
 

 
 

 

 
Appl. Sci. 2024, 14, 5568. https://doi.org/10.3390/app14135568 www.mdpi.com/journal/applsci 

Article 

Image Recognition and Classification of Farmland Pests Based 

on Improved Yolox-tiny Algorithm 

Yuxue Wang, Hao Dong *, Songyu Bai, Yang Yu and Qingwei Duan 

College of Mathematics and Statistics, Northeast Petroleum University, Daqing 163318, China;  

wangyx0629@nepu.edu.cn (Y.W.); bsy583142657@163.com (S.B.); 17857687363@163.com (Y.Y.); 

qwduan2022@163.com (Q.D.) 

* Correspondence: dh1475823814@163.com 

Abstract: In order to rapidly detect pest types in farmland and mitigate their adverse effects on 

agricultural production, we proposed an improved Yolox-tiny-based target detection method for 

farmland pests. This method enhances the detection accuracy of farmland pests by limiting 

downsampling and incorporating the Convolution Block Attention Module (CBAM). In the experi-

ments, images of pests common to seven types of farmland and particularly harmful to crops were 

processed through the original Yolox-tiny model after preprocessing and partial target expansion 

for comparative training and testing. The results indicate that the improved Yolox-tiny model in-

creased the average precision by 7.18%, from 63.55% to 70.73%, demonstrating enhanced precision 

in detecting farmland pest targets compared to the original model. 

Keywords: target detection; farmland pests; convolution block attention mechanism; convolutional 

neural network 

 

1. Introduction 

China, a major agricultural nation, is experiencing an intensifying impact of pests on 

crops such as early rice, rice, and corn. Each year, diseases and pests result in a loss of 14 

million tons of grain, corresponding to direct economic losses of at least 2 billion RMB. 

Consequently, researching pest monitoring techniques in farmlands is crucial to ensuring 

agricultural production [1–3]. 

Existing agricultural pest monitoring technologies can be categorized into manual 

and intelligent methods. Manual pest monitoring, known for its labor-intensive and time-

consuming nature, limits the timeliness and effectiveness of pest control management. In 

recent years, significant advancements have been made in intelligent pest monitoring 

technologies. Researchers such as Li et al. and Liu et al. significantly improved identifica-

tion and classification accuracy, marking a new era in precision agriculture. As a result, 

intelligent pest monitoring technologies have become increasingly prioritized in recent 

agricultural research. These advancements highlight the shift towards more intelligent 

pest monitoring methods [4–7]. 

Over the years, deep learning algorithms have been developed and implemented, 

achieving notable success in the recognition and detection of agricultural pests. For exam-

ple, Fuentes et al. established an R-FCN with a ResNet-50 deep learning model by com-

paring combinations of seven feature extractors with a meta-framework. This model 

reached a mean Average Precision (mAP) of 0.8598 in detecting nine typical types of to-

mato pests [8]. Deng et al. introduced a multi-pest detection technique employing feder-

ated learning with an improved Faster R-CNN that uses ResNet-101 instead of VGG-16 

for the base convolutional layer. This approach notably enhanced the detection speed for 

small targets, achieving an mAP of 90.27% in multi-pest detection [9]. Arun and 
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Umamaheswari explored various deep-learning models for classifying crop pests. Among 

these, the Faster R-CNN with a ResNet101 feature extractor emerged as the most effective, 

achieving an mAP of 74.77% [10]. Zhang et al. enhanced Faster R-CNN by substituting 

VGG16 with ResNet50 for feature extraction and incorporating soft non-maximum sup-

pression to improve recognition of overlapping objects. This modification boosted the de-

tection accuracy for small objects to 83.26%, underscoring the effectiveness of deep learn-

ing in agricultural object detection [11]. Chithambarathanu and Jeyakumar provided a 

comprehensive survey on various deep learning and machine learning methods used for 

crop pest detection, evaluating their advantages and limitations [12]. Jiao et al. proposed 

a global context-aware-based deformable residual network module for precise pest recog-

nition and detection, demonstrating improved recognition accuracy through enhanced 

feature extraction [13]. Additionally, Di and Li developed a method for detecting apple 

leaf diseases based on an improved convolutional neural network, which significantly in-

creased detection accuracy [14]. However, these models exhibit low detection accuracy for 

small targets. Addressing this limitation and enhancing detection accuracy for small tar-

get pests represent urgent issues and are the primary focus of this paper [15]. 

