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Abstract: Background: Movement feedback is used to promote anatomically correct movement
patterns. Two primary forms of movement feedback exist: verbal cues and visual cues. There
is ongoing debate regarding which type of feedback yields superior effects for learning desired
movements. This study investigated how a combination of visual and verbal cues improved shoulder
stability in four arm movements, Biceps Curls, Reverse Flys, Rowing, and Shoulder Extensions.
Methods: Twelve participants were allocated to three different conditions and instructed to perform
four different arm movements: Condition 1 (no specific instructions), Condition 2 (image only), and
Condition 3 (verbal cues and image). Measurements of acromioclavicular (AC) joint displacement,
and electromyography (EMG) peak and burst duration were taken for each arm movement within
each condition. Results: Condition 3 exhibited a significant reduction in AC displacement and
prolonged EMG burst duration. Variations in EMG peak and burst duration across different arm
movements were attributed to anticipated muscle activation specific to each movement. Conclusions:
The combination of visual and verbal cues through the “reConnect Your Dots” movement language
was found to improve scapular stabilization and associated muscle activation. This approach to
movement patterns practice holds promise for injury rehabilitation and risk mitigation for future
occurrences.

Keywords: visual feedback; verbal feedback; scapular stabilization; motor imagery

1. Introduction

Most coaches and movement instructors use cues and imagery as movement language
to teach intended movements. However, misinterpretation or miscommunication of this
language can result in inappropriate and undesired movement patterns, potentially leading
to poor performance, and in some cases, musculoskeletal injuries, especially in repetitive
activities [1]. While precise execution of repetitive movements is crucial in any context,
athletes are particularly susceptible to injuries in sports requiring repetitive movements,
such as pitching in baseball and serving in tennis, due to the high intensity (level of effort)
of each performance as well as the high number of repetitions.

An important example seen frequently in repeated, high-intensity arm movements is
the increased risk of shoulder and elbow injuries associated with shoulder hypermobility [2].
For example, baseball pitchers have been found to be 34% more likely to experience a
shoulder injury than fielders [1]. The shoulder joint’s relatively shallow joint structure
makes it susceptible to destabilization when muscular forces act to move the arm at
the shoulder, increasing the risk of dislocation or injury [2,3]. Stability of the shoulder
joint is heavily dependent on the strength and stability of scapular muscles such as the
serratus anterior, rotator cuff muscles, and lower trapezius, which promotes safe movement
techniques and reduces injury risk [4,5]. Therefore, in teaching repetitive arm motions like
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baseball pitching, tennis serving, and vigorous exercise routines, it is essential to employ
movement language that effectively conveys biomechanically sound movement patterns
that include scapular stabilization (SS) [3].

Motor imagery (MI) is a significant form of movement language. It involves a cog-
nitive process wherein an individual mentally rehearses or stimulates a specific motor
action without actually physically performing it. This mental simulation engages similar
neural networks and brain regions that are activated when the actual movement is per-
formed [6]. Therefore, MI has been utilized for instructional coaching and has become a
major contributor to the success of athletes [7].

One significant limitation encountered in MI is that the quality of the image(s), de-
scribed by the instructor and/or imagined by the athlete, directly affects the quality of the
movement learned [7,8]. This challenge may stem from inconsistencies or complexities in
language used to build mental images [9]. For example, a basic squat movement can be
described or instructed in numerous ways through the use of MI [10–13]. Some instructors
describe the muscles needed for execution, some describe body position such as knees and
hips in relation to the feet, and some simply describe an image such as sitting back on a
chair [14–16].

Therefore, to maximize the effectiveness of hands-on feedback, coaches and move-
ment instructors continue to explore optimal verbal instructions, MI, or a combination, to
cultivate proper technique and produce structurally sound, anatomically correct move-
ments [6,8,10]. Regarding the learner’s internal or external focus of attention during
hands-on feedback, MI serves to create an internal focus of attention (IFA), while verbal
cues provide an external focus of attention (EFA). IFA entails directing attention inward
toward body parts and body position [17–21]. Previous research indicates that this type of
focus enhances proprioceptive awareness [21,22], thereby contributing to improved motor
learning [23]. In contrast, EFA directs performers to focus attention on the outcome of the
movement rather than its individual movement elements, such as body positioning and
specific movement components.

