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Abstract: Parkinson’s disease (PD) is a progressive neurological disorder that is typically character-
ized by a range of motor dysfunctions, and its impact extends beyond physical abnormalities into
emotional well-being and cognitive symptoms. The loss of dopaminergic neurons in the substantia
nigra pars compacta (SNc) leads to an array of dysfunctions in the functioning of the basal ganglia
(BG) circuitry that manifests into PD. While active research is being carried out to find the root cause
of SNc cell death, various therapeutic techniques are used to manage the symptoms of PD. The
most common approach in managing the symptoms is replenishing the lost dopamine in the form of
taking dopaminergic medications such as levodopa, despite its long-term complications. Another
commonly used intervention for PD is deep brain stimulation (DBS). DBS is most commonly used
when levodopa medication efficacy is reduced, and, in combination with levodopa medication, it
helps reduce the required dosage of medication, prolonging the therapeutic effect. DBS is also a first
choice option when motor complications such as dyskinesia emerge as a side effect of medication.
Several studies have also reported that though DBS is found to be effective in suppressing severe
motor symptoms such as tremors and rigidity, it has an adverse effect on cognitive capabilities.
Henceforth, it is important to understand the exact mechanism of DBS in alleviating motor symptoms.
A computational model of DBS stimulation for motor symptoms will offer great insights into under-
standing the mechanisms underlying DBS, and, along this line, in our current study, we modeled a
cortico-basal ganglia circuitry of arm reaching, where we simulated healthy control (HC) and PD
symptoms as well as the DBS effect on PD tremor and bradykinesia. Our modeling results reveal
that PD tremors are more correlated with the theta band, while bradykinesia is more correlated
with the beta band of the frequency spectrum of the local field potential (LFP) of the subthalamic
nucleus (STN) neurons. With a DBS current of 220 pA, 130 Hz, and a 100 microsecond pulse-width,
we could found the maximum therapeutic effect for the pathological dynamics simulated using our
model using a set of parameter values. However, the exact DBS characteristics vary from patient to
patient, and this can be further studied by exploring the model parameter space. This model can
be extended to study different DBS targets and accommodate cognitive dynamics in the future to
study the impact of DBS on cognitive symptoms and thereby optimize the parameters to produce
optimal performance effects across modalities. Combining DBS with rehabilitation is another frontier
where DBS can reduce symptoms such as tremors and rigidity, enabling patients to participate in
their therapy. With DBS providing instant relief to patients, a combination of DBS and rehabilitation
can enhance neural plasticity. One of the key motivations behind combining DBS with rehabilitation
is to expect comparable results in motor performance even with milder DBS currents.

Keywords: deep brain stimulation (DBS); sub thalamic nucleus; basal ganglia; dopamine; Parkinson’s
disease; motor symptoms; tremor; rigidity; bradykinesia; theta; beta
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1. Introduction

Parkinson’s disease (PD) is a severe neurodegenerative disease that affects a large
percentage of the older human population and, at present, is second only to Alzheimer’s
in terms of the number of people it affects [1–3]. With the progression of the disease, PD
manifests with some of the cardinal symptoms such as tremors, rigidity, bradykinesia,
and even loss of balance [3–8]. The onset and progression of the disease have a close
link to neuronal loss in the substantia nigra pars compacta (SNc) [9–11] that unsettles the
dopaminergic pathways in the basal ganglia (BG). When contemplating symptom man-
agement strategies, the predominant approach often involves replenishing dopamine loss
by administering dopaminergic medications such as levodopa (LDOPA) [12,13]. Another
commonly used technique is stimulating the relevant brain region using an external current
with appropriate characteristics, known as deep brain stimulation (DBS) [14–16]. Since pro-
longed usage of dopaminergic medications leads to motor complications like dyskinesias
and the wearing-off effect, the number of people undergoing DBS surgery has increased
significantly. Research suggests that DBS is beneficial in cases where the effectiveness of
medication diminishes or severe side effects occur and in reducing medication dosage [17].
Furthermore, when combined with LDOPA, it provides a highly effective therapeutic
approach [18,19].

DBS entails an electrode surgically implanted into the skull, delivering an electrical
current with precise parameters into the subcortical region [20]. While dopaminergic medi-
cations like levodopa focus on rectifying dopamine deficiency within the BG pathways [21],
DBS targets specific functional regions of the pallido-subthalamic circuitry and serves as
a catalyst for exploration within the cortico-basal ganglia circuitry, which is essential for
learning. This exploration is mainly facilitated through the modulation of the pallido-
subthalamic circuitry, which constitutes the indirect pathway of the basal ganglia. From
a functional connectivity standpoint, cortical inputs reach the BG-striatum’s input port,
which then channels information to the output nucleus, GPi, through two pathways—one
directly and another via the pallido-subthalamic circuitry [22]. By applying DBS to the
STN, an integral component of this circuitry, the intricate dynamics of information flow
and modulation within the basal ganglia thalamocortical network are further elucidated.

Numerous studies have observed increased beta-band oscillations and beta power
in the STN region in patients with PD [23]. Experimental research has revealed that the
interplay between cortical and basal ganglia (BG) structures, including the pallidum and
subthalamic nucleus (STN), can induce beta rhythm oscillations throughout the cortico-
basal ganglia system. These oscillations are commonly seen during PD symptoms [24–27].
The low dopamine levels lead to synchronous firings of both STN and GPe neurons [28,29].
Theoretical studies have shown the relationship between neuronal synchrony and collateral
strengths in STN and GPe neurons [30,31]. DBS application mitigates synchronous neuronal
communication and partially restores the normal functioning of the indirect pathway
circuitry, contributing to improved behavioral outcomes.

To delve into the dynamics of pallido-subthalamic circuitry, initial studies focused on
analyzing the various firing characteristics by modulating the synaptic strength and connec-
tivity patterns [32]. Later, this single-compartment biophysical model was expanded [32]
by incorporating the globus pallidus interna (GPi) and thalamus [33]. The relationship
between PD tremor and the oscillations in pallido-subthalamic circuitry was discussed
in various experimental studies [24,34–37]. Also, the relationship between the STN and
cortical oscillations was explored [38].