To provide a clear comparison, Table 1 summarizes the algorithms, key features, and 

results highlighted in the existing literature. 

Table 1. Summary of the Existing Literature. 

Author Algorithm Features Results 

Fuentes et al. [8] R-FCN + ResNet-50 

Compared combina-

tions of seven feature 

extractors with a 

meta-framework 

Detected nine typical 

types of tomato pests, 

mAP = 0.8598 

Deng et al. [9] 
Improved Faster R-CNN 

+ ResNet-101 

Employed federated 

learning, enhanced 

detection speed for 

small targets 

Multi-pest detection, 

mAP = 90.27% 

Arun and Umama-

heswari [10] 

Faster R-CNN + Res-

Net101 

Explored various 

deep-learning models 

for classifying crop 

pests 

mAP = 74.77% 

Zhang et al. [11] 
Improved Faster R-CNN 

+ ResNet50 

Substituted VGG16 

with ResNet50, incor-

porated soft non-

maximum suppres-

sion 

Improved detection 

accuracy for small ob-

jects, mAP = 83.26% 

Jiao et al. [13] 
Deformable Residual 

Network Module 

Global context-aware, 

enhanced feature ex-

traction 

Improved pest recog-

nition accuracy 

Di and Li [14] 
Improved Convolu-

tional Neural Network 

Detected apple leaf 

diseases 

Significantly in-

creased detection ac-

curacy 

Object detection has emerged as a crucial task across various domains of computer 

vision. Introduced in 2015, the Yolo algorithm model has seen widespread application in 

this field [16–20]. The Yolo algorithm has evolved into a series, comprising Yolov1, 

Yolov2, Yolov3, Yolov4, Yolov5, and Yolox, among others [21–26]. Beginning with the in-

troduction of anchor-based detection in Yolov1, Yolox employs anchor-free detection by 

directly extracting and regressing features from images or videos. These advancements 

have significantly improved not only detection accuracy but also the efficiency of object 
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detection in images and videos. Furthermore, this technological progress has unlocked 

new potential for enhancing the detection accuracy of small-sized objects. 

The main contributions of this paper are as follows: 

(a) Improved detection method: An improved Yolox-tiny-based target detection method 

is proposed, which enhances the detection accuracy for farmland pests by limiting 

downsampling and incorporating the Convolution Block Attention Module (CBAM). 

(b) Experimental validation: Extensive experiments are conducted using images of pests 

common to seven types of farmland, demonstrating that the improved model in-

creases the average precision by 7.18% compared to the original Yolox-tiny model. 

(c) Optimization techniques: The paper introduces novel optimization techniques, in-

cluding adaptive image equalization, image denoising, and mosaic image augmen-

tation, to improve the clarity and detail of pest images, further enhancing the model’s 

accuracy. 

(d) Comprehensive dataset: A specialized pest image dataset is curated and prepro-

cessed, providing a robust foundation for training and validating the improved de-

tection model. 

(e) Practical applications: The research highlights the practical implications of the im-

proved detection model for real-time pest monitoring and management in agricul-

tural fields, contributing to the mitigation of pest-related losses in agriculture. 

The organization of this paper is as follows: 

(a) Section 2 outlines the model structure of the Yolox-tiny object detection algorithm; 

(b) Section 3 details enhancements to the Yolox-tiny model to address challenges in de-

tecting small objects; 

(c) Section 4 describes the preprocessing of image data within the dataset to enhance 

detection accuracy and details the process of feeding this preprocessed data into the 

model for training. Additionally, it covers comparative experiments conducted using 

the same dataset to verify the accuracy of the enhanced model; 

(d) Section 5 presents the conclusions derived from the experimental comparisons. 