The focus of this study was to test the impact of a movement language that combines
IFA and EFA, known as “reConnect Your Dots”, and to compare the effectiveness of using
IFA solely versus the combination of IFA and EFA. This particular movement language,
“reConnect Your Dots”, uses the image of moving and stabilizing points or dots, repre-
senting joints, to describe the desired movement. It utilizes IFA by directing attention to
a particular body part—“Imagine a dot on your elbow and a dot on your scapula”, and
EFA by focusing on the outcome of the movement—“Move the elbow dot toward the
scapula dot”. Although the image of points/dots has been used to direct modern dance
movements [24–26], there are no previous studies that have suggested this type of MI is
the combination of IFA and EFA. The objective of the movement language (feedback) in
this study was to improve scapular stabilization (SS) in four standard exercise movements,
Biceps Curls, Reverse Flys, Rowing, and Shoulder Extensions. We hypothesized that by
providing both IFA and EFA in condition 3 (C3), SS would improve for all the exercise
movements. Additionally, we hypothesized that the combination of IFA and EFA provided
in C3 would show superior results for SS compared to IFA alone, condition 2 (C2), resulting
in decreased muscle activation in the biceps brachii but increased muscle activation in the
triceps brachii and lower trapezius.

2. Methods
2.1. Participants

Twelve healthy volunteer participants between the ages of 20 and 65 years (3 males and
9 females) participated in this study. This study included participants from two CrossFit
gyms in Austin, TX, to ensure they were all familiar with the movements to be tested. All
participants had at least one year of experience in CrossFit or similar exercise training and
at least one previous shoulder injury, but were currently in no physical pain and were
able to perform the arm movements without modifications. As movement technique is
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important for safe and effective movement, a previous shoulder injury could indicate there
was room for improvement in arm movements; therefore, these participants were chosen
under the assumption that they would be likely to have room for improved arm movement
patterns through movement feedback.

All procedures were approved by the Institutional Review Board at the University of
Texas at Austin (IRB#: 2019-01-0048) on 10 January 2018 and were in accordance with the
Helsinki Declaration of 1975. All participants provided written informed consent prior to
participating in the study.

2.2. Data Collection

Volunteer participants were told the location for the study (University of Texas at
Austin Biomechanics Lab), what to wear for testing, time commitment involved (2 h), and
procedures for the study. For each movement, there were three trials, five repetitions per
trial for each movement, which were conducted under three different feedback conditions.
Upon arrival, all participants were escorted to the laboratory, informed of test proceedings,
and signed the consent forms.

2.2.1. Preparation for Data Collection

Kinematics: A 10-camera motion capture system (VICON Motion Systems Ltd., Oxford,
UK) was used to record the upper-body kinematics. Participants were prepared for testing
with nine small, spherical reflective motion capture markers placed along each arm and
shoulder area based on the upper-body modeling (Vicon Nexus 2.12) with Plug-in-Gait
(Vicon Motion System, Oxford Metrics Group Ltd., Oxford, UK): C7, right back over the
scapula, sternum, both AC joints, both elbows (lateral epicondyle of the humerus), and
medial surface of both wrists at the ulna (see Figure 1). Motion capture data were collected
at 120 Hz.
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Figure 1. Experimental Setup for data collection: (a)—front view; (b)—side view; (c)—back view.

EMG: A Trigno Wireless EMG System (Delsys, Inc.) was used for acquisition of
muscle activity at 1200 Hz. Adhesive pre-gelled Ag/AgCl surface EMG electrodes (inter-
electrode distance: 10 mm, Delsys Inc., Boston, MA, USA) were placed on the muscles of
the participant’s dominant arm: biceps brachii (BB), triceps brachii (TB), lower trapezius
(LT). The positioning of the electrodes was in accordance with SENIAM guidelines [27].

2.2.2. Movements Tested

The four movements tested were 1. Biceps Curls, 2. Reverse Flys, 3. Rowing, and
4. Shoulder Extensions (Figure 2). Participants were instructed to sit on a chair, ensuring
that ischial tuberosities were close to the front edge, both feet were placed on the ground
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hip-distance apart, and shoulders were relaxed and down. All participants were familiar
with the movements tested in this study.
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For the fourth movement (Shoulder Extensions), participants were instructed to stand.
A bungee cord was used to provide resistance during the movements. The cord was
positioned at a distance that offered sufficient challenge without being overly difficult.
Participants grasped the ends of the bungee cord with their hands.

