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Abstract: The present study was performed to determine the chemical constituents, cytotoxicity, antioxidant
and enzyme inhibition activities of the aerial parts of Glaucium acutidentatum Hausskn. and Bornm. (family
Papaveraceae). Methanolic and aqueous extracts were prepared by maceration, homogenizer-assisted
extraction (HAE) and infusion. Results showed that the highest total phenolic and flavonoids contents
were obtained from the methanol extracts obtained by HAE (53.22 ± 0.10 mg GAE/g) and maceration
(30.28 ± 0.51 mg RE/g), respectively. The aporphine, beznyltetrahydroisoquinoline, and protopine types
of Glaucium alkaloids have been tentatively identified. Among them, glaucine was identified in all extracts.
Flavonoids, phenolic acids, coumarins, organic acids and fatty acids were also detected. Methanolic extract
obtained using the HAE method displayed the highest anti-DPPH (41.42 ± 0.62 mg TE/g), total antioxi-
dant (1.20 ± 0.17 mmol TE/g), Cu2+ (113.55 ± 6.44 mg TE/g), and Fe3+ (74.52 ± 4.74 mg TE/g) reducing
properties. The aqueous extracts obtained by infusion and HAE methods exerted the best anti-ABTS
(103.59 ± 1.49 mg TE/g) and chelating (19.81 ± 0.05 mg EDTAE/g) activities, respectively. Methanolic
extract from HAE recorded the highest acetylcholinesterase (2.55 ± 0.10 mg GALAE/g) and α-amylase
(0.51 ± 0.02 mmol ACAE/g) inhibition activities, while that obtained by maceration showed the best bu-
tyrylcholinesterase (3.76 ± 0.31 mg GALAE/g) inhibition activity. Both extracts revealed the best tyrosinase
inhibitory activity (25.15 ± 1.00 and 26.79 ± 2.36 mg KAE/g, p ≥ 0.05). G. acutidentatum maceration-derived
aqueous extract showed selective anticancer activity against cells originating from human hypopharyngeal
carcinoma. In conclusion, these findings indicated that G. acutidentatum is a promising source of alkaloids
and phenolic compounds for variable pharmaceutical formulations.
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1. Introduction

The genus Glaucium Mill. (family Papaveraceae) consists of 23 species of annual,
biennial, and perennial flowering plants distributed mainly in Europe, North America, and
southwest Asia [1]. Iran, followed by Turkey, is the richest country, with 17 and 12 Glaucium
species, respectively [2]. They are known as horned poppies as their pods have a horn struc-
ture. In traditional medicine, many Glaucium species are reported to cure various ailments
like headaches, eye problems, wounds, joint pain, constipation, and liver disorders [3,4].
Due to their richness in alkaloids, they are used as narcotics and hypnotics and most of their
pharmacological activities are associated with the nervous system [4]. However, other bio-
logical activities like anticancer [5], antimicrobial [6], antioxidant [7], and antidiabetics [8]
activities have also been reported. The major classes of alkaloids identified in Glaucium
species are isoquinolines, including aporphines, benzylisoquinolines, and protopines, as
well as benzophenanthridines, orphinanes, and protoberberine. Glaucine, first isolated
from G. flavum, is a cough suppressant [9], and besides its antitussive effect, it has been
shown to possess anticancer activity [10]. A detailed description of the phytoconstituents
and pharmacology of Glaucium species has been outlined by Akaberi, et al. [11].

Among the 12 Glaucium species reported in the flora of Turkey, 7 are endemic [2].
Traditionally, they have been used as antitussive, analgesic, narcotic, sedative, and anti-
hemorrhoidal substances and in the treatment of skin disorders [12–15]. Some studies on
Glaucium species from Turkey were also performed. For example, six isoquinoline alkaloids,
glaucine, isocorydine, protopine, cryptopine, allocryptopine and trans-canadine methochlo-
ride have been obtained from the aerial parts of G. grandiflorum [16]. Allocryptopine,
protopine, berbithine and reticuline were obtained from G. grandiflorum var. grandiflorum
and G. corniculatum [17,18]. A novel compound, glauciumoline, in addition to seven known
isoquinolines, was isolated from the aerial parts of G. corniculatum var. corniculatum and
G. grandiflorum subsp. refractum var. torquatum [7]. The biological activity, including
antioxidant, anti-acetylcholinesterase, anti-inflammatory, antimicrobial, and anticancer
activities of Glaucium species grown in Turkey were also demonstrated [7,19]. However,
one of the less studied species is G. acutidentatum Hausskn. and Bornm. Only one report on
the total alkaloids, phenolics, and flavonoids contents, as well as its acetylcholinesterase
and antiproliferative activities, was found [4]. Thus, the present study was performed to
determine the chemical constituents of the aerial parts of G. acutidentatum using different
extraction methods. Additionally, the cytotoxicity and antioxidant activity of different ex-
tracts based on their capacity to scavenge free radicals, chelate, and reduce metal ions were
evaluated. Their ability to inhibit enzymes implicated in diabetes, skin hyperpigmentation,
and Alzheimer’s diseases was also evaluated.

