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Abstract: Segmentation methods based on convolutional neural networks (CNN) have achieved
remarkable results in the field of medical image segmentation due to their powerful representation
capabilities. However, for brain-tumor segmentation, owing to the significant variations in shape,
texture, and location, traditional convolutional neural networks (CNNs) with limited convolutional
kernel-receptive fields struggle to model explicit long-range (global) dependencies, thereby restricting
segmentation accuracy and making it difficult to accurately identify tumor boundaries in medical
imaging. As a result, researchers have introduced the Swin Transformer, which has the capability
to model long-distance dependencies, into the field of brain-tumor segmentation, offering unique
advantages in the global modeling and semantic interaction of remote information. However,
due to the high computational complexity of the Swin Transformer and its reliance on large-scale
pretraining, it faces constraints when processing large-scale medical images. Therefore, this study
addresses this issue by proposing a smaller network, consisting of a dual-encoder network, which
also resolves the instability issue that arises in the training process of large-scale visual models with
the Swin Transformer, where activation values of residual units accumulate layer by layer, leading
to a significant increase in differences in activation amplitudes across layers and causing model
instability. The results of the experimental validation using real data show that our dual-encoder
network has achieved significant performance improvements, and it also demonstrates a strong
appeal in reducing computational complexity.

Keywords: brain-tumor segmentation; Swin Transformer; CNN; dual encoder; stability

1. Introduction

Given the rapid advancements in medical imaging technology, magnetic resonance
imaging (MRI) has emerged as the preferred method for brain diagnosis and treatment
planning. The swift and precise automatic segmentation of MRI images through computer-
aided diagnosis technology is crucial for the treatment and prognosis of brain tumors.
Researchers are progressively turning to computer-assisted methods for brain-tumor seg-
mentation, leveraging a variety of machine-learning and deep-learning algorithms to
achieve optimal results.

In 2012, the authors of [1] designed AlexNet, a deep convolutional neural network,
and were the winners of ImageNet LSVRC in the same year. Subsequently, other re-
searchers then introduced AlexNet into the fields of image segmentation and object detec-
tion. AlexNet introduced the ReLU activation function and Dropout technique: The ReLU
activation function addressed the gradient vanishing problem of sigmoid in deep networks,
while the Dropout technique effectively reduced overfitting. However, in AlexNet, infor-
mation propagation primarily relied on local convolution operations, which meant that
information interactions mainly occurred between adjacent pixels or feature maps. This
locality constraint limited the network’s ability to perceive global information, making it
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difficult for the network to fully utilize contextual information across the entire image. In
2014, ref. [2] proposed the deep convolutional structure VGGNet, which uses pre-training
to train a shallow network and then reuses the weight of the previous layer to train the
subsequent layer of the network. Through repeated training, problems, such as the weight
initialization of the model, are solved. It also allows the model to converge faster during
training. VGGNet consists of five convolutional layers, three fully connected layers, and
a softmax output layer. Max-pooling is used to separate layers, and multiple smaller
convolutional layers (3 × 3) are used instead of larger convolutional layers to reduce
the number of parameters. However, this approach also limits the network’s ability to
perceive global information. In 2015, ref. [3] proposed the UNet network, which adopts
an encoder–decoder architecture, combining both lightweight and high performance and
intensively integrating shallow features and deep features, making this model outstanding
in the field of medical image segmentation. However, traditional UNet encoders and de-
coders mainly perform local operations, which limits the model’s ability to integrate global
information. In biomedical image segmentation, the integration of global information
is crucial for improving segmentation accuracy. In 2018, ref. [4] proposed an improved
UNet++ network based on the UNET network. The model not only uses the structure of
UNet for reference but also adopts the dense connection mode of the DenseNet network
and introduces deep supervision. It not only preserves and reconstructs global information
and local information but also makes the model more efficient. Due to the introduction of
more nested structures and skip connections in UNet++, this results in an increase in the
model’s parameter count and computational complexity. Later, ref. [5] proposed the vision
transformer and applied it in the field of brain-tumor segmentation. Compared with convo-
lutional neural networks, the Vision Transformer enables the model to better obtain global
semantic information. However, since ViT mainly captures global information through
self-attention mechanisms, it may not be as effective as convolutional neural networks
(CNNs) in handling local details and texture features. CNNs can naturally extract local
features of images through convolution operations, while ViT requires additional design or
integration with other techniques to enhance its ability to capture local context information.
Researchers have found that Vision Transformers cannot effectively capture local semantic
information, while convolutional neural networks have limitations in capturing global
semantic information. The trend in the field of brain-tumor segmentation is to deeply
integrate the two, such as the work by [5] proposing the TransBTS network, which com-
bines Transformers for the first time in 3D MRI brain-tumor segmentation, allowing it to
capture both global and local features simultaneously. The encoder first utilizes a 3D CNN
to extract volumetric spatial feature maps, then models global features using a transformer,
enabling the comprehensive capturing of global and local features in the image. However,
due to the quadratic computational complexity and sequence length of the Transformer
model, TransBTS requires higher computational resources when dealing with large-scale or
high-resolution images. The model also has a higher number of parameters, and since the
Transformer does not adopt a hierarchical architecture, it has a certain impact on segmenta-
tion accuracy. In conclusion, the current brain-tumor segmentation methods that combine
CNN and Transformer are able to capture both global and local features simultaneously.
However, how to optimally integrate these two types of features to improve algorithm
segmentation accuracy and efficiency remains a challenge. In view of this, we proposed a
glioma segmentation framework based on a dual-path encoder network and multi-view
dynamic fusion model. The main contributions of this model are as follows:

(a) An innovatively proposed dual-path encoder architecture based on CNN and Swin
Transformer, combined with a CNN and an improved Swin Transformer, a convolu-
tion operation is used to extract local dependencies and rich local features, and an
improved Swin Transformer is used to learn global dependencies for global modeling.
Then, feature fusion and upsampling are carried out to produce the segmentation
results. Deeply integrating CNN and Transformer, leveraging the strengths of both
frameworks, effectively enhances the accuracy of brain-tumor boundary recognition.
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Finally, considering that as the depth of the Swin Transformer model increases, the
differences in the amplitudes of cross-layer activations significantly grow, mainly due
to the outputs of residual units directly added to the main branch. This instability
issue in large-scale models of the Swin Transformer is addressed by normalizing the
activation values of each residual branch and merging them back to the main branch,
thereby enhancing the stability of training through structural improvements.