While the aforementioned models provide insights into neural activity and dynamics,
it is crucial to comprehend how these effects translate into behavior, as the ultimate aim of
DBS is the well-being of individuals with PD. Modeling behavior allows for a comprehen-
sive assessment of the diverse impacts of PD and the potency of interventions like DBS. PD
affects various behaviors, including motor functions such as tremors, rigidity, impaired
coordination, and movement precision, as well as cognitive functions like decision making
and executive control. The impact of DBS on cognitive symptoms has been explored using
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a computational model of spiking neurons [39,40]; it was found that stimulation of STN
worsened the decision-making performance in tasks such as the Iowa Gambling task.

Regarding motor tasks, modeling arm-reaching tasks has particular significance.
Reaching tasks are pivotal in daily activities and are intricately linked with motor symp-
toms experienced by patients with PD. By simulating these tasks, researchers can gain
insights into the specific motor deficits present in PD and evaluate the effectiveness of inter-
ventions like DBS in restoring motor function and improving overall motor performance.
Considering this literature, the objectives of the proposed study were (i) to understand the
origins of PD tremors in the cortico-basal ganglia circuit, (ii) to understand the effect of
DBS on PD tremors and (iii) to optimize the DBS parameters to minimize tremor.

This outline of the paper is as follows: Section 2 discusses the materials and methods,
which describe the cortico-basal ganglia model and its key components. We then describe
the mechanism used to simulate the PD condition, followed by the DBS intervention.
Section 3 highlights some of our essential results from the model, and then Section 4
provides a discussion.

2. Materials and Methods

We used a cortico-BG (CBG) model that controls a two-linked arm model to simulate
reaching movements, as shown in Figure 1. In this section, we first introduce the CBG model
and the DBS intervention. The earliest efforts in modeling coordinated reaching movements
started with control-system-based loops [41–45]. While this research did not focus on the
underlying neural mechanisms, parallel studies were conducted on the neural substrates
and neural mechanisms involved in reaching [46–48]. Soon, reinforcement-learning-based
models were in use [49]. In our study, an arm model [49] was integrated into a basal ganglia
thalamocortical model consisting of the oscillatory model of the STN–GPe network [50]
to simulate motor movements at the behavioral level [51,52]. To accommodate the DBS
effect on performance, we replaced the rate-coded model of pallido-subthalamic circuitry
with a spiking neuron model and studied DBS effects. We describe the arm model in the
Supplementary Materials Section.
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Figure 1. Block diagram of the proposed cortico-basal ganglia model. The model consists of a
2-link arm model, the proprioceptive cortex (PC), the prefrontal cortex (PFC), the motor cortex (MC),
and the basal ganglia (BG). Here, the input nucleus striatum, the output nucleus globus pallidus
internus (GPi), the globus pallidus externus (GPe), the subthalamic nucleus (STN), and the thalamus
(THAL) constitute the BG. MC integrates the inputs received from the prefrontal cortex (PFC) and the
proprioceptive cortex (PC) along with the feedback signal from BG and sends the signal to the arm
via the spinal motor neurons.
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2.1. Cortico-Basal Ganglia Model

The CBG model used in our study comprised an outer sensory-motor loop, which
interacted with the BG circuitry. The sensory-motor loop comprised an arm model, the
proprioceptive cortex (PC), the motor cortex (MC), the prefrontal cortex (PFC), and the
BG. The kinematic arm model performed reaching movements based on the activations
it received, and the PC estimated the current arm position and sent the feedback to the
MC, which integrated this signal along with the goal information from the PFC and the
error-corrected signal from the BG, which conducted its internal processing before sending
back the corrected signal to the motor cortex. The MC then sent the following motor
command to the arm via the spinal motor neurons, and this process continued until the
arm reached the target or the time out was reached. More details about the sensory-motor
loop and the arm model are discussed in the Supplementary Materials. Please note that
we use the term PC because, in the current model, we only considered the proprioceptive
input and no other sensory inputs. Otherwise, the anatomically correct usage would be the
primary somatosensory cortex. The MC acts as the intersection layer between the outer
sensory motor loop and the BG circuitry. Communication between the MC and the BG is
crucial to exploring and understanding PD dynamics.

The BG consists of the striatum (STR), which is the input nucleus; globus pallidus
internus (GPi), which is the output nucleus; and the globus pallidus externus (GPe) and
STN, which constitute the indirect pathway. The subthalamic nucleus (STN) and globus
pallidus interna (GPi), which constitute the indirect pathway, were modeled using the
spiking neuron model (Izhikevich). In contrast, the rest of the BG nuclei were modeled
using the rate-coded model.

2.1.1. MC–BG Interaction

Effective interaction between the BG and cortex is crucial in motor acquisition and
performance. This interplay facilitates learning, leading to decision-making scenarios
where competing signals—one facilitating and the other inhibiting—are evaluated. This
evaluation forms the basis of selecting the best action and is facilitated by the GPi mecha-
nism [53,54], where inputs via two parallel pathways, the D1 and D2, combine. The flow of
information through the D1 and the D2 pathways is modulated by the dopamine signal
from the SNc [22]. The depletion of dopamine signals due to neuronal death results in
motor impairments, which are then managed using dopaminergic medication or DBS.

The MC receives inputs from the PFC, the PC, and the BG, and the total input received
at the MC, IMC, is as given in Equation (1). The dynamics of PC and PFC are given in the
Supplementary Materials Section.

IMC = APFC·GPFC + APC·GPC + ABG·GBG (1)

The dynamics of the MC neurons are defined by the continuous attractor neural
network (CANN), and the MC output (GMC) is as given in Equation (2):

GMC(t) =
(

gMC)2

1 +
(

2π

(NMC)
2

)
bMC∑(gMC)

2
(2)

where NMC defines the network size of MC, bMC is a constant, and gMC represents the
intrinsic state of the nodes in MC and is as given in Equation (3).

