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Abstract: Coalbed methane represents a promising source of clean and efficient unconventional
energy. The intricate network of micro–nano pores within coal serves as the primary adsorption
space for gas, contributing to the complexity of gas migration channels. In this study, based on the
box-counting method, three coal samples representing low, medium, and high ranks were subjected
to high-precision micro-CT scanning and nano-CT scanning to generate three-dimensional (3D) pore
network models using Avizo visualization software. This facilitated the accurate and quantitative
characterization of the micro–nano pore structures within coal reservoirs. The results indicated that
the face rate distribution range of each sample was large, indicating relatively strong heterogeneity
in each sample. The volume fractal dimension of each sample, determined through micro–nano-CT
scanning, was around 2.5, while the surface fractal dimension exhibited oscillatory characteristics
with moderate uniformity. The pore equivalent radius and throat equivalent radius distributions
were unimodal across all the samples, with the micro-CT scanning revealing a concentration primarily
within the range of 100–400 µm for the pore equivalent radius and within 200 µm for the throat
equivalent radius. Conversely, the nano-CT scanning exhibited concentrations primarily within the
range of 500–2500 nm for the pore equivalent radius and within 2000 nm for the throat equivalent
radius. The analysis of the 3D reconstruction structures indicated that the middle-rank coal exhibited
more developed large–medium pores compared with the low-rank and high-rank coal, while the
low-rank and high-rank coal exhibited relatively more micro–small pores. Furthermore, the low-rank
coal exhibited the fewest number of pores but the largest average pore equivalent radius and throat
radius. Additionally, the middle–high-rank coal exhibited a relatively larger number of pores. Despite
the complex topological structures observed in each sample, a significant proportion indicated a
coordination number of 0–20, indicating excellent connectivity within the coal samples. This study is
conducive to the optimization of coalbed methane surface development blocks and the formulation
of reasonable development plans.

Keywords: pore structure; CT scan test; three-dimensional pore network modeling; coalbed methane

1. Introduction

Coal, as a complex porous medium, exhibits a dual pore system consisting of both
pores and fractures. The distribution of pore sizes ranges from millimeters to nanometers [1,2],
spanning multiple scales, directly impacting the adsorption and fluidity of coalbed methane [3].
The complex pore networks within coal play a crucial role in controlling the occurrence
and migration of coalbed methane, with factors such as development degree, porosity, pore
number, distribution, and connectivity influencing both abnormal methane enrichment
and mine safety [4,5]. Furthermore, studying the coal pore structure is of great significance
for understanding the occurrence and migration of coalbed methane and optimizing
its exploitation.
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The genetic diversity and wide size distribution of coal pores contribute to its intricate
pore network, which encompasses various types of pores interconnected through micro-
scale cracks [6]. These characteristics serve as direct indicators of the gas generation, storage
capacity, and permeability of coal reservoirs. Advanced technologies, such as mercury
intrusion porosimetry (MIP), low-pressure gas adsorption, and various imaging techniques,
including scanning electron microscopy (SEM), transmission electron microscopy (TEM),
nuclear magnetic resonance (NMR), micro-CT, and small-angle X-ray scattering (SAXS),
among others, have been increasingly employed for coal pore structure analysis [7,8].
While these methods offer insights into the complex pore structure, each excels within
specific measurement ranges. For instance, Jia et al. [9] utilized MATLAB algorithms to
analyze SEM images of coal samples, extracting parameters such as porosity, pore radius,
pore throat radius, pore coordination number, pore throat ratio, and specific surface area.
To determine the accuracy of the analysis results, constant-rate mercury injection and
low-temperature N2 adsorption experiments were conducted. To study the pore structure
characteristics of the medium- and high-rank coal in the Qinshui Basin, Li Xiaoyan et al. [10]
measured the specific surface area and pore size distribution data of different coal samples
using liquid nitrogen adsorption. Yang et al. [11] conducted a study on ten groups of coal
samples sourced from different regions, focusing on saturated water, centrifugation, and a
low-field NMR system. They conducted low-field NMR tests on coal in different states to
investigate the pore structure characteristics across various coal ranks.

Furthermore, while NMR, gas adsorption, and mercury intrusion experiments offer
wide measurement ranges and high precision, they are limited by the test principles, each
targeting different pore size ranges. For instance, low-temperature N2 experiments are
suitable for studying pore sizes ranging from 2 nm to 50 nm, whereas low-temperature CO2
experiments are more adept at analyzing pore sizes of <2 nm. Therefore, these methods
may not fully reflect the three-dimensional (3D) pore structure characteristics of coal [12].