(b) A new location coding module is proposed. By adding a trainable parameter in the
local window (M × M × M) and integrating location information in self-attention
training, the Swin Transformer encoder structure can obtain rich location informa-
tion, which helps to improve the segmentation accuracy of the brain-tumor model,
especially for the recognition of the brain-tumor boundary region. M represents the
local window size during Swin Transformer training, and r represents the relative
positional offset.

(c) For validation of the benchmark dataset, this study utilized publicly available datasets
named Brats 2021 [6–8] and Brats 2019 [9], which were provided by the organizers
of MICCAI (International Conference on Medical Image Computing and Computer-
Assisted Intervention) and served as part of the BraTS challenge. The experimental
results of the Brats 2021 and Brats 2019 datasets demonstrated the effectiveness of the
model, further improving the segmentation accuracy of brain tumors.

2. Related Work
2.1. Swin Transformer

The Transformer [10] was first proposed in the field of natural language processing
(NLP) and was published by Google in Computation and Language. The emergence of
the Transformer solves problems in the NLP field, such as the inability to be parallelized,
limited memory length, etc., previously faced by RNN, LSTM, and other networks. In-
spired by the success of the Transformer in the field of NLP, ref. [5] proposed the Vision
Transformer, which applies the standard Transformer model to the field of vision with
minimal modifications. While keeping the core structure of the Transformer model un-
changed, necessary adjustments were made to adapt it to image-processing tasks. The
images are divided into patch blocks, which are then used as input token sequences for the
model. Through the Vision Transformer’s unique image patch processing, token sequence
input, self-attention mechanism, and global information modeling capabilities, it effectively
addresses the shortcomings of previous CNNs in capturing global semantic information.
Therefore, the Vision Transformer has been highly sought after by researchers in the vision
field since it came out. For example, in reference [11], researchers utilized the powerful
feature-extraction and sequence-modeling capabilities of the Transformer architecture to
capture the spatial–temporal relationships between multi-view images, proposing a 3D
human pose estimation method based on a Transformer that incorporates multi-view
spatial–temporal relationships. However, as research has progressed, researchers have
found that, limited by hardware conditions, the Vision Transformer has been shown to
have a poor application impact in the field of image segmentation and target detection.
Then, in 2021, Microsoft Research published a paper on the Swin Transformer [12] in ICCV,
which performed well on multiple visual tasks once published. Compared to the Vision
Transformer, the Swin Transformer adopts a hierarchical structure, where the size of feature
maps decreases gradually as the network depth increases while increasing the level of
feature abstraction. This design is akin to the downsampling operation in convolutional
neural networks (CNNs), but the Swin Transformer achieves this process through the self-
attention mechanism. Given that computing global self-attention is very computationally
intensive, the Swin Transformer uses local windows, and within each window, the Swin
Transformer employs the self-attention mechanism to model relationships between pixels.
This mechanism allows the model to reference other pixels within the window when pro-
cessing a pixel, capturing global contextual information. Another key feature of the Swin
Transformer is the use of Shifted Windows for computing self-attention, which confines the
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self-attention computation within non-overlapping local windows, thus improving compu-
tational efficiency. Additionally, by moving windows within consecutive blocks, the model
can transmit information between adjacent windows, maintaining the communication of
global information and effectively alleviating the computational burden and hardware
limitations that arise when using the Vision Transformer for image segmentation. However,
with the training and application of large-scale visual tasks, the Swin Transformer suffers
from problems, such as training instability and a resolution gap between pre-training and
fine-tuning. In [13], the Swin Transformer V2 model is proposed, which effectively solves
the problem of training instability by using the scaled cosine attention module.

2.2. Position Embedding

In 2017, ref. [10] first proposed position coding, which is called sinusoidal position em-
bedding. This coding allows the Transformer architecture to capture the inherent sequence
order and absolute positions of elements. Consequently, the Transformer architecture may
not effectively capture the relative position information of elements during the calculation
of the self-attention matrix. Currently, researchers generally divide location coding into two
categories: absolute location coding and relative location coding. Absolute location coding
adds the absolute location information of tokens to the sequence, while relative location
coding considers the relative location information between tokens when calculating the
self-attention distribution. Absolute location coding had been used earlier, but ref. [14,15]
proposed that using relative position coding could significantly improve segmentation
accuracy. However, relative location coding generally has the disadvantage of a high
overhead and cannot be combined with existing self-attention acceleration algorithms.
In view of this, ref. [16] proposed conditional location coding. Different from previous
fixed or learned location coding, conditional location coding is dynamically generated
and conditioned on the local domain of input tags. The authors of [17] proposed rotating
position coding, which realized the effect of relative position coding through the form of
absolute position coding, organically unified the two, and reflected the relative position
information between tokens in the form of a self-attention matrix bias. Therefore, this
study draws on rotational position coding and conditional position coding to enhance
location items as context sensitive, making attention location sensitive at a marginal cost.
Advantages and limitations of various position coding are shown in Table 1.

Table 1. Advantages and limitations of various position coding in medical image segmentation.

Positional Encoding Type Advantages Limitations

Absolute Positional
Encoding

Provides precise location information vital for
accurate segmentation.

1. Lacks flexibility and struggles with
deformations or transformations in the image.
2. Susceptible to changes in image
orientation or scale.

Relative Positional
Encoding

1. Accommodates image deformations, crucial in
tumor-growth monitoring.
2. Enhances the model’s ability to handle variations
in tumor shape and size.

Demands complex computations to
determine relative positions accurately.

Conditional Positional
Encoding

Adapts to the context of the image, offering superior
segmentation accuracy.

Requires sophisticated architectures and
training strategies.

Conditional Positional
Encoding

Addresses rotational variations, essential in
handling different imaging angles.

Might not be as relevant in standard
brain-tumor segmentation, where rotations
are minimal.

DualTrans Positional
Encoding (Our)

1. During the training process, positional offset
information is learned to provide more precise
segmentation accuracy.
2. Captures intricate spatial relationships within
the image.