2. Materials and Methods
2.1. Plant Material

Plant materials were gathered from a field investigation in 2022 (Elazığ, between
Harput and Elazığ). Taxonomic identification, performed by Dr. Ugur Cakilcioglu, resulted
in the deposition of a specimen in the herbarium of Munzur University (Voucher No:
UC-20-17). The field study on plants (either cultivated or wild), including the collection
of plant material, was performed in accordance with relevant institutional, national, and
international guidelines and legislation. Aerial parts were meticulously separated, dried in
the shade at room temperature, ground into powder using a laboratory mill, and stored
in darkness.

2.2. Extraction

Maceration (MAC) and Homogenizer assisted extraction (HAE) were performed.
Two solvents, namely methanol and water, were utilized in the preparation of extracts.
Maceration of each 10 g plant material with 200 mL of methanol or water was carried
out overnight at room temperature. In HAE, the plant material (5 g) was extracted with
solvents (100 mL) using an ultra-turrax at 6000× g for 5 min. Using the infusion method,
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the plant material (10 g) was soaked in boiled water for 15 min to obtain the water extract.
Subsequently, the organic solvents were evaporated for solvent removal, and the resulting
water extracts were dried using a freeze-dryer.

2.3. Assay for Total Phenolic and Flavonoid Contents

The quantification of phenols and flavonoids was conducted in accordance with the
procedures outlined in the earlier methodologies and their details are given in Supplemental
Materials [20,21]. The results are expressed as gallic acid equivalents (GAE) and rutin
equivalents (RE), respectively.

2.4. Liquid Chromatography—Mass Spectrometry Analysis

The phytochemical analysis was conducted using Agilent 1200 Infinity HPLC coupled
to Agilent 6530B QTOF system (Agilent Technologies, Santa Clara, CA, USA). The extracts
(10 µL) were separated on C18 Gemini® column (3 µm i.d. with TMS end-capping, 110 Å,
100 × 2 mm) supported by a guard column (Phenomenex Inc., Torrance, CA, USA) by
the following gradient system: 0–60% B for 45 min, 60–95% B for 1 min, and 95% B for
9 min; A was water with 0.1% formic acid v/v, while B acetonitrile with 0.1% formic acid
v/v. The flow rate was maintained at 0.2 mL/min at 20 ◦C. Positive and negative ions
generated in ESI ion source (nebulizer pressure: 35 psig, drying gas temp: 275 ◦C, drying
gas flow: 10 L/min) were fragmented at the collision energies of 10 and 30 eV and detected
in a range of 50–1700 m/z. Other working parameters were as follows: sheath gas temp:
325 ◦C, sheath gas flow: 12 L/min; skimmer 65 V, capillary V (+): 4000 V, and fragmentor
140 V. The identification was based on accurate masses and fragmentation patterns, also
supported by available literature sources [22].

2.5. Antioxidant Tests

In vitro antioxidant assays, based on previously reported techniques, were executed.
The 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) radical scavenging assays were conducted using the methods described by
Kirby and Schmidt [23] and Re et al. [24]. As reducing power assays, cupric-reducing
antioxidant capacity (CUPRAC) and ferric-reducing antioxidant power (FRAP) tests were
performed using the methods of Apak et al. [25] and Benzie and Strain [26]. Based on the
method of Prieto et al. [27], the antioxidant potential assessed by the phosphomolybdenum
(PBD) assay was measured. The results of the above assays were expressed as Trolox
equivalents (TE). As another antioxidant assay, the metal chelating (MCA) test was per-
formed as described by Dinis et al. [28] and the results were expressed as mg of disodium
edetate equivalents (EDTAE) per gram of extract. All details of the methods are given in
Supplemental Materials.