τMC
dgMC

dt
= −gMC + WC

MC
⊗

GMC + IMC (3)

where the weight kernel WC
MC represents the lateral connectivity among the MC neurons,

and
⊗

is the convolutional operation.
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The MC input is presented to the striatum (STR), which routes the signal to the GPi
directly as well as through the STN–GPe network. The signal projecting from the D1
medium spiny neurons (MSNs) of the striatum to GPi is yD1, as given in Equation (4),
whereas the signal projecting from the D2 MSNs of the striatum to GPe is given as yD2 in
Equation (5). The D1λ and D2λ in Equations (6) and (7) represent the sigmoidal activation
of the D1 and D2 striatal neurons.

yD1 = D2λWMC→D1∆GMC (4)

yD2 = D2λWMC→D2∆GMC (5)

D1λ =
1

1 + exp(−kD1(δval − ϕD1))
(6)

D2λ =
1

1 + exp(−kD2(δval − ϕD2))
(7)

where the weights WMC→D1 and WMC→D2 represent the weights between the MC and STR,
∆GMC is the input received by the STR from MC, δval is the value difference that modulates
the BG pathways, and kD1 and kD2 are the sigmoidal gains, where kD1 = −kD2 and ϕD1
and ϕD2 are the thresholds used in the sigmoidal function for D1λ and D2λ, respectively.

The quantity δval used here is termed the value difference, and it is computed as given
in Equation (8) below.

δval = Varm(t)− Varm(t − 1) (8)

Varm(t) in Equation (8) represents the value of the current position of the arm at
time ‘t’ and is obtained as the probabilistic gradient ascent over the value function [22,55]
performed by the BG, as given in Equation (9) below. Xarm and Xtarg are the current
arm position obtained from the PC and the target goal position obtained from the PFC,
respectively. The value function, Varm(t), is obtained as given in Equation (9).

Varm(t) = exp

(
−
∥∥Xtarg − Xarm

∥∥2

σ2
V

)
(9)

where the spatial distance within which the value function demonstrates sensitivity for
that particular target is given by σV .

2.1.2. The STN–GPe Subsystem

The D2 MSNs of the STR project to the GPe, and the current received at the GPe
neurons from the STR is as given in Equation (10).

IStrD2→GPe
ij = AGPe·yD2 (10)

Here, AGPe represents the weight between the STR and GPe. The total incoming
current at the GPe is as described in Equation (11).

IGPe
ij (t) = IGABAlat

ij (t) + INMDA→GPe
ij (t) + IAMPA→GPe

ij (t) + IStrD2→GPe
ij (t) + IGPe(t) (11)

The GPe neurons also receive input from their own neighboring neurons, which is
given in Equation (12), and the corresponding neurons in the STN, as given in Equations (13)
and (14).

IGABAlat
ij (t) =

n

∑
p,q=1

WGPe→GPe
ij,pq (t) ∗ hGABA→GPe

ij (t)·(EGABA − VGPe) (12)

INMDA→GPe
ij (t) = WSG. hNMDA→GPe

ij (t)·(ENMDA − VGPe) (13)
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IAMPA→GPe
ij (t) = WSG. hAMPA→GPe

ij (t)·(EAMPA − VGPe) (14)

In the above equations, VGPe represents the voltage across the membrane of the GPe
neurons, as described in Equations (15)–(17). The STN–GPe network consists of 2D arrays
of spiking neurons modeled using Izhikevich equations. When the membrane voltage
reaches VPeak, the variables are reset, as shown below.

dVGPe
ij

dt
= (0.04)

(
VGPe

ij

)2
+ 5VGPe

ij − Ux
ij + 140 + IGPe

ij + yD2 (15)

dUGPe
ij

dt
= agpe

(
bgpeVGPe

ij − UGPe
ij

)
(16)

i f VGPe
ij > VPeak, then VGPe

ij = cGPe ; UGPe
ij = UGPe

ij + dGPe (17)

Also, hGABA→GPe
ij , hNMDA→GPe

ij , and hAMPA→GPe
ij represent the gating variables, as

shown in Equations (18)–(20).

τRecep ∗ dhNMDA→GPe
ij (t) = −hNMDA→GPe

ij (t)·SGPe
ij (t) (18)

τRecep ∗ dhAMPA→GPe
ij (t) = −hAMPA→GPe

ij (t)·SGPe
ij (t) (19)

τRecep ∗ dhGABA→GPe
ij (t) = −hGABA→GPe

ij (t)·SGPe
ij (t) (20)

IGS is the current from the GPe neurons to the corresponding STN neurons, as shown
in Equation (21). Here, WGS denotes the weights between the STN and GPe neurons,
hGABA→STN

ij regulates the gating between the GABA and STN, VSTN is the voltage across
the membrane for the STN neurons, and EGABA is the voltage across the membrane at rest
for the GPe neurons.

IGS
ij (t) = WGS. hGABA→STN

ij (t)·
(

EGABA − VSTN
)

(21)

Along with IGS, the lateral currents from the neighboring STN neurons constitute the
total current received at each STN neuron, which is governed by Equations (22)–(24).

ISTN
ij (t) = IGS

ij (t) + INMDA→STN
ij (t) + IAMPA→STN

ij (t) (22)

IAMPAlat
ij (t) =

n

∑
p,q=1

WSTN→STN
ij,pq (t) ∗ hAMPA→STN

ij (t)·(EAMPA − ESTN) (23)

INMDAlat
ij (t) = Bij(v) ∗

n

∑
p,q=1

WSTN→STN
ij,pq (t) ∗ hNMDA→STN

ij (t)·(ENMDA − ESTN) (24)

In the above equations, the terms hAMPA→STN
ij , hNMDA→STN

ij , and hGABA→STN
ij repre-

sent the gating variables, and their dynamics are as shown in Equations (25)–(27).

τRecep ∗ dhNMDA→STN
ij (t) = −hNMDA→GPe

ij (t)·SSTN
ij (t) (25)

τRecep ∗ dhAMPA→STN
ij (t) = −hAMPA→GPe

ij (t)·SSTN
ij (t) (26)

τRecep ∗ dhGABA→STN
ij (t) = −hGABA→STN

ij (t)·SSTN
ij (t) (27)

The membrane potentials of the STN neurons are described in Equations (28)–(30).
The terms hAMPA→STN

ij , hNMDA→STN
ij , and hGABA→STN

ij represent gating variables, and their
dynamics are as shown in the following equations:

dVSTN
ij

dt
= (0.04)

(
VSTN

ij

)2
+ 5VSTN

ij − Ux
ij + 140 + ISTN

ij (28)
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dUSTN
ij

dt
= aSTN

(
bSTNVSTN

ij − USTN
ij

)
(29)

i f VSTN
ij > VPeak, then VSTN

ij = cSTN ; USTN
ij = USTN

ij + dSTN (30)

The local field potential (LFP) of the STN is calculated as shown in Equation (31).