Due to the dynamic learning strategy,
overfitting is prone to occur.
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3. Materials and Methods
3.1. Overall Architecture

The overall network architecture is shown in Figure 1. The dual-encoder network we
have proposed is a deep integration of a CNN and an improved Swin Transformer, which
solves the limitations of a CNN in terms of global modeling, remote context interaction,
and spatial dependency. Furthermore, the prior knowledge of the CNN’s hierarchy, locality,
and translational invariance is introduced into the transformer to build an improved Swin
Transformer model. The improvement of the Swin Transformer model mainly involves
performing modifications to the basic blocks or residual blocks, incorporating the DualTrans
Positional Encoding. The details of these enhancements to the encoding block are described
in detail in Section 3.2. Additionally, to address the stability issues of the large Swin
Transformer model, a configuration known as residual post-normalization (res-post-norm)
is adopted, moving it from the front of each residual unit to the back. This reduces
the differences in activation amplitudes across layers, thereby enhancing the training
stability. Meanwhile, Swin Transformer blocks are sliced in axial, coronal, and sagittal
dimensions to reduce the computational complexity. After that, the Swin Transformer is
used to analyze the 2D slices. Finally, the slices are fused specifically, given a multimodal
brain-tumor image input of X ∈ RH×W×D×C, where the image size is H × W × D, and
the number of input channels of the image is represented by C. Owing to its excellent
performance, we use an encoder–decoder architecture as the main structure of the network,
and we use a dual-encoder network to extract rich spatial information and semantic
information. First, based on the locality and translational invariance of convolutional
neural networks, we use a CNN to extract local information and features. Secondly,
considering the unique advantages of the Swin Transformer in global modeling and remote
contextual semantic information interactions, we use the Swin Transformer block to layer
and downsample the input images for the second encoder. Then, the features processed
by the Swin Transformer block are converted into three dimensions through the feature-
mapping layer and concatenated with the features processed by CNN. After that, we restore
the spatial resolution through the decoder layer and repeatedly stack the upper sampling
and convolutional layers to gradually produce high-resolution segmentation results. The
authors of [13] proposed the Swin Transformer V2 model and conducted experiments
on four representative visual benchmarks, demonstrating the poor stability of the Swin
Transformer when handling large-scale datasets. Given this, we normalize the output-
activation values of each residual branch of the Swin Transformer before recombining them
back into the main branch. By introducing post-normalization, we aim to enhance the
training stability of large visual models. Finally, considering that the Swin Transformer does
not save the position information when transforming the image into a patch through patch
partition, which gives the sequence arrangement equal edges and limits the expression
ability of visual tasks, we innovatively propose to incorporate the initially defined relative
position offset into the self-attention learning mechanism. The dynamic priors are generated
in the sensitivity field (M × M), and the position offset is used as a trainable parameter to
participate in the self-attention calculation. Compared with absolute position coding and
relative position coding, this method can significantly improve accuracy.
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Figure 1. Overview of glioma segmentation framework for dual-path encoder networks and multi-
view dynamic fusion models. In the encoder architecture, the subsampling path on the left represents
the Swin Transformer encoder structure, and the subsampling path on the right represents the CNN
encoder structure.

3.2. Network Encoder

Different from the Vision Transformer, which divides input images into H × W × C-
sized patches and converts them into sequences for the self-attention calculation combined
with location information, we will first encode the input images in two directions: Swin
Transformer and CNN. Figure 2 illustrates the encoder architecture and input-data process-
ing flow of the DualTrans model.
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For the Swin Transformer encoder, compared with the 3D volume data, the Vision
Transformer directly divides data into non-overlapping 3D blocks. However, such direct
partitioning renders the Transformer unable to model image local context information
across spatial and depth dimensions. To solve this problem, we encode the Swin Trans-
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former block, which is composed of the LayerNorm layer, residual connection, multi-head
attention module, and nonlinear multilayer perceptron (MLP). Utilizing Shifted Windows
multi-head self-attention (W-MSA) versus Shifted Windows multi-head self-attention (SW-
MSA) within a Swin Transformer block, the feature map is divided into multiple non-
overlapping windows, and multi-head self-attention is only carried out in each window.
In this way, the calculation load can be reduced, and the Transformer can better handle
visual tasks. However, multi-head self-attention in each independent window will also
isolate the information interactions between windows from the space, so SW-MSA is used
to strengthen the information transmission between windows. For input X ∈ RH×W×D×C

of the given multimodal brain-tumor feature map, we slice it according to the three dimen-
sions of axial, coronal, and sagittal, and then input Xinput ∈ R(H×W)×C, Xinput ∈ R(H×D)×C,
and Xinput ∈ R(W×D)×C into the Swin Transformer block, respectively, as shown in Figure 2
for the specific structure. Then, we merge them to form a 3D feature map. In Figure 1, we
uniformly described the 3D feature map. We first create a sequence of tokens of dimension
H
M × W

M × D
M using the patch partition and, then, map them to the embedding space of

dimension C through the linear embedding layer. The Swin Transformer encoder has
four stages, with each stage containing a patch-merging layer and 2N Swin Transformer
blocks. In order to maintain the hierarchical structure of the encoder, in each stage, the
patch-merging layer reduces the feature resolution by a factor of two, and then, the grouped
patches are merged to obtain 4C feature embedding. In order to maintain the same opera-
tion as that in convolution, 4C features are transformed into 2C through the fully connected
layer, which is similar to the pooling operation of convolution. Based on this local window
self-attention mechanism, the output of layers l and l + 1 in the Swin Transformer encoder
layer is calculated as follows:

ẑl = W − MSA(LN(ẑl − 1)) + Zl−1 (1)

Zl = MLP(LN(ẑl)) + ẑl (2)

ẑl + 1 = SW − MSA
(

LN
(

Zl
))

+ Zl (3)

Zl+1 = MLP(LN(ẑl + 1)) + ẑl + 1 (4)

where (1) represents the output of W-MSA, (2) represents the output of SW-MSA, Zl

represents the output features of the MLP module, W-MSA denotes multi-head attention
using a regular window, and SW-MSA denotes multi-head attention using a shifted window.
Using only the W-MSA module would prevent adjacent windows from interacting, leading
to the model losing its ability for global modeling. Therefore, the W-MSA module and
the SW-MSA module appear together in pairs. In order to efficiently calculate the shifted
window mechanism, the self-attention calculation formula is as follows:

Attention(Q, K, V) = Softmax

(
QKT
√

d
+ B

)
V (5)

where Q, K, and V represent the query, key, and value matrices, respectively. B ∈ RM2×M2

is the relative position offset, used to represent the relative position information be-
tween patches.