2.6. Enzyme Inhibitory Tests

Enzyme inhibition experiments were performed on the samples in accordance with
established protocols. The quantification of amylase and glucosidase activity inhibition
was expressed as mmol of acarbose equivalents (ACAE) per gram of extract, the assays
were performed as described by Safasik [29] and Ting et al. [30], respectively. The acetyl-
cholinesterase (AChE) and butyrylcholinesterase (BChE) activity inhibition assays were
applied, based on Elmann’s method [31], and the results are expressed as mg of galan-
thamine equivalents (GALAE) per gram of extract. Tyrosinase inhibition was measured as
reported by Masuda et al. [32] and the results were evaluated as mg of kojic acid equiv-
alents (KAE) per gram of the tested extracts. All details of the methods are given in
Supplemental Materials.

2.7. Cytotoxic Evaluation

Cytotoxicity was tested using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide)-based assay according to the previously described methodology [33]. Cells were
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acquired from the American Type Culture Collection (ATCC) and included non-cancerous
VERO cells as well as cancer-derived cells, namely AGS (ATCC: CRL-1739, human gastric
adenocarcinoma), FaDu (ATCC: HTB-43, human hypopharyngeal squamous cell carci-
noma), and RKO (ATCC: CRL-2577, human colon cancer). To obtain stock solutions for
biological studies, the extracts obtained using methanol were dissolved (50 mg/mL) in
DMSO, while aqueous extracts were dissolved in phosphate-buffered saline. Briefly, the
monolayer of the appropriate cell line was incubated with tested extracts diluted in cell
media for 72 h, and then cellular viability was assessed using the MTT method. Absorbance
was measured (540 and 620 nm) using the Synergy H1 Multi-Mode Microplate Reader
(BioTek Instruments, Inc., Winooski, VY, USA) with Gen5 software (ver. 3.09.07; BioTek
Instruments, Inc.) and the results were further analyzed using GraphPad Prism software
(ver. 9.0.0, GraphPad Software, Boston, MA, USA). The CC50 (the 50% cytotoxic concen-
tration; concentration resulting in a 50% reduction of cell viability) values were calculated
from dose–response curves (non-linear regression). Moreover, the selectivity toward cancer
cells was assessed by calculating the selectivity indexes (VERO CC50/cancer cell line CC50).
Differences in CC50 values between cell lines were statistically analyzed using GraphPad
Prism (two-way ANOVA, Tukey’s multiple comparisons test).

2.8. Molecular Modeling

These are the proteins’ X-ray crystal structures that were retrieved from the Protein
Data Bank (https://www.rcsb.org/) [34]: α-amylase (PDB ID: 1B2Y) [35], AChE (PDB ID:
6O52) [36], BChE (PDB ID: 6EQP) [37], “CDK2 in complex with inhibitor RC-3-89” (PDB ID:
4GCJ) [38], and “Factor Inhibiting HIF (FIH) in complex with zinc and GSK128863” (PDB
ID: 5OP6). Furthermore, homology models of human glucosidase and tyrosinase were
retrieved from our previous study [39]. With the help of playmolecule’s “prepareProtein”
server (https://www.playmolecule.com/ accessed on 2 February 2024), all proteins were
prepared using the estimated pKa values of the titratable residues in each protein [40]. In
general, members of the genus Glaucium are known to be rich in alkaloids, and thus, we
focused on the interactions between alkaloids and the selected targets. All compounds’ 3D
structures were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/
accessed on 2 February 2024) and optimized using the UCSF Chimera tool [41]. Docking
grid files were made utilizing the cocrystal ligand binding coordinates with the help of
the MGLTools 1.5.6 program. AChE (x: 5.01, y: 35.37, and z: −8.38 Å), BChE (x: 42.16,
y: −17.91, and z: 42.72 Å), tyrosinase (x: 29.99, y: 18.21, and z: 96.45 Å), amylase (x: −1.54,
y: −44.04, and z: 22.63 Å), glucosidase (x: −13.77, y: 24.04, z: 12.35 Å). For all proteins, a
grid box of x: 40, y: 40, and z: 40 Å dimension was used. As a result of this procedure, every
hydrogen atom was united and given a Gasteiger partial charge. To dock, AutoDock 4.2.6
(https://autodock.scripts.edu/ accessed on 2 February 2024) was used while implementing
a previously described docking method [42]. Using Biovia DS Visualizer v4.5 (BIOVIA,
San Diego, CA, USA), protein–ligand interaction was investigated, and docking binding
energy scores in kcal/mol were computed.