2.2.3. Feedback Condition

There were three different feedback conditions while performing each test movement:

Condition 1—Without instructions about dots, images, or cues

For condition 1 (C1), no specific instructions were provided, as participants were
chosen because of previous knowledge of the movements.

Condition 2—Dots image (visual feedback)

Condition 2 (C2) was designed to test whether scapular stability (SS) could be im-
proved through imagery (visual feedback) without verbal cues. Participants were presented
with a dot image (Figure 3) and given the following instructions: “Imagine there are dots
on your body at your shoulder blades, shoulders, elbows, and wrists, and that the dots are
connected by lines. When you move your shoulder blade dots, they will pull or push the
shoulder dots, resulting in movement of your elbow and wrist dots”.

Condition 3—Dots image (visual feedback) and verbal instruction (verbal feedback)

For condition 3 (C3), participants were presented with the same image of the body
with dots, and instructions for each movement were provided. The following information
was given before repeating the four movements: “Some of the dots should move. We will
call them movers. Some should not move. We will call them stabilizers”. The movement-
specific cues were as follows:

1. Biceps Curls—“The shoulder, shoulder blade, and elbow dots should not move and
the wrist dots should move toward the shoulder dots”.

2. Reverse Flys—“The shoulder and shoulder blade dots should not move. The wrist
dots should move back toward the shoulder blade dots and the elbow dots should
maintain their relationship to the shoulder and wrist dots (slightly bent line) through-
out the move”.

3. Rowing—“The shoulder and shoulder blade dots should not move, the elbow dots
should move back toward the shoulder blade dots, and the wrist dots should follow
the elbow dots”.
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4. Shoulder Extensions—“The shoulder and shoulder blade dots should not move. The
wrist dots should move back toward the shoulder blade dots and the elbow dots
should maintain their relationship to the shoulder and wrist dots (a slightly bent line)
throughout the move”.
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2.3. Data Acquisition and Analysis

All kinematic and EMG variables to evaluate scapular stability during the move-
ment were computed using a custom-written algorithm in MATLAB (version 2023b, The
Mathworks Inc., Natick, MA, USA).

Kinematics: Kinematic data (the acromioclavicular (AC) joint displacement) exported
by Vicon Nexus 2.12 Software (Vicon, Oxford Metrics, Oxford, UK) were low-pass filtered
through a fourth-order Butterworth filter with a cut-off frequency of 6 Hz [28].

EMG: The peak amplitude and burst duration of EMG in each muscle (biceps, triceps,
and lower trapezius) were measured. The raw EMG data collected during the movement
testing underwent the following processing steps:

(1) Pre-processing of sEMG signal: Any DC offset was first eliminated using the
“detrend” function in MATLAB. Next, a median filter was applied to the signal to remove
noise, followed by the application of a 20–450 Hz bandpass filter to extract the frequency
range where muscular energy is concentrated [29–31].

(2) sEMG rectification and linear envelope: sEMG signal values below zero were
converted to positive values of the same amplitude to create a full-wave rectified sEMG
signal (see Figure 2). To obtain sEMG envelopes, a 2nd-order Butterworth low pass filter
with a 20 Hz cutoff frequency was applied for digital smoothing [29–31].

(3) % EMG peak amplitude
EMG peak amplitude was normalized to the baseline EMG value, calculated as follows:

% EMG peak amplitude =
(peak amplitude value − baseline EMG value)

baseline EMG value
× 100

(4) EMG Burst Duration
EMG onset time was determined as the moment when the EMG exceeded three

standard deviations (SD) of the baseline EMG value. The EMG offset was identified as
the time when the EMG activity decreased to a level below three SD of the baseline EMG
value [32]. The interval between EMG on and off was defined as “EMG burst duration”.
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2.4. Statistical Analysis