LFPSTN =

(
1

RMON
ij

)2

·(IGS
ij (t) + INMDA→STN

ij (t) + IAMPA→STN
ij (t)) (31)

The term RMON
ij in the above equation is the distance between the (i, j)th neuron and

the recording point.

2.1.3. Simulating the PD Condition

To replicate the symptoms of PD, the DA value was decreased from DAHC to DAlow.
In other words, we prevented the δval from rising beyond DAlow, as given in Equation (32).

If PD = 1 then,
δval(t) = min(δval(t), DAlow) (32)

The DA value also influences the lateral connections of the STN and GPe nucleus and
the interconnectivity (WSG and WGS) between the corresponding neurons of the STN and
GPe, as shown in Equations (33)–(37).

Wm→m
ij,pq = Wmax

m ∗ exp

(
−

dij,pq
2

Rm

)
; dij,pq

2 = (i − p)2 + (j − q)2 (33)

where m in the above equation represents the STN/GPe. Wmax
m is the maximum connec-

tivity strength among the neurons, Rm defines the radius of the neighborhood, d is the
distance between two neurons in the subpopulation, and (i, j, p, q) represent the indices of
the neurons.

RSTN = 10 − 9.89
(DA − 0.1)

0.8
; RGPe = 0.22 + 19.78

(DA − 0.1)
0.8

(34)

WSG = 7.92 + 1.18
(DA − 0.1)

0.8
; WGS = 29.7 + 170.5

(DA − 0.1)
0.8

(35)

IGPe = 3 + 3
(DA − 0.1)

0.8
(36)

WSTN→STN
ij,pq = Wmax

STN exp

(
−

dij,pq
2

Rm

)
; dij,pq

2 = (i − p)2 + (j − q)2 (37)

For simulating the tremor and rigidity conditions, we modulated the connectivity
strength between then STN and GPi using the gain factor AD2, mentioned in Equation (38)
and Equation (39). For tremor, a relatively higher value (2) of AD2 was chosen, whereas for
rigidity, a lower value (<0.4) of AD2 was chosen.

2.1.4. The STN-to-GPi Connection

Inputs from then STN to GPi are taken after converting the spike data of STN neurons
into rate codes. The mean rate of firing of the STN neurons is calculated as shown in
Equation (38).

ySTN(t) =
∑t

Tinit
∑NI

i=1∑NJ
j=1 1.SPK

STN

ij

(N STN ·NSTN)
(38)

where ySTN isthe average firing rate of the STN neurons for a simulation time of 1 s, SPKSTN
ij

is the spike data of neuron at location (i, j) in the network, N is the total number of neurons
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(NI × NJ), and T = simulation time (1 s). Tinit = t − WS if t is greater than or equal to the
WS; otherwise, Tinit = t. Here, WS is the temporal window size.

2.1.5. The BG-to-MC Connection

The input through the direct projections from the D1 MSNs of the STR
(
YD1) and the

output of the STN
(
ySTN) are combined at GPi

(
yGPi), as shown in Equation (39), before

forwarding to the thalamus.

YGPI = AD1yD1 + AD2ySTN (39)

The dynamics of the thalamic neurons are modeled as a CANN, and the thalamic
output is as given by Equation (40),

Gthal(t) =

(
gthal

)2

1 +
(

2π

(Nthal)
2

)
bthal∑

(
gthal

)2
(40)

where Nthal defines the thalamic network size, bthal is a constant, AD1 and AD2 are the
respective gains associated with the two pathways, and gthal represents the intrinsic state
of thalamic neurons as given by Equation (41).

τthal
dgthal

dt
= −gthal + WC

thal

⊗
Gthal + IBG (41)

IBG = YGPi (42)

GBG = Gthal (43)

where the weight kernel, WC
thal , represents the lateral connectivity strength among the

thalamic neurons; IBG is the input from the GPi to thalamus coming from the BG; YGPi and
Gthal are outputs of the GPi and thalamus, respectively; and GBG is the thalamic output to
the MC.

2.2. Parameter Selection

The list of parameters used in the model and their corresponding values, along with
their description, is given in the Supplementary Materials Section. Also, the learning mech-
anisms are described in detail in the Supplementary Materials Section. The newly added
parameter sets for behavioral manifestation, STN–GPe dynamics, and DBS parameters are
provided in Tables S2–S4 of the Supplementary Materials Section, respectively. The timing
parameter (each time step of the MC loop) was set to 0.0125 s in order to tune the model to
match the performance of the HC.

2.3. DBS Effect

There are various targets used for DBS, and, among them, the GPi and ventralis
intermedialis (Vim) of the thalamus are commonly used in addition to the STN [20,56,57].
However, STN DBS is most commonly used for PD [16], considering its better therapeutic
effects.

The pulsatile current of the appropriate parameters (amplitude, frequency, and pulse
duration) mimicking the clinically delivered DBS [58] effect was simulated in our model.
The current is applied to the centermost neuron (position in the 2D lattice (im, jm), and
the spread of the current to the neighboring neurons is modulated by a Gaussian distribu-
tion [59,60] with variance (σDBS), as shown in Equation (44).

Iij
DBS(t) = exp

 −((i − im)
2 + (j − jm)

2
)

σ2
DBS

 (44)
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where Iij
DBS(t) is the effective DBS current received by the neuron at location (i, j).

2.4. Informing the Model Using Experimental Data

We used experimental reaching performance data from [61] to inform our model.
These data included kinematic parameters such as movement time, peak velocity, and time
to peak velocity recorded during a reaching task performed by six healthy controls (HC)
and six patients with PD diagnosed with stage three Parkinson’s disease on the H&Y [62]
scale. Participants were asked to reach and grasp an object placed a certain distance away.
Similar trends were observed in [63], where participants (16 with HC and 14 with PD)
performed reaching movements toward visually presented targets. Another study on 11
participants by [64] involved visually guided reaching tasks that included upper limb and
eye movements. The upper limb reaching performance (PD reaching time) in patients
with PD observed in [64] was similar to that in [61]. The comparison between the model
performance and the experimental results of the kinematic parameters is shown in the
Results Section (Section 3.5). We followed the below steps to validate our model”

(i). Data Source: The experimental reaching performance data from [61] was used for
behavior modeling.