DualTrans Positional Encoding. Since position information is not taken into account
in the calculation of multi-head attention, the position order of the patch has no influence
on the results of self-attention calculation, while position information is crucial for cap-
turing spatial structure or shape in visual tasks, which will greatly reduce the accuracy
of brain-tumor segmentation. Therefore, researchers are increasingly adding the location
information back; for example, [18] further included the location information into the
calculation of the multi-head attention mechanism and used trainable parameters to further
optimize the relative position information. First, the relative position distance between each
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information during feature downsampling, we also use skip connections to splice the fea-
tures of the CNN encoder and decoder, so as to obtain more abundant spatial feature in-
formation. 
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Experiments have proven that this method can effectively improve the classification
accuracy of visual tasks. However, we noticed that the position deviation proposed by
this method only depends on the query pixel Qijk rather than key pixel Vabc, but the
corresponding position information should also be paid attention to in key pixel Vabc.
Therefore, we propose attention based on three-dimensional relative positional embeddings.
First, we define the relative distance from ijk to each element abc ϵ

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 17 
 

optimize the relative position information. First, the relative position distance between 
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tances in three dimensions, namely the X-axis offset ra−i, the Y-axis offset rb−j, and the Z-
axis offset rc−k. The X, Y, and Z axis offset is embedded and connects together to form 
ra−i,b−j,c−k, and the relative attention of this spatial structure can be defined as: y ∑ ( ⊺ ⊺ , , ), , Ḫ ( , , )  (6)

Experiments have proven that this method can effectively improve the classification 
accuracy of visual tasks. However, we noticed that the position deviation proposed by this 
method only depends on the query pixel Qijk rather than key pixel Vabc, but the correspond-
ing position information should also be paid attention to in key pixel Vabc. Therefore, we 
propose attention based on three-dimensional relative positional embeddings. First, we 
define the relative distance from ijk to each element abc ϵ Ḫm×m×m, where the relative dis-
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where rq
a−i,b−j,c−k is the position code of the learnable query, and rv

a−i,b−j,c−k is the position
code of learnable value. Compared with Formula 6, the increase in vector rv

a−i,b−j,c−k
does not introduce more parameters because they are shared among the attention heads
between each layer, while the increase in rv

a−i,b−j,c−k can obtain more position information,
which helps to improve the segmentation accuracy of brain tumors. Considering that
rq

a−i,b−j,c−k is the matrix multiplication for all pixels in the local window (M × M × M),
and rv

a−i,b−j,c−k is the position information of each pixel value in the local window, we did

not add the rk
a−i,b−j,c−k vector to represent the position coding of learnable keys because

it would introduce additional parameters. At the same time, it is not beneficial to obtain
more position information. It is easy to have redundancy in location-information training.

Convolutional Neural Network Encoder. In the second encoder layer, we use a
common convolutional neural network. First, the 3 × 3 × 3 convolution block is used
for subsampling (stride = 2 convolution), and then, each layer also contains a 1 × 1 × 1
convolution block to convert the number of channels, gradually converting the input
image into a feature map with low resolution but high feature representation. Rich local
information can be effectively extracted through the locality and spatial invariance of
convolution, and the H

32 × W
32 × D

32× 768 feature block can be obtained from the last layer
of the encoder. The feature block can be spliced with the feature block obtained by the
Swin Transformer, and the local context feature information and global context feature
information can be fused.

3.3. Network Decoder

As shown in Figure 3, our research adopts the encoder and decoder architecture, and
the encoder corresponds to the decoder. Unlike patch merging in the Swin Transformer en-
coder and step convolution in the convolutional neural network encoder for downsampling,
transposed convolution is used for upsampling at the decoder layer. First, in the bottleneck
layer, in order to fit the input dimensions of the 3D CNN decoder, the output results of
the Swin Transformer encoder are converted through the feature-mapping block designed
at the feature-mapping layer, and the sequence data are re-mapped to the feature space.
The feature block of H

32 × W
32 × D

32 × 768 is obtained, and then, it is spliced with the feature
block obtained by the CNN encoder to obtain rich feature information. After the feature
map is cascaded, it is upsampled. In order to avoid the loss of partial local information
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during feature downsampling, we also use skip connections to splice the features of the
CNN encoder and decoder, so as to obtain more abundant spatial feature information.
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4. Experimental Results

In order to further verify the feasibility and effectiveness of the proposed model, two
datasets, Brats 2019 and Brats 2021, were used to verify the model, and the innovative
sensitive location coding module mentioned in the study was proven through ablation
experiments. Both the Brats 2019 and Brats 2021 datasets were provided by previous brain-
tumor segmentation competitions. The event is organized by international authorities,
such as The Radiological Society of North America (RSNA) and the American Society of
Neuroradiology (ASNR). Over the years, the event has become a prestigious competition in
the field of brain-tumor segmentation, producing multi-scale 3D CNN, nnU-Net, Extending
nn-UNet [19–21], and other advanced brain-tumor segmentation algorithms.

4.1. Data and Evaluation Indicators

For the dataset, the first dataset used in this study is the Brats 2019 dataset provided
by Brats, which uses MRI scans of patients’ pre-operation brain conditions from multiple
institutions, focusing on heterogeneous segmentation (appearance, shape, and tissue) of
brain tumors, which in this case mainly refer to gliomas. Data are obtained from scanners
at different institutions with different treatment regimens, and these MRI scans contain
four modes of data: T1-weighted (T1), contrast-enhanced T1-weighted (T1ce), T2-weighted
(T2), and T2 fluid-attenuated inversion recovery (T2-FLAIR) volumes. All datasets were
manually segmented by 1–4 professional and experienced radiologists according to the
same protocol standards. The segmented labels included enhancing tumor (ET-label 4),
peritumoral edematous/invaded tissue (ED), and necrotic tumor core (NCR), for a total
of three tumor regions. The Brats 2019 dataset contains two preoperative MRI sequence
datasets: the training set, including 335 multimodal MRI cases and the corresponding brain-
tumor labeling, and the validation set, containing 125 cases without any public labeling.
These images have been preprocessed, including stripping the skull, co-registering all
MRI volumes to the same anatomic template, and resampling at an isotropic resolution
of 1 mm3, resulting in a 128 × 128 × 128 brain-tumor image. The second dataset adopted
in this study is the Brats 2021 dataset, which is consistent with the Brats 2019 dataset
except for the number of cases, including the mode, output size, etc. Brats 2021 contains
8160 MRI scans of 2040 patients, among which 1251 cases are used as training sets and
publicly labeled. A total of 219 cases of data were classified as validation sets, with the
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corresponding annotations not disclosed, and another 570 cases were classified as test
datasets, with undisclosed data.