Statistical software (IBM SPSS Statistics 25; Chicago, IL, USA) was used for all statistical
analyses, with an established a priori alpha level of 0.05. For the justification of our sample
size, an a priori power analysis was conducted using G*Power. Effect size (Cohen’s d)
was calculated based on previous studies [28,31,32]. Support for our sample size comes
from several studies on external and internal focus of attention, with a similar number
of subjects. Zachry et al. (n = 14) found that EFA resulted in more accuracy when free
throw shooting, when compared to IFA. In this study, EMG was used to measure biceps
brachii, triceps brachii, and deltoid muscle activity on the shooting arm. Even though
more accuracy occurred in the free throw with EFA, less EMG activity resulted in the
biceps and triceps [18]. Similarly, Kuhn et al. (n = 14) reported EFA produced better motor
performance or greater control over the foot pedal compared to IFA; however, EMG results
showed no significant differences [33].

In the current study, we detected an effect size of 0.78. Through power calculation,
we determined that with 12 participants, there would be 80% power (1–β) at a 5% level of
significance (α). Normality was assessed using the Shapiro–Wilk test.

A two-way repeated measures ANOVA was used to determine differences in (1) the
acromioclavicular (AC) joint displacement in both vertical and horizontal directions, and
(2) EMG peak amplitude and burst duration in each muscle (biceps, triceps, and lower
trapezius). The first within-subject factor was “three different feedback conditions (C1, C2,
and C3)”, while the second within-subject factor was “four test movements (Biceps Curls,
Reverse Flys, Rowing, and Shoulder Extensions)”.

3. Results

No interaction was observed between exercise type and feedback condition on AC
joint displacement and EMG activity.

3.1. AC Joint Displacement

Horizontal Displacement

There was a main effect of the exercise type on horizontal AC joint displacement
(p < 0.01, effect size: η2 = 0.546, observed power = 1.000). Reverse Flys and Rowing
showed significantly greater horizontal AC joint displacement compared to Biceps Curls
and Shoulder Extensions (p < 0.01, Figure 4A).

There was a main effect of the feedback conditions on horizontal AC joint displacement
(p < 0.01, effect size: η2 = 0.878, observed power = 1.000). C3 (Dots image (visual feedback)
and verbal instruction (verbal feedback)) showed significantly less horizontal AC joint
displacement compared to C2 (Dots image without verbal instruction, p < 0.01, Figure 4B)
and C1 (without instructions, p < 0.01, Figure 4B).

Vertical Displacement

There was a main effect of the exercise type on vertical AC joint displacement
(p < 0.01, effect size: η2 = 0.625, observed power = 1.000). Biceps Curls showed sig-
nificantly less vertical displacement compared to Reverse Files, Rowing, and Shoulder
Extensions (p < 0.01, Figure 4C).

There was a main effect of the feedback conditions on vertical AC joint displacement
(p < 0.05, effect size: η2 = 0.238, observed power = 0.789). C3 showed significantly less
vertical AC joint displacement compared to C2 (Dots image without verbal instruction,
p < 0.05, Figure 4D) and C1 (without instructions, p < 0.05, Figure 4D).
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3.2. EMG Activity
3.2.1. Normalized %EMG Peak Amplitude

Biceps

There was a main effect of the exercise type on %EMG peak (p < 0.01, effect size:
η2 = 0.744, observed power = 1.000). Biceps Curls showed greater %EMG peak compared
to Reverse Flys, Rowing, and Shoulder Extensions (p < 0.01, Figure 5A). Additionally,
Rowing showed greater %EMG peak compared to Reverse Flys (p < 0.05, Figure 5A).

There was no significant difference in %EMG peak among the three feedback condi-
tions (Figure 5B).

Triceps

There was a main effect of the exercise type on %EMG peak (p < 0.01, effect size:
η2 = 0.751, observed power = 1.000). Shoulder Extensions showed greater %EMG peak
compared to Biceps Curls, Reverse Flys, and Rowing (p < 0.01, Figure 5C). Additionally,
Reverse Flys showed greater EMG peak compared to Biceps Curls and Rowing (p < 0.01,
Figure 5C).

There was no significant difference in %EMG peak among the three feedback condi-
tions (Figure 5D).
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There was a main effect of the exercise type on %EMG peak (p < 0.01, effect size:
η2 = 0.109, observed power = 0.828). Reverse Flys showed greater EMG peak compared to
Biceps Curls (p < 0.01, Figure 5E), and Rowing and Shoulder Extensions (p < 0.05, Figure 5E).