(ii). Experimental Task: The participants were asked to reach and grasp a ball that was
placed a certain distance away from them as quickly as possible.

(iii). Parameter Tuning for HC and PD Groups: Model parameters were adjusted to repli-
cate the reaching performance of healthy controls (HC).

(iv). Firing Rate Calibration: While tuning parameters in step (ii), we ensured that the
firing rates of the subthalamic nucleus (STN) and globus pallidus externus (GPe)
matched the experimental data [39,65,66] observed in both HC and PD conditions.

(v). Frequency Spectrum Analysis: The STN local field potentials (LFPs) and their frequency
spectrum dynamics were analyzed and compared with experimental data [67–70].

(vi). The network dynamics were then correlated with the symptoms.

3. Results

Here, we showcase the model’s performance by simulating the healthy (HC) and PD
conditions and observing their effects on the arm-reaching task. In order to simulate the
HC and PD conditions, we modulated the dopamine-dependent control parameters in our
cortico-basal ganglia model neuron model, especially the amount of current flowing from
the D1 and D2 striatal neurons, and the parameters in the STN–GPe subsystem as detailed
in the section below.

3.1. Parameters Controlling the Firing Patterns and Synchrony in STN–GPe

The neuronal firings and synchrony of the STN and GPe populations of neurons were
tuned using various parameters, such as the lateral connection spread of the GPe neurons
( RGPe), the lateral connection spread of the STN neurons ( RSTN), the spread of laterals in
STN and GPe neurons, the interconnections between STN and GPe (WSG and WGS), the
dopamine availability, the striatum to GPe current ( IGPe), and the STN current. Dopamine
signal (DA) modulates the lateral connectivity of both the STN and GPe populations, the
interconnections between the two neuronal populations, and the input current to GPe, as
shown in Equations (34)–(37).

3.2. Kinematic Performance of Arm Reaching

The parameters for reaching performance in our model for healthy control (HC)
participants and patients with PD were tuned to match the experimental performance
data taken from [61], where the parameters of movement time, peak velocity, and time to
peak velocity were recorded during a reaching task. The comparison between the model
performance and the experimental results is shown in Figure 2. below. The recordings
were taken over an average of five trials. The experimental and the model results showed a
similar trend, where the movement time was comparatively higher for the PD condition.
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HC’s peak velocity was comparatively higher in both experimental and model results. In
contrast, the time to peak velocity was higher under PD conditions, as reflected in both the
experimental and model results.
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Figure 2. Comparison of performance of the proposed model with experimental data adapted
from [61]. (A) Movement time, (B) time-to-peak velocity, (C) peak velocity; sec, second; m/s, meter
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3.3. Neuronal Firings and Synchrony during Healthy and PD Conditions

The variations in firing rate and synchrony to dopamine levels are shown in Figure 3.
The parameters were tuned to match the STN and GPe firing rates to the experimental
values [39,65,66]. As the dopamine level increased from 0.1 to 0.9, the firing rates of the STN
neurons decreased. In contrast, the firing rates of the GPe neurons increased (Figure 3A).
Also, the synchrony among the neurons of both STN and GPe decreased with increasing
dopamine levels (Figure 3A). The recordings were taken over an average of five trials.
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Figure 3. Firing rates and synchrony. (A) The firing rates of STN and GPe neurons for various values
of DA levels are shown. The blue line represents the GPe, and the orange line represents the STN
neurons. (B) Synchrony within STN and GPe nuclei. Again, blue and orange lines represent the GPe
and STN neurons, respectively. Synchrony keeps decreasing with increasing DA levels. The mean
and variance values for the above plots were calculated over five epochs.
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We selected two DA values, 0.1 and 0.9, to simulate the PD and HC conditions. The
neuronal firings and synchrony of the STN and GPe populations of neurons under both
these conditions are given in Figure 4. Figure 4a–f present the dynamics under the healthy
condition, whereas Figure 4g–l present the dynamics of the PD condition. Under the
healthy control (HC) condition, both the STN and GPE neurons exhibit regular spiking,
as shown in Figure 4a,d, and the activities of the neuronal subpopulation in both the
STN and GPe exhibit asynchronous firings, as shown in Figure 4b,e. Figure 4c,f show the
synchrony among the STN and GPe neuronal population as a function of time. During the
PD condition, the dopaminergic neurons in the SNc die, and, in our model, we simulated
the same by reducing the dopamine level from 0.9 to 0.1. The reduction in dopamine level
influences the STN–GPe circuitry via the lateral connections of the STN and GPe and the
interconnections between the STN and GPe. Figure 4g,j show that due to this influence, the
STN and GPe fire in burst mode, and there is increased synchrony among both the STN
and GPe neurons, as shown in Figure 4h,k. Figure 4c,f,i,l present the synchrony among the
neurons of the respective neuronal populations.
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Figure 4. The firing of single STN and GPe neurons in the HC group is shown in (a,d). Under HC
conditions, both the STN and GPe neurons exhibit regular firings. The firing of single STN and GPe
neurons under PD conditions is shown in (g,j). (b,e) The raster plot of the STN, and (h,k) the GPe
neurons in PD. (c,f) the synchrony of STN and GPe neurons under healthy conditions, and (i,l) the
synchrony of STN and GPe neurons under PD condition. The orange lines in (a,d,g,j) indicate the
reference line corresponding to the theoretical resting membrane potential (-60 mV) and the blue line
represents the spike data.