The nano-scale pores within coal serve as the primary adsorption space for gas, form-
ing a complex pore network that complicates the gas migration channels [13,14]. Recently,
computed tomography (CT) has emerged as a non-destructive technique capable of achiev-
ing micro- and nanometer resolutions, enabling the visualization of high-resolution 3D pore
structures without sample damage. This technology enables the intuitive study of the pore
throat morphology in unconventional reservoirs [15]. Digital core models and constructed
CT scanning offer the direct and accurate quantitative characterization of microscopic
pore structures and seepage simulations. These models can be tailored to different pore
structures and types, facilitating detailed investigation into microscopic pore structures
and seepage mechanisms [16,17]. Presently, CT scanning technology is predominantly
employed in characterizing reservoirs’ pore structures, encompassing parameters such as
pore throat size, spatial distribution, and connectivity [18].

Zhang Wenzheng et al. [19] utilized X-ray micro-CT 3D reconstruction technology and
the Avizo visualization software 2020.1 to obtain a microscopic pore model of coal. The
study establishes a 3D distribution model of coal pores and a pore ball rod model, analyzing
statistical parameters such as the porosity, pore radius, throat radius, pore volume, and
coordination number for long-flame coal. Wang Yong [20] employed Avizo 3D visualization
reconstruction technology to identify the internal cracks within coal samples. Through the
statistical analysis of the 3D geometric parameters of the cracks, the spatial distribution
characteristics were accurately described. Wang et al. [21] investigated the development,
distribution, morphology, and structural differences of fractures with openings exceeding
15 µm in two tectonic coal types through SEM combined with digital image processing
technology. Furthermore, they established a permeability prediction model based on
Poiseuille’s law, a triaxial permeability experiment, and CT scanning fracture structure
parameters, discussing the impact of the control mechanism of the fracture structure on
permeability. Hao et al. [22] utilized CT scanning technology to quantitatively characterize
the pore-fracture structure of medium–high-rank coal. Through the statistical analysis
of pore throat parameters such as pore volume, pore radius, throat radius, throat length,
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and coordination number, the pore structure differences in the pore structures between
medium-rank coal and high-rank coal were identified.

Compared to studying only one or two coal ranks, in this study, the primary coal
reservoir in a key area of coalbed methane exploration and development in China was the
research focus, and the coal samples in the experiment covered three coal ranks. The same
high-precision CT scanner was employed to scan the coal body by micro-CT scanning and
nano-CT scanning, and then the representative elementary volume (REV) model of each coal
sample was determined based on the box-counting method, filtering the interference noise
in the original image using median filtering. The Avizo visualization software facilitated
the reconstruction of a 3D pore network model of the coal body, enabling the accurate
and quantitative characterization of different coal ranks’ micro–nano pore structures from
different angles. This study is conducive to the optimization of coalbed methane surface
development blocks and the formulation of reasonable development plans.

2. Coal Samples and Test
2.1. Coal Samples

In this study, three coal sample types from low-, medium-, and high-rank reservoir
samples were obtained from the southern margin of the Junggar Basin, the eastern margin
of the Ordos Basin, as well as the central and southern parts of the Qinshui Basin. Figure 1
is the distribution map of sampling sites. According to the GB 474-2008 [23] prepara-
tion method of coal samples, the samples were broken and sieved. Particle sizes of 120–
180 µm were selected for analysis. According to the national standards (GB/T212-2008 [24],
GB/T476-2008 [25], GB/T19227-2008 [26], and GB/T1574-2007 [27]), industrial and elemen-
tal analyses of the samples were conducted, respectively. The test result is presented in
Table 1. The coal samples were processed into three cubes of 50 mm × 50 mm × 50 mm
and three cubes of 1 mm × 1 mm × 1 mm using core drilling equipment, which were used
for micro-CT and nano-CT scanning experiments, respectively.
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Table 1. Results of industrial analysis and elemental analysis of coal samples.

Samples RO/% Porosity/%
Industrial Analysis Elemental Analysis

Mad/% Aad/% Vad/% Fcad/% C/% H/% O/% N/%

XJ 0.64 5.1787 3.24 1.92 28.42 66.42 79.55 4.13 10.09 0.80
LL 1.52 9.3114 0.95 18.93 10.35 69.77 79.43 3.28 2.89 1.54
ZZ 3.46 7.8654 1.14 8.48 10.91 79.47 71.65 3.16 3.97 1.50

Note: Mad—air-dried moisture; Aad—air-dried ash; Vad—air-dried volatile; FCad—air-dried base-fixed carbon.