For dataset preprocessing, the BraTS dataset contains MRI images of multiple modali-
ties (T1, T1Gd, T2, and T2-FLAIR). We integrate the data from these different modalities
to effectively utilize multi-modal information for brain-tumor segmentation. However,
we standardize these data, as the dataset provided by BraTS is composed of sequences
acquired by different institutions using devices from various manufacturers, thus result-
ing in inconsistent intensities of MRI volumes. After removing background pixels, the
images are cropped to a fixed patch size of 128 × 128 × 128. The four sequence images
are then placed in the same dimension, resulting in each processed sample image having
dimensions of (4, 128, 128, 128). The mask images undergo the same processing during
training. To prevent overfitting, this study employs data-augmentation techniques, which
are crucial in the training process. These techniques ensure that the model possesses a
degree of invariance to specific natural transformations, effectively enhancing the model’s
generalization capabilities.

(a) The background region was clipped, considering the proportion of tumor region and
non-tumor region, and 128 × 128 × 128 feature blocks were extracted.

(b) The scaling coefficient is 0.8–1.2; the probability is 0.15.
(c) Gaussian N(0, 0.01) noise is added.
(d) Gaussian smoothing is performed with α ϵ [0.5, 1.15].
(e) The probability of random flipping on the axial, coronal, and sagittal planes is 0.5.

For the training details, the dual-path encoder brain-tumor segmentation model
proposed in this study is implemented in PyTorch. It is trained from scratch using six
NVIDIA RTX 3090 GPUs (each with 24 GB of memory) with a batch size of 12 and trained
for 7000 iterations. The model is trained using the Adam optimizer with a multi-learning
strategy, starting with an initial learning rate of 0.0002 and decaying by 0.9 at each iteration.

For the evaluation indicators, the segmentation accuracy of the brain tumor was mea-
sured using the dice evaluation function and Hausdorff distance (95%) index, respectively,
for the core tumor region (TC, label 1 and label 4), enhanced tumor region (ET, label 1), and
entire tumor region (WT, label 1, label 2, and label 4).

(a) The dice evaluation function is a commonly used index to measure the segmentation
accuracy of brain tumors. This index measures the accuracy of the model by calculat-
ing the overlap between the predicted results of the model and the real label. When the
dice coefficient is close to one, the higher the overlap and the better the performance.

Dice =
2 × TP

2 × TP + FP + FN
(8)

where true positive (TP) represents the number of pixels that the model correctly
predicts to be positive, false positive (FP) indicates the number of pixels that the model
incorrectly predicts to be positive, and false negative (FN) indicates the number of
pixels that the model incorrectly predicts as a negative class.

(b) The Hausdorff distance (95%) represents the surface distance between the prediction
and ground truth. The 95% quantized value of the maximum distance is different
from the dice coefficient, which is sensitive to the inner filling of the mask. The
Hausdorff distance is sensitive to the segmentation boundary of the brain tumor. It
can effectively identify the boundary of the enhanced tumor region and tumor core
region. The Hausdorff distance measures the distance between two subsets in the
space, where d represents the element-by-element distance closest to the voxels from
the first set of voxels to the second set of identical labels, X represents the true value
label of the voxel, and Y represents the predicted value label of the voxel.

Hausdorff distance (95%) = 95%(d(X, Y)||d(Y, X)) (9)
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4.2. Main Result

For BraTS 2019, the training set of this dataset contains 335 multi-modal MRI cases. A
five-fold cross-validation evaluation was performed on the training set. The dice coefficients
of our dual-path encoder model in WT, ET, and TC were, respectively, 93.68%, 90.75%, and
89.2%, and the Hausdorff distance 95% (HD) values were 6.54, 7.02, and 4.32, respectively.
At the same time, we also compared our model with other SOTA models using the BraTS
2019 validation set, which contains 125 cases without any annotation. We uploaded all data
to https://ipp.cbica.upenn.edu/ (accessed on 18 January 2024) to verify this model and
compare it with other models, and the results are detailed in Table 2. We put forward the
model of our dual-path encoder, and the dice coefficients in WT, ET, and TC were 91.42%,
85.63%, and 87.2%, respectively. For HD95, the values were 7.21, 8.32, and 5.64, respectively.

Table 2. Comparison between the DualTrans model and other SOTA models based on BraTS 2019
validation set.

Model
Dice Score (%) Hausdorff 95 (mm)

ET TC WT ET TC WT

TransBTS [22] 78.36 81.41 88.89 5.91 7.58 7.60
Attention-based [23] 75.9 80.7 89.3 4.19 7.66 6.96
Cross-Sequence [24] 78.09 84.32 90.81 2.88 5.74 5.27

Two-Stage Cascaded [25] 80.21 86.47 90.94 3.16 5.43 4.26
3D-UNet [26] 70.86 72.48 87.38 5.06 8.71 9.43

Swin UNETR [27] 85.2 86.9 90.8 8.78 5.62 6.23
Pei et al. [28] 81.33 84.08 88.62 4.21 8.02 5.46

DualTrans (ours) 85.63 87.2 91.42 8.32 5.64 7.21

We applied the proposed dual-path encoder model (DualTrans) to the BraTS 2019
validation dataset and evaluated the performance online on the Challenge web. Compared
with Swin UNETR, our model showed great advantages in both indicators and showed
significant improvement. Swin UNETR is a reformulation of the task of 3D semantic
segmentation as a sequence-to-sequence prediction problem, and maps multimodal MRI
features to one-dimensional sequences as the input to the layered Swin Transformer encoder.
The model was verified with BraTS 2021; we obtained the source code of the model and
verified it with BraTS 2019 according to the same training details, and the results were
obtained as shown in Table 2. Swin UNETR combines the architectures of the Swin
Transformer and UNETR (Transformer-based U-Net), utilizing the Swin Transformer to
extract global context information. In comparison to Swin UNETR, our proposed DualTrans
model achieved improvements in the dice coefficient: by 0.4% in the ET region, 0.3% in the
TC region, and 0.42% in the WT region. This indicates that our dual-path encoder model,
which leverages CNN to extract local context information, outperforms Swin UNETR,
which solely employs the Swin Transformer in the encoder for segmentation tasks. On
the other hand, the 3D-UNet model uses convolutional neural networks to extract feature
information. Although CNN has unique advantages in extracting local context information,
it has limitations in capturing global context information. In comparison to 3D-UNet, our
DualTrans model showed significant improvements in the dice coefficient: by 14.77% in
the ET region, 14.72% in the TC region, and 4.04% in the WT region. This demonstrates
that, by leveraging the Swin Transformer for global context information and a CNN for
local context information, and then combining these extracted features for upsampling, our
model captures richer semantic features.