2. Related Work 

2.1. Yolox-tiny Object Detection Algorithm 

Developed by Megvii Technology in 2021, the Yolox-tiny model is a lightweight ob-

ject detection model that represents an advancement over previous Yolox series models. 

Fundamentally, the Yolox-tiny is based on a specialized deep-learning algorithm that em-

ploys convolutional and residual networks. Its core principle entails utilizing feature 

maps from shallow network convolutions as both inputs and outputs, subsequently feed-

ing them into deeper layers for enhanced feature extraction. Additionally, the model fuses 

input feature maps with new ones generated by deeper network convolutions, thereby 

enhancing the image features. These enhanced feature maps are relayed to classifiers and 

regressors to ascertain the location and type of objects detected. 

2.2. Yolox-tiny Algorithm Model Structure 

As illustrated in Figure 1, the Yolox-tiny network structure primarily comprises three 

components: the backbone feature extraction network, the enhanced feature extraction 

network, and the classifier and regressor. 
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Figure 1. Yolox-tiny Network Structure. 

(a) Backbone feature extraction network: CSPDarknet; 

(b) Enhanced feature extraction network: FPN; 

(c) Classifier and regressor: Yolo Head. 

The CSPDarknet network primarily employs a residual network architecture to ini-

tially extract feature layers of various sizes from the input image. The architecture com-

prises one Focus module, one Conv2D_BN_SiLU module, and four Resblock_body mod-

ules. The input image dimensions are 1600 × 1600 pixels with 3 channels. Following mul-

tiple 1 × 1 and 3 × 3 convolutions, downsampling, and maximum pooling, the network 

produces three differently sized feature layers with varying channel counts: intermediate 

layer feat1 (200 × 200, 256 channels), mid-lower layer feat2 (100 × 100, 512 channels), and 

bottom layer feat3 (50 × 50, 1024 channels). 

The FPN network constructs a feature pyramid with three output layers from the 

CSPDarknet network, enhancing the feature extraction process and thereby improving 

object detection accuracy. The FPN network comprises a Concat module, CspLayer mod-

ule, UpSampling2D module, Conv2D module, and Downsample module. The Concat 

module facilitates effective layer fusion, the UpSampling2D module upsamples feature 

layers, the Conv2D module applies 1 × 1 convolutions to adjust image channel numbers, 

and the Downsample module downsamples feature layers. The FPN network conducts 

multiple operations of upsampling, feature fusion, and downsampling on input feature 

layers feat1, feat2, and feat3, resulting in enhanced feature layers: feat4 (200 × 200, 256 

channels), feat5 (100 × 100, 512 channels), and feat6 (50 × 50, 1024 channels). 

In the process of feature fusion, early features and late features can both be consid-

ered for integration. However, in limited training sets, this integration may lead to degra-

dation, which is particularly severe in early feature fusion. Therefore, this study opted not 

to use early feature fusion of the CSPDarknet network, but rather to fuse the late features 
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feat1, feat2, and feat3. This choice helps to reduce degradation and ensures the effective-

ness of feature extraction [27]. This study employed a direct upsampling fusion method. 

This method is simple and effective but can be further optimized. For instance, using 

graph-based linear or nonlinear regularization α-integration methods can reduce the dis-

creteness between fused features, enhancing their expressive capability [28]. 

In summary, this method of constructing the feature pyramid effectively merges fea-

tures across different layer sizes, thereby enriching the feature information obtained. 

The Yolo Head consists solely of Conv2D_BN_SiLU convolution modules. The out-

puts, which include predictions for classification (Cls), regression (Reg), and objectness 

(Obj), are detailed in Figure 2. 

 

Figure 2. Yolo Head Structure Diagram. 

The Yolo Head is primarily divided into two sections: the left side classifies object 

types, while the right side assesses object presence within the prediction box and deter-

mines the box’s coordinates. The enhanced feature layers—feat4, feat5, and feat6—from 

the FPN network are fed into the Yolo Head, which processes each layer to derive Cls, 

Reg, and Obj outputs. Here, “Cls” represents the object’s class, “Reg” denotes the predic-

tion box’s location, and “Obj” indicates the coordinates of the prediction box. Ultimately, 

these three predictions—box location, coordinates, and class—are integrated to generate 

comprehensive details about the target objects. 