2.2. Testing Device

The CT scanning experiment employed Phoenix V|tome|X S240 CT detection equip-
ment. The maximum voltage of the device was 240 kV, and the maximum power was
320 W. It was equipped with transmission and direct X-ray tubes. The minimum identi-
fiable voxel was 1 µm, the nano-focus tube was 0.2 µm, and the geometric magnification
ranged between 1.46 X and 400 X. The detector was a DXR-250 digital flat panel detector
(Drgem Corporation, Gwangmyeong, Republic of Korea), which consisted of 2036 pixels
× 2036 pixels, with a pixel spacing of 200 µm. Phoenix Datos|x 3D computer (Waygate
Technologies, Skaneateles, NY, USA) tomography acquisition and reconstruction software
was employed to automate the analysis and operation of the entire CT process chain. It
effectively reduced the operation time and human error. The sample was fixed on the
sample table and scanned in its entirety. Among these, three samples for nano-experiments
were scanned with a ray tube voltage of 80 kV, a power of 10 W, a single scan time of
2 s, an image magnification of 40 X, and a total of 2008 scanned images for each sample
with a resolution of 200 nm. A total of 1000 images were scanned from the samples with a
resolution of 41 µm.

2.3. Experimental Procedure

The experimental procedure was divided into four steps:

1. Six samples were subjected to micro–nano-CT scanning experiments to obtain continuous
two-dimensional (2D) sections, necessitating the construction of 3D pore structures;

2. The 2D slices were imported into Avizo software 2020.1 for grayscale conversion, filter-
ing, noise reduction, and stacking according to the position of the spatial coordinates
to form a 3D data volume;

3. The threshold segmentation method was employed to differentiate between the pore
part and matrix parts in the 2D slice, that is, the binarization processing of the image;

4. The pore network model (PNM) module was employed to extract pores in the coal
reservoir, further analyzing the 3D spatial distribution characteristics and pore con-
nectivity. Relevant parameters were extracted to quantitatively characterize the
microscopic pore structure of the sample.

3. Results and Discussion
3.1. Research on Representative Elementary Volume

The 2D slices obtained using nano-CT scanning exhibited high-resolution and accurate
data. Coal is an anisotropic material, and its pore structure exhibits an obvious size effect.
However, due to the limitations imposed by the current computer hardware performance,
it is difficult to fully characterize the pore structures of coal samples [28]. To realize the
quantitative analysis of coal sample pores, it was necessary to introduce the concept of
representative elementary volume (REV). The characterization unit is the smallest unit
to describe the porosity and permeability of continuous porous media. Furthermore,
when the volume of the coal is less than the REV, the coal porosity fluctuates significantly
with volume changes. However, when the coal volume exceeds the REV, the porosity of
coal tends to be stable with the volume change, making the REV model representative of
coal [29]. Subsequently, the 3D pore modeling analysis was conducted using the determined
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REV model to study the overall characteristics of the coal sample pores, thereby saving
computing resources.

The size of the REV model can be calculated by selecting the region of interest (ROI),
but it is biased to analyze the coal body directly according to the ROI. In this study, the box-
counting method was employed to determine the characterization unit (REV). According
to the local porosity distribution theory, the representativeness of the determined REV
model was evaluated, indicating that the local structure was similar to the whole, and there
was self-similarity among local areas [30]. The center point of the binary image obtained
through the threshold segmentation of different-scale images was employed as the starting
point of the box-counting method. To eliminate the influence of different starting point
positions on the REV model, several other different positions in the binary image were
also selected as the starting points of the box-counting method, and the 3D image was the
center position of the six faces of the box, as shown in Figure 2.
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Subsequently, a cube box with an initial side length of 20 pixels was placed at nine
different starting points (eight vertices and one center point) determined in the binary
image (Figure 3). Upon calculating the ratio of the number of pore point pixels to the total
number of pixels in the box at nine different positions, the local porosity values at different
positions under the specific box size were obtained. Subsequently, the side length of the
box gradually increased by 20 pixels.
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Finally, the relationship between the porosity of binary images with different sizes
and the size of the box was obtained, and the specific change trend is shown in Figure 4.
Furthermore, when the box size was small, the porosity values at different positions
fluctuated significantly, owing to the uneven distribution of the pores inside the smaller-
sized boxes at different positions. Additionally, with the gradual increase in the size of the
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box, the porosity value fluctuated at different positions, gradually tending to a fixed value,
indicating that the selected box size was the size of the characterization cell.
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3.2. Porosity

In the coal pore space structure, there were connected and isolated pores [31]. To
study the connectivity characteristics of the pore space structure of the coal samples in the
Avizo software, the axis connectivity function was employed to extract the connected pores
from the 2D slices scanned through micro-CT scanning, and the REV model was calculated
through a nano-CT scan. The spatial structure is shown in Figure 6.
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The matrix and pores were separated through threshold segmentation. The total
porosity of the sample was the volume of the pores divided by the total volume. After
Avizo calculation, under the micro-CT scan, the total porosity of LL was 9.94%, the total
porosity of XJ was 5.01%, and the total porosity of ZZ was 7.93%. Under nano-CT scanning,
the total porosity of LL was 8.87%, the total porosity of XJ was 6.13%, and the total porosity
of ZZ was 7.89%. The total porosity, connected porosity, isolated porosity, and the error
with the mercury intrusion data of each sample are presented in Table 2.