3.4. Arm Reaching Performance under Healthy and PD Conditions

Reaching movements were simulated using the model described in Figure 1 with the
DA level set to 0.9. The blue line in Figure 5 represents the reaching performance of the HC
group. It can be seen that during the control condition (HC), the arm consistently reached
the target, with the velocity of the arm forming a bell curve in Figure 5C over time, where
the speed increases until it reaches a peak and then slowly reduces as the arm approaches
the target. The distance to target slowly reduces, resembling a waterfall curve, as it reaches
the target (Figure 5B). Acceleration of the arm during the reaching task was as shown in
Figure 5A, where we do not see any significant peaks in the tremor frequency (4–10 Hz)
band in the spectrum of the arm acceleration, while we do see a significant peak around
7 Hz in case of the PD tremor condition, represented by the orange line in Figure 5A. Under
the PD tremor condition, we can also see that the arm never reaches the target, and it keeps
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fluctuating as shown in the orange curve in Figure 5B. Also, the velocity of the arm keeps
increasing and decreasing while the tremor is experienced, as shown in the orange curve in
Figure 5C.
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The trajectory of the arm is shown in Figure 6. For the controls (HC), the arm con-
sistently reached the target, as indicated by the blue arm, whereas during PD tremor
conditions, the arm kept fluctuating, as shown by the yellow arm. During a rigidity case,
the arm hardly moved from the starting position, as shown by the green arm. The red
dotted circle around the target position is the region where the arm is considered to have
reached the target within its area.
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Figure 6. The trajectory of the arm movements is given. The blue line (for the arm) represents the
healthy control (HC) condition, the yellow line (for the arm) represents the tremor condition, and the
green line (for the arm) represents the rigidity condition. In the case of HCs, the reaching is successful,
whereas in the case of tremor and rigidity, it is not.
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For the HCs, the distance to the target of the arm steadily decreased and reached the
target (~0.4 s), as shown in the blue line in Figure 7A, while under tremor conditions, we
can also see that the arm never reached the target, and it kept fluctuating, as shown in
the orange curve. In the case of rigidity, the arm hardly moved, and the distance to the
target was a steady, flat line, as shown by the purple curve. In the case of bradykinesia, the
arm took a comparatively longer time to reach the target (~0.8375 s). Figure 7B shows the
velocity of the arm while performing the reaching, and, as seen, the blue line representing
HC resembles a bell curve, where the velocity increases until it peaks and then gradually
decreases. Also, the velocity of the arm kept increasing and decreasing under the tremor
condition (orange line) and hardly raised under the rigidity condition (purple line). In the
case of bradykinesia (black line), the velocity curve exhibits multiple peaks of comparatively
lesser amplitude, which is a characteristic of bradykinesia.
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a synchronous manner, and, hence, the local field potential (LFP) of the STN is highly 
periodic and higher in amplitude (green line), as shown in Figure 8, whereas the ampli-
tude of the LFP signal in the HC and DBS-treated conditions, represented by violet and 
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Figure 7. (A) This plot shows the distance to the target as the time progresses. (B) This plot shows
the velocity of the arm movement, where the curve follows a bell curve for the HCs, has multiple
lesser-magnitude peaks under the bradykinesia condition, and keeps oscillating under the PD tremor
condition. The arm hardly moves, and the velocity curve quickly decreases down under rigidity
conditions. The blue line represents the healthy controls (HCs), the purple line represents the
rigidity condition, the orange line represents the tremor condition, and the black line represents the
bradykinesia condition.

During the tremor condition, the neuronal population of the STN subsystem fires
in a synchronous manner, and, hence, the local field potential (LFP) of the STN is highly
periodic and higher in amplitude (green line), as shown in Figure 8, whereas the amplitude
of the LFP signal in the HC and DBS-treated conditions, represented by violet and blue
lines, is comparatively much smaller. Looking closely at the dynamics of the STN–GPe,
the frequency spectrum of the LFP of the STN neuron population reveals that there was a
significantly higher power observed in the beta frequency band (13–35 Hz), as shown in
Figure 9C. During the tremor condition, the beta peaks were also accompanied by another
peak at the theta band (4–11 Hz). This is in line with the observations in an experimental
study [68].
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3.5. Simulating Deep Brain Stimulation (DBS) Effect

As significant beta peaks in the LFP of the STN are a signature of PD, attempts have
been made to suppress this beta peak. The DBS facilitates the suppression of beta and theta
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peaks by injecting a high-frequency current of appropriate amplitude and pulse duration.
The DBS current used in our simulation is shown in Figure 9A. A biphasic pulsatile current
of 130 Hz, 220 pA, and 100 microsecond pulse duration was applied to the centermost
neuron of the STN subpopulation, and the effect of the DBS current on the neighboring
neurons was modeled as a Gaussian spread, as shown in Figure 9B. In our study, we
checked the impact of STN DBS on reaching performance under the tremor condition. The
current was applied to the centermost neuron. We used biphasic, single-contact stimulation.

3.6. Effect of DBS on PD Symptoms (Tremor and Bradykinesia)

The DBS stimulation restored the reaching performance of the arm movement, as
shown in Figure 10. We can also observe that compared to the HC performance in Figures 5
and 6, the performance still shows a vast improvement, and the arm was able to reach the
target in slightly more time (0.8 s) than in the HCs (0.4 s). Figure 8A shows the movement
trajectory for a DBS-treated condition, and it can be seen that the arm reached the target
after a period of time. Figure 10B shows the distance to the target as a function of time, and
we can see that the distance to the target kept decreasing with time. Figure 10C shows the
frequency spectrum of the acceleration of the arm movements during the reaching task,
and we can see that the power in the band region between 4 and 10 Hz was significantly
reduced. Figure 10D shows the velocity curve during reaching movement, and it can be
seen that it took a while to attain the peak velocity, which was followed by a gradual
reduction until the arm reached the target.
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Figure 10. The movement trajectory of the arm movements is given in (A), where the blue line
represents the trajectory and the red dot represents the target position. The distance to target over
time is shown in (B), where as the frequency spectrum of the acceleration of arm movements is shown
in (C) and the velocity of arm movements is shown in (D).