3. Methods 

Pests in agricultural fields exhibit considerable variation in type and size, and iden-

tifying and detecting small-sized targets and pests against complex backgrounds present 

significant technical challenges in agricultural pest management. To address these chal-

lenges, optimizations and enhancements to the Yolox-tiny model have been described, 

aimed at improving detection and recognition capabilities for small target pests and pests 

in complex backgrounds. 

3.1. Analysis of Detection Accuracy of the Original Yolox-tiny Algorithm Model 

The original Yolox-tiny model demonstrates low recognition accuracy in identifying 

and classifying agricultural pest images. Analysis of pest images and the model structure 

reveals the following main reasons for insufficient accuracy: 

(a) Significant size variation exists among different types of pests in agricultural images. 

For example, the Rice Leafroller is notably small, whereas the Turnip Moth is sub-

stantially large; 
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(b) Some images feature overly complex backgrounds with numerous dried leaves and 

weeds, which often match the coloration of the target pests; 

(c) The Yolox-tiny model structure incorporates three downsampling operations, poten-

tially leading to information loss about small-sized target pests and decreasing recog-

nition accuracy; 

(d) The absence of an attention mechanism in the Yolox-tiny model makes it susceptible 

to interference from non-target objects in images, resulting in incorrect identifications. 

To address these issues, this paper proposes enhancements to the Yolox-tiny model, 

including optimizations in image preprocessing and algorithmic structure, enabling more 

accurate identification and classification of agricultural pests. 

3.2. Optimization of the Yolox-Tiny Model 

In the original Yolox-tiny model, the backbone feature extraction network processes 

input images to produce three distinct feature layers: feat1, feat2, and feat3, each sensitive 

to large, medium, and small objects, respectively. However, the diminutive size of some 

pests and the complexity of image backgrounds complicate feature extraction. Moreover, 

multiple downsampling operations may result in the loss of information concerning small 

target objects. To address these challenges, two optimizations have been introduced to the 

Yolox-tiny model: limiting the number of downsampling operations to minimize infor-

mation loss about small target pests and incorporating the convolutional attention module 

CBAM to enhance feature extraction for small targets and reduce the impact of complex 

backgrounds. 

CBAM represents a convolutional attention mechanism designed for feed-forward 

convolutional neural networks. Upon receiving a feature layer, CBAM independently in-

fers attention maps along the channel and spatial dimensions sequentially. These atten-

tion maps are subsequently multiplied with the input feature layer to enable adaptive 

feature refinement. 

Figure 3 illustrates the improved Yolox-tiny network structure. This revised structure 

eliminates one Resblock_body module from the CSPDarknet network and reduces 

downsampling in the backbone feature extraction network, thereby minimizing feature 

information loss for small objects and more effectively preserving features of all detectable 

objects in the image. A CBAM convolutional attention mechanism has been incorporated 

into the remaining Resblock_body modules to allow adaptive feature refinement during 

feature extraction. This mechanism strengthens the network’s ability to focus on pests of 

varying sizes and mitigates the effects of complex backgrounds on object detection. It also 

simplifies feature fusion and enhances the classification and regression processes in the 

FPN and Yolo Head components. The CSPDarknet backbone extracts initial features, the 

CBAM enhances feature refinement, the FPN constructs a feature pyramid, and the Yolo 

Head generates predictions for classification, regression, and objectness. 
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Figure 3. Improved Yolox-tiny Network Structure. 

4. Experiment and Analysis 

4.1. Pest Image Preprocessing 

4.1.1. Adaptive Image Equalization 

Adaptive histogram equalization techniques improve image clarity and contrast by 

segmenting the image into multiple local regions and individually equalizing these seg-

ments. This technique effectively preserves the original image data while enhancing detail 

visibility. This method is particularly effective for enhancing the accuracy of pest detec-

tion locations and the reliability of species identification. 