There was no significant difference in %EMG peak among the three feedback condi-
tions (Figure 5F).

Across all feedback conditions and in each exercise, there was no significant difference
in %EMG Peak Amplitude (Figure 6).
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3.2.2. EMG Burst Duration

Biceps

There was a main effect of the exercise type on EMG burst duration (p < 0.01, effect
size: η2 = 0.398, observed power = 0.95). Biceps Curls showed longer EMG burst duration
compared to Rowing and Shoulder Extensions (p < 0.01, Figure 7A).
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Figure 7. Differences in EMG burst duration (s) of each muscle (biceps, triceps, and lower trapezius)
by Exercise (A,C,E) and by Feedback Condition (B,D,F): Condition 1: Without instructions about dots,
images, or cues. Condition 2: Dots image (visual feedback). Condition 3: Dots image (visual feedback)
and verbal instruction (verbal feedback). * represents statistical significance between exercises or
feedback conditions (p < 0.05).

There was a main effect of the three feedback conditions on EMG burst duration
(p < 0.01, effect size: η2 = 0.959, observed power = 1.00). C3 (Dots image and cues) required
significantly longer EMG burst duration compared to C2 (Dots image without verbal
instruction, p < 0.01, Figure 7B) and C1 (Without instructions p < 0.01, Figure 7B).

Triceps

There was no difference in EMG burst duration among the exercise types (Figure 7C).
There was a main effect of the three feedback conditions on EMG burst duration

(p < 0.01, effect size: η2 = 0.955, observed power = 1.00). C3 (Dots image and cues) required
significantly longer EMG burst duration compared to C2 (Dots image without verbal
instruction, p < 0.01, Figure 7D) and C1 (Without instructions p < 0.01, Figure 7D).

Lower Trapezius
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There was a main effect of exercise type on the EMG burst duration (p < 0.01, effect
size: η2 = 0.736, observed power = 1.00). Biceps Curls and Reverse Flys showed longer
EMG burst duration compared to Rowing and Shoulder Extensions (p < 0.01, Figure 7E).

There was a main effect of the three feedback conditions on EMG burst duration
(p < 0.01, effect size: η2 = 0.965, observed power = 1.00). C3 (Dots image and cues) requires
significantly longer EMG burst duration compared to C2 (Dots image without verbal
instruction, p < 0.01, Figure 7F) and C1 (Without instructions p < 0.01, Figure 7F).

EMG burst duration (s) of each muscle (biceps, triceps, and lower trapezius) showed
significant differences between feedback conditions in each exercise (Figure 8).
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by each Exercise and by Feedback Condition: Condition 1: Without instructions about dots, images,
or cues. Condition 2: Dots image (visual feedback). Condition 3: Dots image (visual feedback) and
verbal instruction (verbal feedback). * represents statistical significance between exercises or feedback
conditions (p < 0.05).

4. Discussion

The objective of this study was to investigate the effects of providing visual and/or
verbal feedback on the improvement of scapular stabilization (SS) and associated muscle
activation in four standard exercise movements: Biceps Curls, Reverse Flys, Rowing,
and Shoulder Extensions. Our primary findings indicated that “reConnect Your Dots”
movement language, the combination of MI, visual feedback with IFA, and verbal feedback
(EFA), contributed to improved scapular stabilization (SS) and enhanced muscle activity
during these exercises.
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4.1. AC Joint Displacement

Differences between Feedback Condition

The decrease in horizontal and vertical AC displacement in the combination of visual
and verbal feedback condition, C3, suggested that the “reConnect Your Dots” movement
language, IFA combined with EFA (combination of visual and verbal feedback), was
effective for improving SS in the four arm movement patterns. It is important to note that
significant differences existed between C1 and C3 and between C2 and C3, whereas there
was no difference between C1 and C2. C1 was designed to rely solely on the participants’
previous knowledge of the movements presented and their individual background in
movement; therefore, no specific verbal instructions were provided in this condition. As
previously mentioned, there are numerous verbal cues or instructions to describe one
movement and our goal was to test the “reConnect Your Dots” movement language, not
any other specific movement language. When the dots image was introduced in C2, there
was no significant change in the movement patterns and, in some cases, there was actually
increased scapular movement. The goal of this study was to test the combination of IFA
and EFA (C3); however, an interesting aspect of movement language is imagery, so we
therefore added C2 to our study.