Table 2. Porosity distribution of each sample.

CT Type Sample
Name

Total
Porosity

Connected
Porosity

Pressurized
Mercury Error

Micro-CT
LL 9.94% 8.59% 9.31% 0.63%
XJ 5.01% 4.64% 5.18% 0.17%
ZZ 7.93% 6.10% 7.87% 0.06%

Nano-CT
LL 8.87% 6.65% 9.31% 0.44%
XJ 6.13% 1.71% 5.18% 0.95%
ZZ 7.89% 1.70% 7.87% 0.02%

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” means
high-rank coal sample name.
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Table 2 indicates that, under micro-CT scanning, the total porosity of the medium-rank
coal LL was the highest, and the total porosity of the low-rank coal XJ was the lowest. Under
nano-CT scanning, the total porosity of LL was the highest, and the total porosity of XJ was
the lowest. The 2D sections obtained through scanning the two CT types were calculated
using the Avizo software, and the error was smaller compared with the total porosity of the
mercury intrusion experimental data, indicating that the REV model obtained under nano-
CT conditions was relatively accurate. Upon comparing the connected porosity with the
total porosity, it was observed that the connected porosity was lower than the total porosity
under the micro-CT scan. Under nano-CT scanning, the connected porosity was lower than
the total porosity because the total porosity contained isolated pores, and the connected
porosity under nano-CT scanning was relatively lower compared with micro-CT scanning.

The distribution of the surface porosity reflected the macro situation of the pores to
a certain extent. Through the Avizo software, the 1000-layer 2D slice diagram of each
micro–nano-CT was statistically analyzed by the porosity of each layer, and the surface
porosity trend diagram of the xy direction slice of each sample was calculated. The results
are shown in Figure 7.
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In Figure 6, it was observed that, under the micro-CT scan, the layer-by-layer pore
rate of each sample exhibited a ‘U’ trend, and the porosity before and after 1000 2D slices
was quite different; under nano-CT scanning, the layer-by-layer face rate of each sample
exhibited a downward trend, and the layer-by-layer face rate of the high-order coal ZZ was
relatively stable. Furthermore, compared with the layer-by-layer porosity under micro-CT
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and the layer-by-layer porosity under nano-CT, the former fluctuated greatly, indicating
that the micron-level pores of each sample were more uneven than the nano-level pores.
The larger the interval of the surface porosity distribution, the worse the uniformity of the
pore distribution and thus the stronger the heterogeneity of each sample [32,33].

3.3. Pore Size Distribution

In Avizo, the label analysis command was employed for the unit body after threshold
segmentation, and then the data were counted, such as volume, area, equivalent diameter,
etc., and checked in the command. The Avizo software had a built-in equivalent diameter
formula, which directly calculated the required data, as shown in the micro–nano pore
equivalent diameter parameter table of each sample in Table 3 and the pore equivalent
diameter distribution histogram of each sample in Figure 8.

Table 3. Pore equivalent diameter parameter table.

CT Type Sample Name Equivalent Pore Diameter (µm/nm)
Max Avg Min

Micro-CT
LL 22,444 117 51
XJ 18,278 106 51
ZZ 20,028 116 51

Nano-CT
LL 10,0741 761 248
XJ 63,889 1656 248
ZZ 63,861 454 248

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” means
high-rank coal sample name.
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From the statistics of the pore equivalent diameter in Table 3, it was observed that
the pore equivalent diameter of each sample under the micro-CT scan was larger than the
pore equivalent diameter under the nano-CT scan, whether it was the average value or
the maximum and minimum values. Under micro-CT scanning, the average equivalent
diameter of LL in the medium-rank coal was 117 µm, which was the largest average
equivalent diameter of the pores in the three samples. Under nano-CT scanning, the
maximum equivalent diameter of the medium-rank coal LL was as high as 100,741 nm,
which was larger than the maximum equivalent diameter of the low-rank coal XJ and high-
rank coal ZZ. However, the average equivalent diameter was the largest for the low-rank
coal XJ, 1656 nm. The minimum equivalent diameter of the micro–nano pores in each
sample was the same, which was limited by the resolution of the CT scanning.

The pore equivalent pore size distribution in Table 3 and the equivalent pore distribu-
tion histogram of each sample in Figure 7 were analyzed. Thus, under the micro-CT scan,
the pores with an equivalent diameter greater than 300 µm accounted for a small proportion
in each coal sample, and the pores with an equivalent diameter of 50–200 µm accounted for
a large proportion in each coal sample. However, the average equivalent diameter of each
sample was around 110 µm, and the maximum and minimum equivalent diameters were
quite different, indicating that the homogeneity of the pores was general. Under nano-CT
scanning, each sample was distributed within 200–2000 nm, and the equivalent diameter of
the low-rank coal XJ was evenly distributed in each size, attributable to the nano-equivalent
diameter of the sample XJ, which was the largest among the three samples.