Figure 4 shows the original image of 00197.jpg. Figure 5 illustrates the image post 

adaptive histogram equalization, where details are significantly enhanced, contrast is 

more pronounced, and detail preservation is notably effective. 

 

Figure 4. Original Image of 00197.jpg. 
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Figure 5. Image After Adaptive Histogram Equalization. 

4.1.2. Image Denoising 

During digitization and transmission, images frequently encounter noise introduced 

by imaging equipment and external environmental factors. To ensure the model’s accu-

racy and stability, noise reduction is a crucial step. This paper utilizes the Non-Local 

Means (NLM) filtering method for image denoising. 

The NLM filter emphasizes the self-similarity of images, leveraging redundant infor-

mation to preserve detail during denoising. In agricultural pest monitoring applications, 

each image may contain one or several types of pests, with some images displaying mul-

tiple pests of the same type, exhibiting high self-similarity. Therefore, the use of NLM 

filtering significantly enhances image quality and analysis accuracy. 

Figure 6 shows the image post-NLM filtering with equalization. Following filtering, 

the pest features and contours become more precise and more distinct, while the overall 

image appears smoother. 

 

Figure 6. Image After NLM Processing. 

4.1.3. Mosaic Image Augmentation 

To enhance the training speed and accuracy of the model, Mosaic image augmenta-

tion is applied after images are input. The following transformations are applied to each 

image in the training set, preserving image categories: 

(a) Random rotations, translations, scaling, cropping, padding, and flipping within spec-

ified limits to display varied visual perspectives of the same target; 

(b) Adding random noise disturbances like salt-and-pepper and Gaussian white noise to 

the image; 

(c) Color transformations involving principal component analysis on the RGB color 

space to derive three principal component vectors, p1, p2, and p3, along with their 

eigenvalues, followed by incremental adjustments to each channel; 

(d) Modifying image attributes including brightness, clarity, contrast, and sharpness. 

Mosaic data augmentation enhances the background information of detected objects 

and compensates for the inability to set larger batch sizes due to hardware limitations, 

effectively increasing the batch size indirectly. 



Appl. Sci. 2024, 14, 5568 9 of 16 
 

Figure 7 shows four images, 00388.jpg, 00418.jpg, 00436.jpg, and 00501.jpg, processed 

with Mosaic data augmentation. The positions of pests are marked by white boxes in the 

images. 

 

Figure 7. Mosaic Image Augmentation Processed Images. 

4.1.4. Image Augmentation 

Given the substantial challenges in identifying and analyzing small-target pests, cou-

pled with the limited availability of related image data, a batch augmentation approach 

will be employed to enrich sample information and increase the count of positive sample 

features during model training. 

To prevent information leakage during training, enhancement processes are applied 

specifically to different types of small-target pests, and augmentation is restricted to the 

training dataset only. Furthermore, to prevent oversaturation of target information in a 

single image, data concerning target pests in the training dataset is augmented to three-

fold the original volume. Figure 8 presents the original image and displays the augmented 

image with the position of the target pests delineated by a red frame. 

  

Figure 8. Image Before Augmentation (Left) and Image After Augmentation (Right). 

4.2. Dataset 

The dataset for this experiment, a specialized pest image collection, was curated from 

data provided by the 10th “Teddy Cup” Data Mining Challenge in 2022, after careful re-

selection and cleansing. The dataset can be accessed online at the 

https://bdrace.tipdm.com/#/competition/1481159137780998144/question. All images are 

in JPEG format with a resolution of 5472 × 3648 pixels. The dataset comprises seven pest 

types: rice stem borer (pest number: 7), white-backed planthopper (pest number: 9), 

brown planthopper (pest number: 10), yellow-legged predatory bug (pest number: 148), 

eight-spotted forester moth (pest number: 156), cricket (pest number: 256), and oleander 

hawk-moth (pest number: 280), with a total of 491 images. Each image features various 

types and quantities of pests, as detailed in Table 2. 
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Table 2. Pest Types and Quantities in Initial Data. 