High-frequency DBS stimulation of STN also seemed to alleviate the bradykinesia
symptoms with a DBS pulse train of frequency 120–130 Hz with an amplitude of 200 pA,
and a pulse width of 100 µS. The peak velocity of the reaching performance with the
application of DBS with varying frequencies is shown in Figure 11. This is in line with the
experimental results observed in [67], where the study was conducted with 10 patients
with PD and showed significant improvement in bradykinesia and rigidity with a DBS
stimulation frequency of 130 Hz. The recordings were taken over an average of five trials.
Also, as mentioned in [67], the slowness of performance correlates with the beta peaks in
our model performance. Figure 11A shows the frequency spectrum of STN LFP, and the
increased beta power correlates with the reaching movements, as indicated in Figure 11B,
which shows the peak velocities of the reaching movements for different DBS frequencies.
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Figure 11. (A) The frequency spectra of STN LFP for PD and DBS-applied conditions are shown.
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3.7. Comparison with Experimental Data

We also analyzed the trend in our model performance using the experimental data. As
highlighted in Section 3.2, the trend in the reaching performance in the HC and PD groups
were similar to that in [61]. The movement time (MT) considerably increased in patients
with PD compared to that of the HCs in our model results [61]. Also, the peak velocity (PV)
for PD decreased compared to that of the HC in our model results and in [61]. The time
to peak velocity (TPV) also showed a similar trend in both the modeling results and the
results reported in [61], with TPV being considerably higher in the case of PD. The DBS
performance recorded in [63] also showed similar movement time trends and peak velocity
trends for off DBS and on DBS cases, where a DBS of 130 Hz was applied for most patients.
In [63], the participant was required to move the handle toward the target a few centimeters
apart. For the data used for comparison in Table 1, we considered a target distance of 12 cm.
The recorded MT, PV, and TPV followed the trend observed in our model. Finally, we also
compared the performance of our model with the upper limb movement task in [64], and
the trend was similar with movement time, reduced with high-frequency DBS on, and the
PV increased with DBS on. The respective values of the model and the experimental data
are given in Table 1. ‘NA’ is mentioned wherever data were unavailable.

Table 1. Comparison between Model and Experimental performances.

MODEL/EXP Category MT (s) PV (m/s) TPV (s)

MODEL

HC 0.41 ± 0.048 3.18 ± 0.36 0.31 ± 0.034

PD/DBS OFF 0.837 ± 0.084 1.49 ± 0.27 0.62 ± 0.008

DBS ON 0.44 ± 0.028 2.89 ± 0.02 0.35 ± 0.016

EXP1 [61]

HC 0.343 ± 0.004 2.15 ± 0.27 0.19 ± 0.02

PD/DBS OFF 0.52 ± 0.063 1.35 ± 0.18 0.27 ± 0.003

DBS ON NA NA NA

EXP2 [63]

HC ~0.8 ± 0.1 ~0.33 ± 0.06 ~0.446

PD/DBS OFF ~1.35 ± 0.18 ~0.175 ± 0.033 ~0.756

DBS ON ~1.05 ± 0.16 ~0.25 ± 0.05 ~0.637

EXP3 [64]

HC NA NA NA

PD/DBS OFF 0.505 ± 0.017 0.34 ± 0.018 NA

DBS ON 0.46 ± 0.015 0.35 ± 0.005 NA
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The overall trend in Table 1 indicates that the performance deteriorates under PD
conditions, which is improved with the application of DBS. Regarding dynamics, STN
neurons display increased synchrony under PD conditions and exhibit higher power in
the beta band. In some cases, higher power is also observed in both the beta and theta
bands, especially in cases of PD tremor [70]. Our model also shows higher powers in the
theta and bands in case of PD tremors, with a comparatively higher power in the theta
band, which is in line with the literature data [70] (Figure 9C), and increased power in the
beta band under bradykinesia and rigidity dominant conditions (Figure 11A). During the
tremor condition, the beta peaks are also accompanied by another peak in the theta band,
which is in line with the observations in an experimental study [68]. High-frequency DBS
stimulation of the STN also seems to alleviate the symptoms of bradykinesia. This is in line
with the experimental results observed in [68].

4. Discussion

The focus of this study was understanding the origins of PD tremors in the cortico-
basal ganglia circuitry, understand the effect of DBS on PD tremors, and optimize DBS
parameters to minimize tremors. As such, we developed a cortico-basal ganglia model,
aiming to simulate the therapeutic effects of DBS on PD motor symptoms, most importantly
PD tremors and bradykinesia. Since PD tremor was found to sensitively depend on the
synchronized firing dynamics of the STN–GPe neurons [24,34–37] and as DBS action, which
aims to suppress tremor, is expected to suppress the synchronized peak in the STN–GPe, in
the current model, we used a spiking neuron model of the STN–GPe system.

The cortico-basal ganglia model used in this study is based on concepts from rein-
forcement learning and is based on some of our earlier work [22]. Central to our model is
the idea that the cortico-basal ganglia system achieves movement control by performing
stochastic hill-climbing over the value function. We posit this function as readily acces-
sible within the BG, courtesy of top-down processing from the prefrontal areas, where
goal-related information is available.

Leveraging this value function, we derived a value difference signal regulating the
BG pathways and connections within the STN–GPe network. The value difference signal
in our model acts similarly to the dopamine signal used to switch between the direct and
indirect pathways via its discriminative actions on the D1 and D2 cells of the striatum. The
dopamine signal also influences STN dynamics, representing the projections of the SNc to
the STN. To produce Parkinsonian tremors, we manipulated this signal, mimicking reduced
dopamine levels, which profoundly influence the dynamics of the STN–GPe subsystem.

Consistent with the experimental findings, our model replicates the behavioral out-
comes from the experiments. The behavior was validated in terms of movement time,
peak velocity, and the time to peak velocity. Also, as the experimental literature describes,
our model demonstrates an increase in beta power within the STN’s local field potential
(LFP) under reduced dopamine conditions [68]. The higher power is also observed in
both the beta and theta bands, especially in cases of PD tremor, which is in line with the
literature [37]. Our modeling results reveal that the PD tremors correlate more with the
higher theta power within the STN, whereas bradykinesia correlates more with the beta
power within the STN neurons. DBS stimulation of 130 Hz, 200 pA, and a 100 µS signal
successfully alleviated PD tremor symptoms, whereas DBS stimulation of 120/130 Hz,
200 pA, and a 100 µS signal successfully suppressed the beta peaks in the STN LFP signal,
thereby improving bradykinesia symptoms. During normal reaching movements, the ve-
locity characteristics form a perfect bell curve, and the peak velocity is higher, while during
bradykinesia, the velocity curve does not form a perfect bell curve, and the peak amplitude
is also comparatively lower. Via stimulating with a DBS signal of varying frequencies,
we could observe that the DBS signals with frequencies of around 130 Hz effectively sup-
pressed the beta peaks in the STN LFP. Thus, our modeling study successfully validated
the effectiveness of STN DBS for PD conditions.
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However, STN DBS is not without its side effects. While DBS effectively attenuates
motor symptoms, concerns persist regarding its impact on cognitive function [71,72].
Studies have reported the emergence of impulsive control disorder (ICD) following the
stimulation of the STN [73–78]. The connection between STN DBS and ICD is debatable as
some studies have also revealed that a small percentage of people undergoing DBS have
experienced cognitive decline [79,80], whereas some studies have reported a favorable
effect on cognitive performance [81,82]. Studies have reported that DBS treatment for
patients with PD with neuropsychiatric disorders, including depression, anxiety, and ICD,
might further worsen their cognitive performance. Hence, patients with severe pre-existing
neuropsychiatric disorders should be given DBS with caution [83]. However, despite all
the diverse results, it would be interesting to explore the effect of DBS treatment on motor
and cognitive symptoms simultaneously.