2.9. Statistical Analysis

The experiments were executed in triplicate, and differences among the extracts were
assessed using two-way ANOVA followed by Tukey’s multiple comparisons test. The
statistical analysis was conducted using Graph Pad Prism (version 9.2).

3. Results and Discussion

Methanolic (M) and aqueous (W) extracts of aerial parts of G. acutidentatum were
examined for their chemical composition and antioxidant, cytotoxic, and enzyme-inhibitory
activities. Different extracts were coded as follows: HAE-M and HAE-W represent extracts
obtained from homogenizer-assisted extraction; MAC-M and MAC-W are extracts prepared
by maceration, and INF-W is the aqueous extract obtained by infusion.

https://www.rcsb.org/
https://www.playmolecule.com/
https://pubchem.ncbi.nlm.nih.gov/
https://autodock.scripts.edu/
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3.1. Total Phenolic (TPC) and Flavonoids (TFC) Contents

The TPC and TFC in different extracts of G. acutidentatum aerial parts were determined,
and the results are presented in Table 1. The TPC ranged between 23.10 and 53.22 mg
GAE/g, and the content in different extracts was in the following descending order: HAE-
M > MAC-M > INF-W > MAC-W > HAE-W (p < 0.05). The TFC was in the range of 1.32 and
30.28 mg RE/g, with the highest significant (p < 0.05) content recorded from MAC-M
followed by HAE-M. All other extracts had low TFC (≤2.10 mg RE/g). Thus, it was clear
that methanol as a solvent recovered higher phenolic substances than water, with HAE
as the best method of extraction of TPC and MAC method for TFC. These results were
far higher than those recorded by Kocanci, Hamamcioglu, and Aslım [4], who reported
TPC values of 0.70 and 1.00 mg GAE/g and TFC values of 1.84 and 1.62 mg RE/g for
the methanol and aqueous extracts, respectively. In fact, the recovery of phenolics from
plant materials is affected by many factors, including genetic diversity, the age of the plant,
different environmental conditions and harvesting season, as well as the type of solvent
extraction and extraction process [43].

Table 1. Total phenolic and flavonoid contents in extracts from Glaucium acutidentatum aerial parts.

Extract TPC (mg GAE/g) TFC (mg RE/g)

HAE-M 53.22 ± 0.10 a 20.30 ± 0.25 b

HAE-W 23.10 ± 0.16 e 2.10 ± 0.14 c

MAC-M 36.49 ± 0.05 b 30.28 ± 0.51 a

MAC-W 23.81 ± 0.16 d 1.32 ± 0.47 c

INF-W 30.88 ± 0.43 c 1.94 ± 0.38 c

Values are reported as mean ± SD of three parallel measurements. GAE: Gallic acid equivalents; RE: Rutin
equivalents. M, methanol; W, water, HAE, homogenizer assisted extraction, MAC, maceration; INF, infusion.
Different letters in the same column indicate significant differences in the extracts (p < 0.05).

3.2. Chemical Profile of Extracts

In this study, a total of 55 compounds were tentatively identified in various methanolic
and aqueous extracts of aerial parts of G. acutidentatum, using high-performance liquid
chromatography (RP-HPLC) coupled with electron spray ionization-quadrupole/time of
flight-mass spectrometry (ESI-QToF/MS-MS). These specialized metabolites were classified
as phenolic acids (hydroxycinnamic acid derivatives), flavonoids, alkaloids, coumarins,
and organic and fatty acids. Among them, alkaloids are the most extensively studied group
of metabolites reported in various species of Glaucium spp. [11,44,45]. To our knowledge,
this is the first report comparing the phytochemical profile of G. acutidentatum extracts pre-
pared using traditional and modern extraction techniques. Spectrometric data acquired in
negative ionization mode gave reliable results for polyphenols (flavonoids, phenolic acids,
and coumarins), whereas positive ionization mode was suitable for alkaloid identification.
The aporphine, beznyltetrahydroisoquinoline, and protopine types of alkaloids have been
identified. Among them, glaucine (30) was the most abundant alkaloid identified in all
samples. The MS data, including retention time, molecular formula, precursor, and product
ions are summarized in Table 2.