Pest Name Pest Number Quantity 

Rice Stem Borer 7 90 

White-backed Planthopper 9 120 

Brown Planthopper 10 150 

Yellow-legged Predatory Bug 148 59 

Eight-spotted Forester Moth 156 247 

Cricket 256 87 

Oleander Hawk-moth 280 40 

After the image preprocessing steps detailed in Sections 4.1.1–4.1.4, 340 representa-

tive images were selected for model development, divided into 238 images for the training 

set and 68 for the testing set. To expand the dataset and enhance training efficiency, each 

image was segmented into four smaller images prior to inclusion in the training or testing 

process. Consequently, the training set effectively comprises 952 smaller images. During 

the testing phase, each test set image was similarly segmented into four smaller images 

for analysis. After testing, these smaller images were reassembled into a single image, 

matching the original’s resolution, to evaluate the results. All pest annotation tasks were 

conducted using the LabelImg tool, with pest identification numbers corresponding to 

those listed, and specific pest quantities (based on counts from uncropped images) de-

tailed in Table 3. 

Table 3. Data on Pest Counts After Image Preprocessing. 

Pest Name Original Set Augmented Set Training Set Testing Set Validation Set 

Rice Stem Borer 53 159 111 32 16 

White-backed Planthopper 57 171 120 34 17 

Brown Planthopper 51 153 107 31 15 

Yellow-legged Predatory Bug 55 165 116 33 17 

Eight-spotted Forester Moth 58 174 122 35 17 

Cricket 50 150 105 30 15 

Oleander Hawk-moth 40 120 84 24 12 

4.3. Experimental Procedure 

The experimental setup included the following: Windows 10 operating system, Py-

thon 3.6, TensorFlow-GPU 1.13.2, and Keras 2.1.5. 

During the experiment, the epoch count was set at 200 and the batch size at 2. To 

evaluate model performance, this study conducted comparative experiments between 

two versions of the Yolox-tiny algorithm: 

(a) The original Yolox-tiny algorithm as the first model variant; 

(b) The enhanced Yolox-tiny as the second model variant. 

4.4. Experimental Results 

This experiment employed mean Average Precision (mAP) and Average Precision 

(AP) as evaluation metrics for pest target detection. 

mAP and AP calculations are based on the Precision and Recall of the model’s train-

ing samples, with the corresponding formulas presented as follows: 

TP
Precison =

TP + FP
 (1) 
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TP
Recall =

TP + FN
 (2) 

In the formulas, TP  denotes true positives, correctly identified; FP  represents 

false positives, incorrectly identified as negative; and FN  indicates false negatives, in-

correctly identified as positive. 

Average Precision (AP) is calculated from the area under the Precision-Recall (P-R) 

curve, as follows: 


1

0
AP = PrecisiondRecall  (3) 

Mean Average Precision (mAP) is calculated as the average of the Average Precision 

(AP) across all categories, expressed as follows: 


n

i
i=1

1
mAP = AP

n
 (4) 

In the formula, n  represents the number of sample categories, and i  denotes the 

current index. 

The complete dataset was employed to train two models, generating both training 

and testing loss curves, as illustrated in Figure 9. 

 

Figure 9. Model Loss Function Curves. 

To verify the reliability of the experimental results, this study assessed the recogni-

tion and classification performance of the YoloV4-tiny model from the same series on this 

dataset. The evaluation of the Yolox-tiny, modified Yolox-tiny, and YoloV4-tiny models 

involved calculating the AP for each pest type and the overall mAP. For a comparison of 

the APs, refer to Figure 10. 
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Figure 10. Comparative Results of Pest Detection by Category. 

According to data from Figure 11 and Table 4, the AP values for six types of pests in 

the enhanced Yolox-tiny model are at least equivalent to, if not higher than, those in the 

original Yolox-tiny model, except for the rice leafroller (pest ID: 7), which shows a slightly 

lower AP value. Furthermore, the AP values of the enhanced Yolox-tiny model exceed 

those of the YoloV4-tiny model. These findings demonstrate that the enhancements sig-

nificantly improved the pest-detection capabilities of the model. For detailed mAP com-

parison results, see Table 4. 