When verbal cues were added to the image (C3), there was an overall decrease in
AC joint movement, indicating greater SS. This effect may be attributed to the simplicity
of the cues used, which provided instructions about the outcome of the movement of a
particular point on the body. Simple and familiar cues, incorporated into EFA practice,
have been shown to be beneficial for motor learning, particularly in the early stages [19,20].
Krajenbrink et al. reported that even though EFA was a more effective form of practice
than IFA [20], this advantage was only observed in the early phase of practice and not the
subsequent phases of motor learning [34].Additionally, a comprehensive meta-analysis
indicated that EFA is far superior to IFA in terms of motor performance and learning,
regardless of age or skill level. However, research has also shown that using IFA for
movement preparation and EFA for movement execution resulted in greater movement
success [22,35].

The cues used in the current study involved constructing an image of points on
the body (motor imagery), related to corresponding joints, with cues instructing which
points should move, and in what direction, and which points should remain stable (verbal
cues). The success of this technique may lie, at least in part, in structuring a typical IFA
learning situation to be more like EFA because the instructions were focused on a visible
outcome (the motion of particular dots) [36,37]. That is, the image of the points on specific
joints directed attention to an abstract representation of the body and body movements,
which likely created enhanced proprioception or kinesthetic awareness (improved IFA) [38],
“preparing for movement” [22,35].

When attention was directed toward moving or relocating the dots, the focus converted
to the outcome of the movement by verbal feedback (increased EFA) [22,35].

Differences between exercises

Our findings showed that Reverse Flys and Rowing induced significantly more hori-
zontal AC joint displacement compared to Biceps Curls and Shoulder Extensions. These
exercises involve moving the arms from a front to a back position, engaging posterior mus-
cles such as the triceps brachii, lower trapezius, rhomboids, and serratus anterior [36,39].
Perhaps results showed more displacement because women tend to have weaker posterior
muscles compared to anterior muscles like the biceps brachii and pectoralis major [36,37]
and most of our participants were female. The greater displacement during movements
toward the back suggests possible inadequate stabilization by the lower trapezius while
the triceps brachii controls the arm movement [36].

There was a significant main effect of exercise type on vertical displacement. Biceps
Curls exhibited significantly less vertical displacement compared to Reverse Flys, Rowing,
and Shoulder Extensions. This is attributed to the nature of the Biceps Curls movement,
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which primarily involves altering the angle of the elbow joint while stabilizing the shoulder
and shoulder blade. In contrast, Reverse Flys, Rowing, and Shoulder Extensions entail lat-
eral rotation of the humeral head while maintaining stability in the shoulder and shoulder
blade, resulting in potentially greater vertical displacement. Rowing additionally involves
both humeral head movement and elbow joint angle adjustment, as the arms move back-
ward from a forward position. Shoulder Extensions engage the upper trapezius and deltoid
muscles, potentially causing vertical movement in the shoulder and shoulder blade [40].

4.2. %EMG Peak Amplitude

No significant increase in %EMG peak amplitude was observed for the feedback
conditions.

However, significant differences in %EMG peaks between exercises were noted: biceps
brachii for Biceps Curls, lower trapezius for Reverse Flys, and triceps brachii for Shoulder
Extensions. These findings align with the expected muscle activation patterns for these
exercises. For instance, Biceps Curls target the biceps brachii, along with other anterior
upper humeral muscles, resulting in higher %EMG peaks. The stable upper attachment
sites at the scapula during this movement lead to forearm movement toward the shoulder
joint, with the triceps brachii and lower trapezius contracting to stabilize the humerus and
scapula [40], respectively. Given that the biceps brachii primarily drives the action, it is
expected to be the dominant contracting muscle [41].

