP

Hapmap58721-rs29026738 HIVEP3 3 3.05 × 10−8 Bovine 100 K SNP No 84,906 984 Chinese
Holstein

Farm
CPU China [58]

12-88054488-G-A-
rs42352402 MYO16 12 6.02 × 10−8 Bovine 100 K SNP No 84,906 984 Chinese

Holstein
Farm
CPU China [58]

BTA-83107-no-rs MIR2284O 6 1.10 × 10−6 Bovine LD V3 SNP No 20,632 421 Chinese
Holstein MLM China [101]

ARS-BFGL-NGS-31730 SH3RF3 11 8.64 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]

BTB-01230622 DCDC5 15 8.64 × 10−3 BovineSNP50 Bead
Chip/Illumina 54 K Mutual 52,166 1314 Chinese

Holstein SMMA China [99]
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Traits SNPs Genes Chr p Value Genotype Imputed SNP
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Size Breed Model Country Ref.

AUA

DB-340-seq-rs208014256 MGST1 5 4.48 × 10−8 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

Hapmap58214-rs29015775 LOC101903734 22 8.34 × 10−8 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD2700005329 MTUS1 27 1.90 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD0900028603 PRKN 9 6.48 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

PUAH

BovineHD2900000083 E2F8 29 9.70 × 10−8 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD1800011193 CDH11 18 1.66 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD2200002408 FOXP1 22 4.89 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

PUAW

BovineHD0700028083 SLF1 7 2.26 × 10−9 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD0500010522 TMEM117 5 1.45 × 10−8 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD1500023322 SBF2 15 6.19 × 10−8 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

UD

BTA-75047-No-rs LGALS2 5 1.26 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD0600024277 GC 6 2.92 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD0600001885 UBE2K 6 5.16 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD0900001933 ADGRB3 9 5.98 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

BovineHD2300001734 GCLC 23 9.36 × 10−7 Bovine 100 K SNP No 84,407 984 Chinese
Holstein

Farm
CPU China [60]

Abbreviations: central suspensory ligament, CSL; rear attach width, RAW; rear attach height, RAH; teat length, TL; fore teat length, FTL; mammary gland morphology, MGM; anterior
teat position, ATP; posterior teat position, PTP; anterior udder attachment, AUA; posterior udder attach height, PUAH; posterior udder attach width, PUAW; udder depth, UD; mixed
linear model, MLM; generalized linear model, GLM; single marker mixed model analysis, SMMA; reference, Ref.
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Several chromosomes and genes repeatedly appeared across these studies, highlight-
ing their significance in the genetic architecture of these traits. For instance, chromosome
5 frequently surfaced in body size traits, associated with the gene CCND2, showing sig-
nificant markers like rs133960300 and rs109685956 with p values around 2.94 × 10−9 [26].
Chromosome 7 also appeared multiple times, particularly in leg and feet conformation traits,
with the gene ARRDC3 and SLF1 showing markers such as rs109901274 and rs109618368,
each with p values of 1.47 × 10−9 [26,60]. Additionally, genes like KCNS3 on chromo-
some 11 and ARRDC3 on chromosome 7 were recurrently identified in different studies,
underscoring their crucial role in determining these traits [26,101]. Among them, some
research reports are worthy of our attention. Yan et al. involved 445 Chinese Holstein cows,
genotyped using a GGP BovineLD V3 SNP chip containing 26,151 public SNPs [101]. Addi-
tionally, Wang et al. conducted a GWAS using the Illumina Bovine HD 100 K BeadChip,
identifying multiple candidate SNPs and genes associated with the body form composite
index and feet and leg conformation traits in Holstein cattle [97]. Recent years have seen
a proliferation of studies based on GWASs focusing on body conformation traits of Chi-
nese Holstein cattle. Abdalla et al. reported 20 significant SNPs and 20 candidate genes
associated with feet and leg conformation traits. In subsequent research, they reported
11 significant SNPs and 12 promising candidate genes, and emphasized the importance of
rump traits, identifying 11 significant SNPs linked to reproductive and body shape-related
traits [59]. Nazar et al. found 11 SNPs and 11 candidate genes related to mammary system
teat shape conformation traits, including MMS22L, E2F8, CSRP3, and others. Furthermore,
they identified numerous SNPs and candidate genes potentially linked to udder conforma-
tion traits, such as MGST1, MGST2, and MTUS1 [60]. These findings collectively provide a
comprehensive understanding of the genetic underpinnings of important traits in dairy
cows, emphasizing the extensive datasets and advanced GWAS models employed. The
results from these studies offer valuable insights for enhancing genetic selection and breed-
ing strategies, ultimately contributing to the optimization of dairy cow productivity and
health. Tables 5–8 summarize the genetic markers associated with linear body traits in dairy
cows, covering body size traits (Table 5), feet and leg conformation traits (Table 6), rump
traits (Table 7), and mammary system traits (Table 8). Figures 2–5 illustrate the number
of significant SNPs associated with these traits, including body size traits (Figure 2), feet
and leg conformation traits (Figure 3), rump traits (Figure 4), and mammary system traits
(Figure 5). Additionally, Figure 6 summarizes the key genes associated with these traits.

3.6. Future Applications of the GWAS Strategy for Improving Body Conformation

Recent genomic studies have shown that predictions of livestock productivity can be
redefined based on genomic and phenotypic data, challenging the traditional perspective on
dairy cattle selection. The understanding of the natural variation in body linear type traits
has significantly advanced in recent decades. With advancements in genomic sequencing,
high-throughput SNP genotyping, and a wealth of genetic resources in databases such as
The Bovine Genome Database (bovinegeNome.elsiklab.missouri.edu, accessed on 1 May
2024) and Cattle QTLdb (animalgeNome.org, accessed on 1 May 2024), a GWAS for body
linear type traits is poised to become more informative.

GWAS findings can be applied in various ways, including in breeding programs, for
the identification of candidate genes, genetic mapping, and gene editing. Furthermore,
highly precise phenotyping by scientists and through high-throughput platforms will
enhance a GWAS’s ability to identify novel loci. In the dairy industry, these advancements
provide valuable resources that support and streamline breeding, genomics, and the genetic
analysis of economically important traits.
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A deeper analysis of the causal loci detected by a GWAS, such as haplotype-based
analysis, is crucial for genomics-assisted dairy cattle breeding. A GWAS offers higher
resolution due to more frequent recombination events and allows for the use of a broader
genetic base compared to QTL mapping. For future research on body linear type traits, a
GWAS should be considered an exploratory tool for selecting optimal parents for genomic
selection and for further genetic and molecular validation of associations.

The analysis of complex traits in dairy cattle is expected to improve significantly with
the help of statisticians and bioinformaticians. To facilitate this, further development of
databases and statistical models is necessary. The integration of omics with genetics is
critical for the improvement and molecular analysis of dairy cattle. Extending the study of
natural variation to molecular mechanisms will provide deeper insights into the processes
involved in cattle breeding.

4. Conclusions

In this review, we documented several genes associated with body linear type traits in
dairy cattle. Furthermore, numerous SNPs within these candidate genes were highlighted,
providing novel insights into the molecular basis of breeding and valuable information for
understanding the genetic architecture of these traits in dairy cattle. Major SNPs identified
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on chromosomes 18, 1, 7, and 5 have been linked to body size, feet and leg conformation,
rump, and mammary system traits, respectively. However, analyses of gene interactions
have revealed connections between genes from different studies across these four groups
of body linear type traits. Future research is essential to identify the specific genes and
mutations involved. Additional studies are also needed to explore the biological functions
and molecular regulatory networks of these genes.
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