3.4. Fractal Dimension

Pore fractal dimension, a parameter used to measure the physical characteristics of
pores, was employed to measure the spatial distribution of the pores, representing the pore
system complexity. Generally, the greater the fractal dimension of the pore, the higher the
complexity of the pore system, and, the more complex the spatial distribution of the pores,
the higher the degree of fracture development. Thus, the rougher the pores, the greater the
lack of uniformity [34].

Given the Avizo software, the fractal dimension command was based on the above
formula for pores’ fractal dimension statistics. The command was employed after the 3D
reconstruction and threshold segmentation of the imported 2D slices. In this study, the pore
model of the characterization unit after the threshold segmentation of each sample was
obtained in the above process. The fractal dimension command was employed to calculate
the fractal dimension of the pore body and surface of each xy slice. The statistical results
are presented in Table 4 and Figure 9.

Table 4. Statistics of fractal dimensions for each characterization unit sample.

CT Type Sample
Name

Fractal
Dimension Dv

Surface Fractal Dimension D
Dmin Davg Dmax

Micro-CT
LL 2.57 1.14 1.47 1.74
XJ 2.36 0.94 1.17 1.79
ZZ 2.49 1.23 1.42 1.77

Nano-CT
LL 2.51 1.38 1.43 1.50
XJ 2.30 0.87 1.08 1.41
ZZ 2.33 1.10 1.28 1.39

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” means
high-rank coal sample name; ”Dv” means average value of surface fractal dimension.
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In Table 4, it was observed that the volume fractal dimension of each sample under
micro–nano-CT scanning was around 2.5, and the uniformity was poor. Among these,
under the micro-CT scanning, the fractal dimension of XJ was the smallest, the fractal
dimension of LL was the largest, and the volume fractal dimension of the sample scanned
under nano-CT remained constant. However, the homogeneity of XJ and ZZ was relatively
superior compared with LL.

Given Table 4 and Figure 8, the fractal dimension of each sample surface was analyzed.
It was observed that the surface fractal dimension of each sample exhibited characteristics of
oscillation and fluctuation. Among these, under micro-CT scanning, ZZ displayed the least
fluctuation, ranging between 1.14 and 1.74, whereas XJ exhibited the largest fluctuation,
ranging between 0.94 and 1.79. Conversely, under nano-CT scanning, LL exhibited the least
fluctuation, ranging between 1.38 and 1.50, while XJ exhibited the largest, ranging between
0.87 and 1.41. Given the average surface fractal dimension under micro-CT scanning, LL
exhibited the largest at 1.47, while XJ exhibited the smallest at 1.17. Similarly, under nano-
CT scanning, LL again exhibited the largest surface average fractal dimension, reaching
1.43, with XJ recording the smallest at 1.08. This analysis indicated that XJ exhibited the
smallest fractal dimension with the best uniformity, while LL exhibited the largest fractal
dimension, indicating rougher pores and poorer uniformity.
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3.5. Pore Network Stick Model

The PNM stick model refers to simplified pore and throat structures with parameter-
ized geometry and connectivity. It is extracted from a binarized 3D core pore model to
accurately reflect the pore structure and its connectivity [35]. In this study, the maximum
ball method was employed to extract the PNM from the 3D pore structure of the core
sample. This method involves filling the pore space with spheres of different sizes. Upon
identifying the local maximum ball within this spere set, the pore and throat structures
within the pore network were established, with the smallest ball between the two largest
balls forming the “pore-throat-pore” relationship [36–39]. The quantitative characterization
of reservoir space was achieved through the extraction of pore throat parameters such as
pore volume, pore area, pore equivalent radius, throat area, throat equivalent radius, and
throat length [40]. The visualization results of the pore throat analysis of the coal samples
using the Avizo software are shown in Figure 10.
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Figure 10. PNM structure of coal samples. (a) PNM structure of micro-CT sample; (b) PNM structure
of nano-CT sample. The blue part of the figure represents the pore space. The pores in the figure
are equivalent to spheres. The color from green to red represents that the pores are getting larger
and larger.