At the same time, we also show the comparative analysis results of excellent models,
such as TransBTS, Attention-based, Cross-Sequence, Two-Stage Cascaded, 3D-UNet, etc.
Compared with the TransBTS model, in brain-tumor areas such as ET, TC, and WT, we
have achieved an increase of 7.3%, 6.8%, and 2.5%, respectively, in the dice coefficient.
The TransBTS model combines a CNN and the Transformer to first use a 3D CNN brain-
tumor-volume spatial feature map and then transforms the feature mapping, thus proving

https://ipp.cbica.upenn.edu/
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it to be an excellent example of utilizing the Transformer for global modeling. As a classic
model combining a CNN and the Transformer in the field of brain-tumor segmentation,
this model has great reference significance for our model transformation. It should be noted
that the results of the 3D-UNet model in Table 2 on the BraTS 2019 validation set are based
on the comparative experimental analysis results of the TransBTS paper. Compared with
the Two-Stage Cascaded model, the brain-tumor regions of ET, TC, and WT were increased
by 5.4%, 0.7%, and 0.5% respectively. Compared with the model by [28], the brain-tumor
areas such as ET, TC, and WT were increased by 4.3%, 3.1%, and 2.8%, respectively. It can
be seen that the improvement effect of our model is relatively obvious. Figure 4 shows the
visual segmentation results on the Brats 2019 validation set.
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of axial, coronal, and sagittal plane segmentation using our proposed DualTrans model are shown,
respectively.

The training set of the BraTS 2021 dataset contains 1251 MRI multimodal brain-tumor
cases, which is consistent with the operation of the Brats 2019 dataset. First, a five-fold
cross-validation evaluation was performed on the training set. Our dual-path encoder
model (DualTrans) was evaluated, and the dice coefficients of WT, ET, and TC were 93.89%,
91.23%, and 89.8%, and the Hausdorff distance 95% (HD) values were 4.36, 5.02, and
3.68, respectively. Table 3 demonstrates the comparison of segmentation accuracy of our
proposed DualTrans model with other excellent models on the BraTS 2021 validation set.
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Table 3. Comparison between the DualTrans model and other SOTA models based on BraTS 2021
validation set.

Model
Dice Score (%) Hausdorff 95 (mm)

ET TC WT ET TC WT

Swin UNETR [27] 85.8 88.5 92.6 6.02 3.77 5.83
Reciprocal Adversarial [29] 81.38 85.63 90.77 21.83 8.56 5.37

Qiran Jia et al. [30] 81.87 84.34 90.97 17.85 16.69 4.51
Yuan et al. [31] 84.79 86.55 92.65 12.75 11.19 3.67

Orthogonal-Nets [32] 83.2 84.99 91.38 20.97 9.81 5.43
Attention and Ensemble [33] 83.79 86.47 91.99 6.39 7.81 3.86

Swin–Unet [34] 85.37 87.26 92.08 14.32 9.80 11.28
Extending-nnUNet [21] 84.51 87.81 92.75 20.73 7.62 3.47

DualTrans (ours) 86.23 88.12 92.83 6.37 3.64 4.51

We uploaded 219 unlabeled MRI multimodal brain-tumor cases from Brats 2021 and
evaluated the performance online on the Challenge web. The dice coefficients of the
proposed dual-path encoder model DualTrans in the ET, TC, and WT brain-tumor regions
on the validation set were 86.23%, 88.12%, and 92.83%, with HD95 values of 6.37, 3.64,
and 4.51, respectively. Compared with other excellent models, our proposed DualTrans
model has obvious advantages. Compared with the classic Swin UNETR model, the
dice coefficients in the ET, TC, and WT brain-tumor regions were increased by 0.43%,
−0.38%, and 0.23%, respectively. The dice coefficients of Swin UNETR in the ET and WT
regions were lower than in our proposed model, while in the TC region, it was mainly
the segmentation of the label 4 region that was less accurate. The dice coefficient of this
model is higher than ours, mainly because our model is more complex, and the overall
training dataset of brain-tumor segmentation is small, which fails to reflect the advantages
of our model. Secondly, our model does not obtain the feature information of the Swin
Transformer encoder path through skip connection during upsampling. Some global feature
information is missing. However, adding this path will further increase the computational
complexity of the model, but the improvement in the model accuracy is very limited.
Compared with the Swin–Unet model, the dice coefficients are increased by 0.86%, 0.86%,
and 0.75% respectively. Swin–Unet is a pure medical image-segmentation model similar to
UNet. First, the tagged images are input into the encoder–decoder architecture based on
the Transformer. Moreover, skip connections are used to learn local and global semantic
features. Swin–Unet has a higher segmentation accuracy and a weaker ability to extract
local semantic feature information compared with our model. Moreover, the model slices
3D feature maps into 2D feature maps and inputs the model without a good integration of
3D spatial semantic feature information.

In addition, we compared the proposed model with the classic model nnU-Net in
the field of medical image segmentation. The dice coefficients for the ET, TC, and WT
brain-tumor regions increased by 1.72%, 0.31%, and 0.08%, respectively. nnU-Net is an en-
semble of multiple models that has performed well in various medical image-segmentation
challenges, including brain-tumor segmentation. The comparison results with the nnU-Net
model also demonstrate the wide applicability and efficiency of our proposed model in the
field of medical image segmentation.

4.3. Ablation Study

We designed a large number of ablation experiments to demonstrate the validity of
our proposed dual-path encoder model principle. And based on five-fold cross-validation
evaluations on the BraTS 2021 training set to verify our design principle, our design mainly
includes the following aspects: (a) the impact of the Swin Transformer encoder on segmen-
tation accuracy in the DualTrans model and (b) a focus on the influence of our innovative
sensitive position coding on model accuracy when extracting feature information from the
Swin Transformer encoder.
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As to the Swin Transformer encoder path, our model adopts dual-path encoders, the
first one being the Swin Transformer encoder, and the second one being a convolutional
neural network encoder. As shown in Figure 2, when the Swin Transformer encoder path
is removed, the network structure is similar to the UNet network architecture. In terms
of specific operations, the input image is gradually transformed into a feature map with a
low resolution but a high feature representation by using a 3 × 3 × 3 convolution block
for downsampling (stride = 2 convolution), and rich local information is extracted via
convolution. In order to prevent the loss of feature information in the downsampling
process, the concat feature is carried out by jumping connections. The feature block of
H
32 × W

32 × D
32× 768 is obtained in the last layer of the encoder, and then, the upsampling

operation is carried out through transposed convolution. The whole process is consistent
with the 3D-UNet architecture, and the segmentation accuracy is shown in Table 4.