Table 4. Comparison of Training Results between Original and Improved Models. 

Pest ID Yolox-Tiny YoloV4-Tiny Improved Yolox-Tiny 
 AP AP AP 

7 86% 71% 80% 

9 66% 59% 69% 

10 46% 34% 58% 

148 74% 66% 74% 

156 59% 48% 74% 

256 48% 37% 52% 

280 46% 61% 88% 

mAP 63.55% 54% 70.73% 

According to Table 4, the mAP for the Yolox-tiny model is 63.55%, for the YoloV4-

tiny model is 54%, and for the enhanced Yolox-tiny model is 70.73%. The Precision-Recall 

(P-R) curve of each type of pest is shown in Figure 11. 
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Figure 11. Precision-Recall (P-R) curve of each type of pest. 
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The P-R curve indicates that it is challenging to balance Precision and Recall for pests 

numbered 10 and 256. There is a significant negative correlation between Precision and 

Recall for pest number 10, while for pest number 256, there is a sharp drop in Precision 

after Recall exceeds 0.5, suggesting that the model still requires improvements in detect-

ing these two types of pests. However, the detection of the other five types of pests shows 

better results in the P-R graph, with the Area Under the Curve (AUC) estimates all ex-

ceeding 0.7. 

Compared to the Yolox-tiny and YoloV4-tiny models, the enhanced Yolox-tiny model 

achieved increases in average precision of 7.18% and 16.73%, respectively, underscoring 

its superiority over the original Yolox-tiny and YoloV4-tiny models. 

5. Conclusions 

To maintain normal agricultural production, mitigate adverse pest impacts, and re-

duce losses, an improved Yolox-tiny-based algorithm for pest detection and identification 

in fields has been proposed. The algorithm targets seven major pest types that pose sig-

nificant threats across widespread agricultural areas. Compared to the original Yolox-tiny 

model, this enhanced algorithm improves target pest recognition and detection capabili-

ties and effectively boosts training efficiency. Experimental results demonstrate that the 

enhanced Yolox-tiny algorithm effectively conducts pest detection in fields. However, the 

algorithm’s performance can be limited by the quality and diversity of the training data, 

which may not fully represent all possible variations in pest appearances and environ-

mental conditions. Moreover, the algorithm’s real-time processing capabilities may be 

constrained by hardware limitations in field applications. 

Despite the significant progress made in this study, certain issues remain unresolved 

due to time constraints, including statistical significance analysis, the addition of another 

case study, computational burden analysis, and the implementation of other fusion capa-

bilities. These issues are of considerable importance and will be further explored in future 

research efforts. Specifically, future research will mainly include the following aspects: 

(a) Statistical significance analysis: Conduct a more in-depth statistical significance anal-

ysis of the experimental results to validate the effectiveness and reliability of the 

model improvements. 

(b) Addition of another case study: Plan to expand the dataset to include more diverse 

and representative images from different regions and cropping systems to enhance 

the generalization capability of the model. 

(c) Computational burden analysis: Focus on the computational efficiency and resource 

consumption of the model, particularly the computational burden in practical appli-

cations. 

(d) Consider the implementation of other fusion capabilities: Explore and implement ad-

ditional fusion capabilities to further improve the detection performance and appli-

cation effects of the model. 

Furthermore, future research can also focus on enhancing image preprocessing tech-

niques, exploring advanced denoising and equalization methods, and investigating addi-

tional data augmentation strategies to better handle variations in pest appearances and 

environmental conditions. Optimizing model parameters and architecture by introducing 

other attention mechanisms or feature extraction methods could further enhance perfor-

mance. Implementing the algorithm in real-time pest monitoring systems and conducting 

extensive field tests will be essential to ensuring its practical applicability and effective-

ness in various agricultural environments. Integrating the algorithm with other agricul-

tural technologies and combining it with other pest management strategies could create 

more comprehensive and effective pest monitoring systems. 
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