The figure illustrates that the pores in the middle-rank coal LL were the most devel-
oped, followed by the high-rank coal ZZ, with the low-rank coal XJ exhibiting the least
number of pores. This indicates that the micro–nano pores were more developed in the
middle-rank and high-rank coals, while the micro-scale pores in the low-rank coal and
nano-scale pores exceeding 200 nm were relatively weak. The ball–stick model diagram
indicates relatively poor pore connectivity in coal samples XJ and ZZ, while the topo-
logical relationship of the pores in coal sample LL was complex, with more connected
pores. Table 5 presents the pore characteristic parameters of the three coal samples. A
notable difference in the number of connected pores between the different coal samples
was observed.
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Table 5. Pore parameter table.

CT
Type Samples Total

Pores

Equivalent Radius of Pore
(µm/nm) Coordination Number Surface Area (µm2/nm2)

Max Avg Min Max Avg Min Max Avg Min

Micro-CT

LL 193,056 1062 166 25 79 5.67 0 2.52 × 1010 6.36 × 108 5.05 × 106

XJ 59,998 1272 182 25 75 6.58 0 4.19 × 1010 8.20 × 108 5.05 × 106

ZZ 158,137 921 163 25 78 5.36 0 1.72 × 1010 6.19 × 108 5.05 × 106

Nano-CT

LL 73,724 5223 993 124 49 4.76 0 5.83 × 108 2.22 × 107 1.20 × 105

XJ 4450 8058 1592 197 38 3.53 0 1.49 × 109 5.23 × 107 4.05 × 105

ZZ 23,047 3278 982 124 21 3.98 0 1.29 × 109 4.07 × 107 1.20 × 105

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” means
high-rank coal sample name; “Coordination Number” means the number of throats connected to each channel.

In Table 5, under micro-CT scanning, LL exhibited the largest total number of pores
(193,056), while XJ exhibited the least (59,998), which contributed to the higher porosity
of LL compared with XJ. Similar trends were observed under nano-CT scanning. The
coordination number reflected the connectivity of the pore network, with higher values
indicating superior connectivity and permeability. Under micro-CT scanning, the overall
connectivity was XJ > LL > ZZ, while, under nano-CT scanning, it was LL > ZZ > XJ, with LL
exhibiting excellent overall connectivity. The average surface area of the micro–nano pores
varied significantly among the three coal samples, contributing to differences in the pore
structures. Among these, the average surface area of the micro–nano pores was large in the
low-rank coal XJ, indicating larger pore sizes and exceptional connectivity compared with
the high-rank coal ZZ. However, the high moisture content in the low-rank coal XJ hindered
the coalbed methane adsorption channels, resulting in weaker adsorption capacity.

It was observed that the pore equivalent radius distribution of each sample was
unimodal. Specifically, under micro-CT scanning, the pore equivalent radius was predomi-
nantly concentrated between 100 µm and 400 µm, while, under nano-CT scanning, it was
primarily concentrated between 500 nm and 2500 nm, indicating excellent homogeneity
within each sample. Notably, the micro-CT scan revealed a significantly higher number
of medium-rank coal LL pore equivalents in the range of 100–200 µm compared with
the low-rank coal XJ and high-rank coal ZZ. Thus, the nano-CT scans yielded consistent
results across all the samples. A comparison between Table 5 and Figure 11 reveals that
the medium-rank coal exhibited more developed large–medium pores compared with
the low- and high-rank coal, while the low- and high-rank coal exhibited relatively more
micro-pores. The variance between the average pore size and the maximum and minimum
pore sizes, as well as the pore equivalent radius distribution histogram, indicated that the
pore sizes span a wide range, resulting in an uneven distribution.

Figure 12 depicts the histogram of the coordination number distribution of each
sample. The statistical analysis revealed that, under micro-CT scanning, the coordina-
tion number was concentrated between a 0 and 25 distribution, whereas, under nano-CT
scanning, the coordination number was concentrated between 0 and 15. The maximum
coordination number, a critical parameter describing the local pore connectivity, was 79,
with an average coordination number of 5.67. Under nano-CT, the maximum value was
49, and the average coordination number was 4.76. The uneven distribution of the coor-
dination numbers indicated that the pore throat distribution was more complex. Despite
the complex distribution, particularly with coordination numbers ranging from 0 to 20, a
significant portion of the samples exhibited excellent connectivity, making them suitable
for seepage simulation.
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Table 6 presents significant differences in the number of throats among the three coal
samples. Particularly, the total number of LL throats of the medium-rank coal was notably
higher under a micro-CT scan, which was 547,493. The total number of throats of the
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low-rank coal XJ was the least, which was 197,303. The total number of LL throats of
the medium-rank coal under nano-CT scan was the largest, which was 175,483. The total
number of throats of the low-rank coal XJ was the least, which was 7846. This indicated
that the pore connectivity between the different samples varied significantly. In comparison
with the throat equivalent radius and throat length data of the micro–nano-CT scans, the
throat parameters under micro-CT exceeded those under nano-CT due to a higher total
number of throat counts, resulting in a larger throat surface area.