Reverse Flys showed greater lower trapezius %EMG peaks, indicating more activation
in the lower trapezius. Perhaps this was because of the position of the humerus. The starting
position of the movement is with the arms raised 90º to the torso. This position in itself
challenges the scapular position—one must work to keep the scapula down when raising
the arms. As the arm moves posteriorly, the primary movers are latissimus dorsi and teres
major, while the lower trapezius continues to maintain control of the scapula [33]. While the
biceps and triceps act as stabilizers in this movement, the triceps showed slightly greater
%EMG than the biceps, which is congruent with expected results—posterior movements
would recruit posterior muscles.

The Shoulder Extension is similar to Reverse Flys in that the humerus is rotating
backward in the glenohumeral joint while the scapula remains stable. In the Shoulder
Extension, the triceps brachii had greater %EMG peaks. In this movement, the triceps
are responsible for stabilizing the scapula while simultaneously adding stability to the
humerus. Although the primary mover is not the triceps (latissimus dorsi), because the
humerus is moving backward, posterior muscles will most likely contract more to assist in
movement (and stability). The lower trapezius should assist primarily in stabilizing the
scapula as the humeral head rotates backward within the joint capsule [33]. The lower
trapezius, however, did not show %EMG peak during this movement, which supports the
vertical displacement results for Shoulder Extensions, which showed more displacement.
In other words, there was more movement in the shoulder during Shoulder extensions due
to the lack of lower trapezius activation.

4.3. EMG Burst Duration

The differences observed between exercises in the biceps and lower trapezius align
with the expected muscle activation patterns for these exercises, as mentioned above.
However, our findings regarding feedback condition differences provide significant insights
into the effects of visual and verbal feedback combinations on movement performance.

We observed a significant increase in EMG burst duration for all three muscles: biceps
brachii, triceps brachii, and lower trapezius, during the “reConnect Your Dots” movement
language condition, C3, which was the combination of visual feedback (motor imagery,
internal focus of attention) and verbal feedback (external focus of attention). The increase
in burst duration may suggest more focus or concentration on the movement, which may
promote increased SS, thereby reducing AC joint displacement and promoting overall body
stability (or core stability) [3,4,42].
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Muscles originating from a stable scapula can produce more force on the arm [34],
enabling greater arm power and increased range of motion (ROM) in the glenohumeral joint.
The biceps brachii, triceps brachii, and lower trapezius attach to the scapula and contribute
to its stabilization during performing an action. We observed that the combination of MI
(visual feedback) and verbal feedback led to longer EMG burst durations, indicating greater
and continuous muscle activation, thus improving AC joint stability.

Many research studies have supported the idea that strengthening muscles that stabi-
lize the scapula improves arm movement techniques and therefore decreases susceptibility
to injury [43–45]. Our findings suggest that the use of the combination of visual and verbal
feedback simultaneously brings a similar effect of activating muscles for arm movement
control in terms of AC joint stability. In addition, since scapular stabilization is highly
dependent on core stabilization [3,4,42], our findings indicate that the combination of two
types of feedback might assist in core muscle stability as well.

5. Limitations and Future Studies

One limitation of this study was the small sample size. In the future, studies should
include more participants. Similarly, this study only focused on four arm movements.
More movements, including legs and full-body exercises, should be tested. Additionally, it
would be a more thorough investigation of SS if more SS muscles, such as the rotator cuff
muscles, teres major, and serratus anterior, could be tested for %EMG peak activation.

6. Conclusions

The results of this study supported the first hypothesis, that if SS increased using the
“reConnect Your Dots” movement language, then AC joint displacement would decrease,
vertically and horizontally. The results also partially supported the second hypothesis, that
%EMG peak amplitude would increase for the lower trapezius and triceps brachii muscles.
However, the EMG peak did not increase significantly for the lower trapezius, and contrary
to the hypothesis, the biceps brachii muscle activation increased throughout the movements
rather than decreased. And although the EMG peak results were not significant, the EMG
burst duration was significantly changed in C3. This indicated a longer muscle contraction
and therefore showed a positive change.

This study attempted to establish an effective motor learning environment, utilizing a
combination of IFA and EFA, to improve arm movement exercise patterns and increase SS.
The results showed a positive correlation between the use of the “reConnect Your Dots”
movement language and improved (reduced) AC joint displacement, suggesting improved
scapular stability, but this might have been more significant if individual proprioception
could have been controlled or assessed. Future studies are necessary to determine how
effective this movement language could be for teaching other movement patterns.
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