One of the limitations of the current study is that the cortico-cerebellar pathway
was not exclusively modeled. In fact, the cerebellum plays a crucial role in coordinating
and executing motor movements. Refs. [47,84], in their work on learning in sequential
procedures using a visuomotor task, highlight the role of both the BG and cerebellum in
voluntary motor control. One of the major DBS stimulation targets for tremors, including
PD tremors, is the VIM thalamus, which receives projections from the cerebellum via
the dentato-rubro-thalamic tract (DRTT) [85]. This can be studied by incorporating the
cerebellum into our model. While STN DBS is effective for the major cardinal symptoms of
PD, such as tremors, bradykinesia, and rigidity [86], VIM DBS does not improve rigidity or
bradykinesia [87]. The inclusion of cortico-cerebellar circuitry facilitates studying different
DBS target areas; hence, it would be an interesting consideration to include this pathway
and associated connections. Some studies have reported that PD tremor has a different
origin than essential or intentional tremors. While PD tremor is attributed to an imbalance
in the basal ganglia functional circuitry, essential tremor has a cerebellar origin, and, hence,
it is important to look at whether PD tremor has a cerebellar origin. Pathological changes
in the cerebellum could be caused by dopaminergic loss due to PD, or they could be
compensatory mechanisms [88]. Taking inferences from various studies [84,89–91], our
understanding is that the cerebellum is primarily involved in forward prediction and error
correction, processes that are relatively fast and typically engaged during routine and
learned movements. In contrast, during sensory feedback perturbations, environmental
changes, or novel tasks, the role of the thalamocortical-basal ganglia circuitry becomes
more prominent. This is a comparatively slower process. In modeling terms, we need to
incorporate faster supervised-learning-based cortico-cerebellar circuitry in parallel with
slower reinforcement-learning-based cortico-basal ganglia circuitry. While proceeding with
this future implementation, we may also need to explicitly model the posterior parietal
cortex, which integrates sensory and proprioceptive feedback signals.

5. Conclusions and Future Work

Summarizing the results, in this study, we modeled cortico-basal ganglia circuitry for
simulating a DBS intervention. Our model captured the kinematic performance during
the reaching task and was able to match the trend observed in the experimental data. We
observed that during PD, the average movement time and TPV were higher than for HCs,
whereas the PV was comparatively lower in case of PD. The STN dynamics observed in
the model showed higher power in the frequency spectrum of the STN LFP signal, the
tremor correlated more with the theta band, and the bradykinesia correlated more with the
beta band. DBS stimulation with a 130 Hz signal successfully alleviated both tremors and
bradykinesia, which is in line with the literature findings. Thus, using our computational
model, we successfully showed that a DBS intervention with appropriate characteristics
does reduce PD symptoms. Not many experimental studies have shown distinct spectral
characteristics of STN LFPs, and it would be interesting to look into these neural dynamics
for different PD symptoms. As stated in the Discussion, inclusion of the cerebellum and
the corticocerebellar pathway will make the model more robust, which will also facilitate
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exploring the computational modeling of different DBS targets. Along this line, we will be
expanding our model to include this change.

The hypothetical figure for the proposed model is shown in Figure 12. The somatosen-
sory cortex (SSC) integrates sensory and proprioceptive feedback and sends this integrated
information to the posterior parietal cortex (PPC). The cerebellum computes sensory pre-
diction errors and sends these errors to the PPC. The PPC integrates the sensory feedback
from the SSC and the sensory prediction errors from the cerebellum, adjusting the action
to the goal based on this integrated information. The involvement of the cortico-basal
ganglia loop and the cortico-cerebellar loop in motor control varies depending on sensory
prediction errors. The PPC then forwards the refined action plan to the motor cortex, which
executes the movement.
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Also, currently, there are not many studies that have focused on combining DBS and
rehabilitation for PD. It was reported that post-DBS surgery, patients often face gait and
balance issues [92]. DBS is not recommended for patients with balance problems since DBS
exacerbates the gait and balance issues in patients with PD [83]. This gives an incentive
to explore DBS options in combination with rehabilitation. Ref. [93] hypothesized an
improvement in balance and gait if the patients undergo physiotherapy post-STN-DBS. The
physical therapy exercises included trunk rotation, flexion of the hip, hip abduction, etc.
Ref. [94] used robot-assisted rehabilitation for patients with PD with DBS, which showed
improvements in spatiotemporal gait parameters. Ref. [95] reported improvements in the
functional impairments associated with STN-DBS when the patients were subjected to
rehabilitation. In the future, the DBS parameter space will receive a lot of attention when
the patient undergoes DBS in combination with the rehabilitation regime.

Therefore, our next step involves refining this model to identify the nuanced interplay
between DBS, motor symptoms, and cognitive function; model the DBS stimulation effects
on PD symptoms in different target areas such as the STN, GPi, and VIM [20,56,57], model
multiple BG control loops; and incorporate a control loop that optimizes the amount of
medication and stimulation. By meticulously regulating model parameters, we strive to
simulate a wide range of patient profiles and obtain an optimized therapeutic intervention
strategy at various stages of the disease. In addition to this, a combination of DBS and
rehabilitation will be the next frontier. One of the key motivations behind combining
DBS with rehabilitation in PD is as follows: one may expect comparable results in motor
performance, even with milder DBS currents, when DBS is combined with rehabilitation.
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