Table 6. Throat parameter data.

CT
Type

Sample
Name

Total
Throat

Throat Equivalent
Radius (µm/nm) Throat Length (µm/nm) Surface Area (µm2/nm2)

Max Avg Min Max Avg Min Max Avg Min

Micro-CT
LL 547,493 1110 80 10 3045 478 38 3.86 × 109 2.91 × 107 3.08 × 105

XJ 197,303 998 99 10 4317 548 50 3.12 × 109 4.78 × 107 3.08 × 105

ZZ 423,852 953 76 8 914 469 38 2.85 × 109 2.44 × 107 2.24 × 105

Nano-CT

LL 175,483 4569 535 41 1.27 × 104 2887 153 6.55 × 107 1.45 × 106 5331
XJ 7846 6255 898 48 1.64 × 104 4516 591 1.22 × 108 3.81 × 106 7353
ZZ 45,909 1865 407 48 1.60 × 104 2891 263 1.09 × 107 6.90 × 105 7352

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” means
high-rank coal sample name; “Throat equivalent” means a channel or pipe, usually used to transport fluid or gas.

Figure 13 depicts the throat equivalent radius distribution histogram of each sample.
Notably, the throat equivalent radius distribution under a micro-CT scan exhibited a single
peak, primarily concentrated within 200 µm, while, under a nano-CT scan, it was unimodal
and concentrated within 2000 nm, indicating that the homogeneity of each sample was
excellent. Upon comparing Table 6 and Figure 12, it was observed that the medium-rank
coal LL exhibited the largest number of throats under micro–nano conditions, followed by
the high-rank coal ZZ, with the low-rank coal XJ exhibiting the fewest throats. However, XJ
exhibited a more compact distribution regarding the throat equivalent radius compared
with ZZ, particularly with a significantly larger maximum throat equivalent radius under
the nano-CT scan. This indicated that the connectivity of the low-rank coal exceeded that
of the medium- and high-rank coal.
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LL 175,483 4569 535 41 1.27 × 104 2887 153 6.55 × 107 1.45 × 106 5331 
XJ 7846 6255 898 48 1.64 × 104 4516 591 1.22 × 108 3.81 × 106 7353 
ZZ 45,909 1865 407 48 1.60 × 104 2891 263 1.09 × 107 6.90 × 105 7352 

Note: “LL” means medium-rank coal sample name; “XJ” means low-rank coal sample name; “ZZ” 
means high-rank coal sample name; “Throat equivalent” means a channel or pipe, usually used to 
transport fluid or gas. 

Figure 13 depicts the throat equivalent radius distribution histogram of each sample. 
Notably, the throat equivalent radius distribution under a micro-CT scan exhibited a sin-
gle peak, primarily concentrated within 200 µm, while, under a nano-CT scan, it was uni-
modal and concentrated within 2000 nm, indicating that the homogeneity of each sample 
was excellent. Upon comparing Table 6 and Figure 12, it was observed that the medium-
rank coal LL exhibited the largest number of throats under micro–nano conditions, fol-
lowed by the high-rank coal ZZ, with the low-rank coal XJ exhibiting the fewest throats. 
However, XJ exhibited a more compact distribution regarding the throat equivalent radius 
compared with ZZ, particularly with a significantly larger maximum throat equivalent 
radius under the nano-CT scan. This indicated that the connectivity of the low-rank coal 
exceeded that of the medium- and high-rank coal. 
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Figure 13. Distribution histogram of equivalent throat radius of each sample. (a) Histogram of throat 
equivalent radius distribution of micro-CT samples; (b) histogram of throat equivalent radius dis-
tribution of nano-CT samples. 

4. Discussion 
The study employed micro–nano-CT scanning to analyze the pore space structures 

of low-, medium-, and high-rank coal samples. The scanning data volume was processed 
using Avizo 3D visualization software 2020.1, facilitating the establishment of the 3D re-
construction of the coal samples. Specifically, the micro-CT coal sample was determined 
at 1000 voxels, while the nano-CT coal sample was at 1000 voxels per volume unit (REV). 
The changes in porosity, fractal dimension, pore connectivity, and other parameters in the 
micro–nano scale of the coal samples were analyzed in detail. The specific conclusions are 
as follows: 
1. The comparison with the mercury injection experimental data indicated a small error 

in the 2D slices obtained by the CT scans, indicating the accuracy of the REV model 
obtained under the conditions of the nano-CT scanning. It can be seen from the pore 
space morphology that the middle- and high-rank coal samples are located in the 
central and southern part of Qinshui Basin and the eastern margin of Ordos Basin, 
which belong to the high yield and enrichment area of coalbed methane in China. 
Generally, they have favorable geological conditions, such as the enrichment of coal-
bed methane resources and high permeability, so the pores are more developed, 
while the low-rank coal samples are located in the southern margin of Junggar Basin. 
In some areas, the coal seams are rich in CO2, and the geological conditions are com-
plex, so the pores are not developed. The interval of the surface porosity distribution 
was large, indicating strong heterogeneity with each sample. 