Table 4. Ablation study on cnn encoder (BraTS 2019).

Model
Dice Score (%)

ET TC WT

3D-UNet 70.86 72.48 87.38
DualTrans (ours) 86.23 88.12 92.83

As can be seen from Table 4, the segmentation accuracy of our proposed model is
greatly improved after adding the Swin Transformer encoder, and the dice coefficients
increase by 16.63%, 16.64%, and 5.45% in the ET, TC, and WT brain-tumor regions, re-
spectively. It is strongly proven that combining the Swin Transformer encoder path is
of great significance for extracting global semantic feature information. A convolution
operation is used to extract local dependencies and rich local features, and the improved
Swin Transformer is used to learn global dependencies for global modeling. Then, feature
fusion is carried out. The model can, therefore, obtain rich semantic information.

For the DualTrans position, the position information is included in the calculation
of the multi-head attention mechanism, and the relative position information is further
optimized by using trainable parameters. First, the relative position distance between
each position abc ϵ
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m×m×m and the center point is defined as ijk in the window, and the
relative distance is decomposed across dimensions. When attention is calculated within
the range of the M × M × M local window, the rv

a−i,b−j,c−k vector is added, through which
more position information can be obtained, and since they are shared between the attention
heads between each layer, no additional parameters are introduced.

The BraTS 2019 validation set is a subset of the BraTS 2019 dataset that does not come
with specific labels. It is used to evaluate the performance of algorithms in brain-tumor
segmentation tasks. Segmentation results need to be uploaded to the official website for
evaluation. Table 5 shows the segmentation accuracy of the model when position-free
coding information, relative position coding, and our proposed DualTrans position coding
are adopted into the BraTS 2019 verification set. It can be seen that the segmentation
accuracy of the model decreases significantly when there is no position information. When
the relative position coding information is used, the segmentation accuracy of the model is
greatly improved. When our proposed DualTrans position information is used, the Dice
coefficient of the relative position coding model is increased by 0.17%, 0.14%, and 0.18%
in the ET, TC, and WT regions, respectively. The results show that adding the DualTrans
location information in the M × M × M window is helpful for improving the accuracy of
brain-tumor segmentation.
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Table 5. Ablation study on DualTrans position self-attention (BraTS 2019).

Model
Dice Score (%)

ET TC WT

DualTrans (no position) 85.38 87.01 90.46
DualTrans (rel. position) 86.06 87.98 92.65

DualTrans (DualTrans position) 86.23 88.12 92.83

5. Conclusions

In this study, we propose a novel brain-tumor segmentation architecture DualTrans,
which deeply integrates a convolutional neural network and the Swin Transformer. The
model not only has the advantages of a 3D CNN for obtaining local semantic information
but also uses the Swin Transformer to obtain global semantic information. Second, in
the Swin Transformer encoder path, an innovative DualTrans position coding structure
is proposed to incorporate the position information into the calculation of the multi-head
attention mechanism and uses trainable parameters to further optimize the relative position
information to further improve the segmentation accuracy of brain tumors. Finally, in order
to solve the stability problem of the Swin Transformer, the output-activation values of each
residual branch are normalized and merged back into the main branch so that the model
has a better generalization performance. The experimental results on Brats 2019 and Brats
2021 have proven the effectiveness of the model. In future work, we will explore the use of
“large convolution” to increase the convolutional receptor field and combine it with the
Swin Transformer to develop a more efficient brain-tumor segmentation model.

Author Contributions: Author Z.L. wrote the main content of the paper and conducted experimental
research. Author W.S. designed and planned the overall structure of the article. Authors Y.M. and
Y.L. assisted in the experimental validation of the proposed model in the article. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61433012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository. The original data
presented in the study are openly available in [https://www.med.upenn.edu/cbica/brats2021/
#Data2] at [https://doi.10.1109/TMI.2014.2377694], (accessed on 17 April 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25. Available online: https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a6
8c45b-Abstract.html (accessed on 17 April 2024). [CrossRef]

2. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arxiv 2014, arXiv:1409.1556.
3. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015;
pp. 234–241.

4. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th
International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI
2018, Granada, Spain, 20 September 2018; Proceedings 4; Springer International Publishing: Berlin/Heidelberg, Germany, 2018;
pp. 3–11.

5. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

https://www.med.upenn.edu/cbica/brats2021/#Data2
https://www.med.upenn.edu/cbica/brats2021/#Data2
https://doi.10.1109/TMI.2014.2377694
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1145/3065386


Appl. Sci. 2024, 14, 4834 16 of 17

6. Baid, U.; Ghodasara, S.; Mohan, S.; Bilello, M.; Calabrese, E.; Colak, E.; Bakas, S. The RSNA-ASNR-MICCAI BraTS 2021 Benchmark
on Brain Tumor Segmentation and Radiogenomic Classification. arXiv 2021, arXiv:2107.02314.

7. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Van Leemput, K. The Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [CrossRef] [PubMed]

8. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Davatzikos, C. Advancing The Cancer Genome Atlas glioma
MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 2017, 4, 170117. [CrossRef] [PubMed]

9. BraTS Challenge Organizers. BraTS2019 Challenge Dataset [Dataset]. 2019. Available online: https://www.med.upenn.edu/
cbica/brats-2019/ (accessed on 17 April 2024).

10. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee24354
7dee91fbd053c1c4a845aa-Abstract.html (accessed on 17 April 2024).

11. Jiao, J.; Cheng, X.; Chen, W.; Yin, X.; Shi, H.; Yang, K. Towards Precise 3D Human Pose Estimation with Multi-Perspective
Spatial-Temporal Relational Transformers. arxiv 2024, arXiv:2401.16700.

12. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

13. Liu, Z.; Hu, H.; Lin, Y.; Yao, Z.; Xie, Z.; Wei, Y.; Ning, J.; Cao, Y.; Zhang, Z.; Dong, L.; et al. Swin transformer v2: Scaling up
capacity and resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 18–24 June 2022; pp. 12009–12019.

14. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. arXiv 2018, arXiv:1803.02155.
15. Huang, C.Z.A.; Vaswani, A.; Uszkoreit, J.; Shazeer, N.; Hawthorne, C.; Dai, A.M.; Eck, D. Music transformer: Generating music

with long-term structure (2018). arXiv 2018, arXiv:1809.04281.
16. Chu, X.; Tian, Z.; Zhang, B.; Wang, X.; Shen, C. Conditional Positional Encodings for Vision Transformers. arXiv 2021,

arXiv:2102.10882.
17. Su, J.; Ahmed, M.; Lu, Y.; Pan, S.; Bo, W.; Liu, Y. Roformer: Enhanced transformer with rotary position embedding. Neurocomputing

2024, 568, 127063. [CrossRef]
18. Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Levskaya, A.; Shlens, J. Stand-alone self-attention in vision models. Adv.

Neural Inf. Process. Syst. 2019, 32. Available online: https://proceedings.neurips.cc/paper_files/paper/2019/file/3416a75f4cea9
109507cacd8e2f2aefc-Paper.pdf (accessed on 17 April 2024).

19. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Glocker, B. Efficient multi-scale 3D CNN with
fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef] [PubMed]

20. Isensee, F.; Jäger, P.F.; Full, P.M.; Vollmuth, P.; Maier-Hein, K.H. nnU-Net for brain tumor segmentation. In Proceedings of the
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in
Conjunction with MICCAI 2020, Lima, Peru, 4 October 2020; Revised Selected Papers, Part II 6; Springer International Publishing:
Berlin/Heidelberg, Germany, 2021; pp. 118–132.

21. Luu, H.M.; Park, S.H. Extending nn-UNet for brain tumor segmentation. In Proceedings of the International MICCAI Brainlesion
Workshop, Virtual, 27 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 173–186.

22. Wang, W.; Chen, C.; Ding, M.; Yu, H.; Zha, S.; Li, J. Transbts: Multimodal brain tumor segmentation using transformer. In
Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, 27 September–1 October 2021; Proceedings, Part I 24; Springer International Publishing: Berlin/Heidelberg,
Germany, 2021; pp. 109–119.

23. Xu, X.; Zhao, W.; Zhao, J. Brain tumor segmentation using attention-based network in 3D MRI images. In Proceedings of the
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in
Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019; Revised Selected Papers, Part II 5; Springer International
Publishing: Berlin/Heidelberg, Germany, 2020; pp. 3–13.

24. Zhao, G.; Zhang, J.; Xia, Y. Improving brain tumor segmentation in multi-sequence MR images using cross-sequence MR image
generation. In Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International
Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019; Revised Selected Papers,
Part II 5; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 27–36.

25. Jiang, Z.; Ding, C.; Liu, M.; Tao, D. Two-stage cascaded u-net: 1st place solution to brats challenge 2019 segmentation task. In
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop,
BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, 17 October 2019; Revised Selected Papers, Part I 5;
Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 231–241.

26. Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation
from sparse annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016:
19th International Conference, Athens, Greece, 17–21 October 2016; Proceedings, Part II 19; Springer International Publishing:
Berlin/Heidelberg, Germany, 2016; pp. 424–432.

https://doi.org/10.1109/TMI.2014.2377694
https://www.ncbi.nlm.nih.gov/pubmed/25494501
https://doi.org/10.1038/sdata.2017.117
https://www.ncbi.nlm.nih.gov/pubmed/28872634
https://www.med.upenn.edu/cbica/brats-2019/
https://www.med.upenn.edu/cbica/brats-2019/
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1016/j.neucom.2023.127063
https://proceedings.neurips.cc/paper_files/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3416a75f4cea9109507cacd8e2f2aefc-Paper.pdf
https://doi.org/10.1016/j.media.2016.10.004
https://www.ncbi.nlm.nih.gov/pubmed/27865153


Appl. Sci. 2024, 14, 4834 17 of 17

27. Hatamizadeh, A.; Nath, V.; Tang, Y.; Yang, D.; Roth, H.R.; Xu, D. Swin unetr: Swin transformers for semantic segmentation of
brain tumors in mri images. In Proceedings of the International MICCAI Brainlesion Workshop, Virtual, 27 September 2021;
Springer International Publishing: Cham, Switzerland, 2021; pp. 272–284.

28. Pei, L.; Vidyaratne, L.; Monibor Rahman, M.; Shboul, Z.A.; Iftekharuddin, K.M. Multimodal brain tumor segmentation and
survival prediction using hybrid machine learning. In Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China,
17 October 2019; Revised Selected Papers, Part II 5; Springer International Publishing: Berlin/Heidelberg, Germany, 2020;
pp. 73–81.

29. Peiris, H.; Chen, Z.; Egan, G.; Harandi, M. Reciprocal adversarial learning for brain tumor segmentation: A solution to BraTS
challenge 2021 segmentation task. In Proceedings of the International MICCAI Brainlesion Workshop, Virtual, 27 September 2021;
Springer International Publishing: Cham, Switzerland, 2021; pp. 171–181.

30. Jia, Q.; Shu, H. Bitr-unet: A cnn-transformer combined network for mri brain tumor segmentation. In Proceedings of the
International MICCAI Brainlesion Workshop, Virtual, 27 September 2021; Springer International Publishing: Cham, Switzerland,
2021; pp. 3–14.

31. Yuan, Y. Evaluating scale attention network for automatic brain tumor segmentation with large multi-parametric MRI database.
In Proceedings of the International MICCAI Brainlesion Workshop, Virtual, 27 September 2021; Springer International Publishing:
Cham, Switzerland, 2021; pp. 42–53.

32. Pawar, K.; Zhong, S.; Goonatillake, D.S.; Egan, G.; Chen, Z. Orthogonal-Nets: A Large Ensemble of 2D Neural Networks for
3D Brain Tumor Segmentation. In Proceedings of the International MICCAI Brainlesion Workshop, Virtual, 27 September 2021;
Springer International Publishing: Cham, Switzerland, 2021; pp. 54–67.

33. Cai, X.; Lou, S.; Shuai, M.; An, Z. Feature learning by attention and ensemble with 3d u-net to glioma tumor segmentation. In
Proceedings of the International MICCAI Brainlesion Workshop, Virtual, 27 September 2021; Springer International Publishing:
Cham, Switzerland, 2021; pp. 68–79.

34. Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image
segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer
Nature Switzerland: Cham, Switzerland, 2022; pp. 205–218.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Work 
	Swin Transformer 
	Position Embedding 

	Materials and Methods 
	Overall Architecture 
	Network Encoder 
	Network Decoder 

	Experimental Results 
	Data and Evaluation Indicators 
	Main Result 
	Ablation Study 

	Conclusions 
	References