2. The micro-CT scanning revealed pores with an equivalent diameter of 50–200 µm, 
accounting for a large proportion in each coal sample. However, the average equiva-
lent diameter of each sample was ~110 µm, and the maximum and minimum equiv-
alent diameters were quite different, indicating general pore homogeneity. Whereas, 
under nano-CT scanning, each sample was distributed within the range of 200–2000 
nm, and the equivalent diameter XJ was evenly distributed in each size. 

3. The volume fractal dimension of each sample, observed under micro–nano-CT scan-
ning, was ~2.5, with the surface fractal dimension exhibiting characteristics of fluctu-
ation and general uniformity. The analysis of the fractal dimensions indicated that XJ 
exhibited the highest uniformity, while LL exhibited the roughest pore structure and 
lowest uniformity. 

4. The pore equivalent radius and throat equivalent radius of each sample exhibited 
unimodal distributions. Despite the topological structure of each sample being rela-
tively complex, the coordination number proportion of 0–20 was the largest, indicat-
ing excellent connectivity and suitability for seepage simulation. The large–medium 
pores of the medium-rank coal were more developed compared with the low- and 
high-rank coal. Thus, the low- and high-rank coal exhibited relatively more micro-

Figure 13. Distribution histogram of equivalent throat radius of each sample. (a) Histogram of
throat equivalent radius distribution of micro-CT samples; (b) histogram of throat equivalent radius
distribution of nano-CT samples.

4. Discussion

The study employed micro–nano-CT scanning to analyze the pore space structures
of low-, medium-, and high-rank coal samples. The scanning data volume was processed
using Avizo 3D visualization software 2020.1, facilitating the establishment of the 3D
reconstruction of the coal samples. Specifically, the micro-CT coal sample was determined
at 1000 voxels, while the nano-CT coal sample was at 1000 voxels per volume unit (REV).
The changes in porosity, fractal dimension, pore connectivity, and other parameters in the
micro–nano scale of the coal samples were analyzed in detail. The specific conclusions are
as follows:

1. The comparison with the mercury injection experimental data indicated a small error
in the 2D slices obtained by the CT scans, indicating the accuracy of the REV model
obtained under the conditions of the nano-CT scanning. It can be seen from the pore
space morphology that the middle- and high-rank coal samples are located in the cen-
tral and southern part of Qinshui Basin and the eastern margin of Ordos Basin, which
belong to the high yield and enrichment area of coalbed methane in China. Generally,
they have favorable geological conditions, such as the enrichment of coalbed methane
resources and high permeability, so the pores are more developed, while the low-rank
coal samples are located in the southern margin of Junggar Basin. In some areas, the
coal seams are rich in CO2, and the geological conditions are complex, so the pores are
not developed. The interval of the surface porosity distribution was large, indicating
strong heterogeneity with each sample.

2. The micro-CT scanning revealed pores with an equivalent diameter of 50–200 µm, ac-
counting for a large proportion in each coal sample. However, the average equivalent
diameter of each sample was ~110 µm, and the maximum and minimum equivalent
diameters were quite different, indicating general pore homogeneity. Whereas, under
nano-CT scanning, each sample was distributed within the range of 200–2000 nm, and
the equivalent diameter XJ was evenly distributed in each size.

3. The volume fractal dimension of each sample, observed under micro–nano-CT scan-
ning, was ~2.5, with the surface fractal dimension exhibiting characteristics of fluctua-
tion and general uniformity. The analysis of the fractal dimensions indicated that XJ
exhibited the highest uniformity, while LL exhibited the roughest pore structure and
lowest uniformity.

4. The pore equivalent radius and throat equivalent radius of each sample exhibited uni-
modal distributions. Despite the topological structure of each sample being relatively
complex, the coordination number proportion of 0–20 was the largest, indicating ex-
cellent connectivity and suitability for seepage simulation. The large–medium pores
of the medium-rank coal were more developed compared with the low- and high-rank
coal. Thus, the low- and high-rank coal exhibited relatively more micro-pores. The
analysis of the pore size distributions indicated a wide span and uneven distribution.
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5. This study covers the coal samples of three low–medium–high coal ranks, but the
different geographical locations will lead to some pore structure differences in coal
samples of the same coal rank. Therefore, the pore structure characteristics of each
coal rank in this study cannot represent the coal samples in all places. The follow-up
work can select coal samples from different places for the same coal rank for the
quantitative analysis of the pore structure, which is convenient for the optimization of
CBM surface development blocks.
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