Polyphenols were represented mainly by flavonoids, which occurred in the form of
glycosides. Only two compounds were noted in methanolic extracts of G. acutidentatum
as aglycones: quercetin (43) and isorhamnetin (44). Glycosides of quercetin, isorham-
netin, and kaempferol were characterized by both fragmentation ions at m/z 301, 314,
and 285, respectively, derived from aglycone core, after neutral loss of sugar (−162 Da,
−132 Da, −146 Da) moiety and diagnostic RDA fragments [46]. Among them six com-
pounds identified as isorhamnetin 3-O-rutinoside (37), isoquercitrin (38), kaempferol-7-O-
hexoside (39), kaempferol-3-O-hexoside-pentoside (40), quercetin-3-O-rhamnoside isomer
(41), isorhamnetin-3-O-hexoside (42) were found exclusively in methanolic extracts. Ruto-
side (36) was the only one identified in all five samples.
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Out of the eight phenolic acids detected in the G. acutidentatum extracts, three were
coumaric acid derivatives (8, 9, and 13), one hydroxybenzoic acid derivative (7), whereas
the remaining were ferulic acid derivatives (10, 11, 14). In the case of compound 12, spotted
only in methanolic extracts, the collision-induced dissociation (CID) resulted in product
ions almost identical to previously published MS/MS data for caffeoylmalic acid, reported
in Trifolium pretense L. [47]. The precursor ion [M−H]− at m/z 295.0545 was in accordance
with an empirical formula of C13H12O8. Considering the fragmentation pattern, together
with UV–vis spectra obtained, compound 12 was tentatively identified as caffeoylmalic
acid. Ferulic acid derivative (10), 2-feruoyl-isocitric acid (11), and feruloylmalic acid
(14) were identified in all five samples and shared a similar fragmentation pathway. An
intense fragmentation ion at m/z 193, 173, and 134, observed in their MS/MS spectra was
associated with the ferulic acid molecule. According to Masike, et al. [48], the presence
of characteristic product ions at m/z 155 and at m/z 111 and the lack of fragment ion at
m/z 191 in MS/MS spectra, enabled the distinguishing of hydroxycinnamoyl-isocitric acids
from hydroxycinnamoyl-quinic acids. Therefore, on the basis of detected fragmentation
ions in negative ionization mode (see Table 2), compound 11 was proposed to be 2-feruoyl-
isocitric acid while compound 9—3-p-coumaroylquinic acid. The additional product ion
at m/z 115.0049 observed in MS/MS spectra for compound 14 might indicate malic acid
substitution, hence it was tentatively assigned as feruloylmalic acid. Besides phenolic
acids, two coumarins: dihydroxycoumarin-hexoside (34) and dihydroxycoumarin (35),
were spotted in the negative ionization mode of methanolic extracts.

The MS spectra of all samples, analyzed in positive ionization mode, revealed the
most intensive peak for compound 30 eluted at 20.83 min. The protonated molecular ion
at m/z 356.1879 supported the molecular formula of C21H25NO4. An intense product ion
at m/z 325.1371 [M+H−31]+ observed in MS/MS spectra, was deducted to be formed by
neutral loss of –NH2CH3 from [M+H]+, while fragmentation ions shown in Table 2 sug-
gested subsequent elimination of small molecules from product ion, such as –CH3, –OCH3
and –CO, indicating the aporphine alkaloid. Spectroscopic (λmax = 220, 280, 305 nm) and
spectrometric data (LC-MS/MS data) acquired in this study were in accordance with data
published by Sun et al. [49] and Bournine et al. [44] for glaucine, therefore, the compound
was unambiguously identified as glaucine, while compound 33 as its structural isomer, for
example, takatonin (PubChem). Seven compounds (16, 22, 23, 26, 27, 31, 32) detected in all
samples, shared similar behavior to glaucine fragmentation and formed characteristics for
aporphinoids, product ions with m/z greater than 200 Da [50]. The precursor ion [M+H]+

of compound 23 at m/z 342.1715 was in accordance with the empirical molecular formula
of C20H23NO4. Compound 26 presented a similar fragmentation pattern but differed in the
intensity of the generated product ions. A comparison of the product ions with the highest
intensity at m/z 311.1266 for compound 23 and at m/z 279.0994 for compound 26 allowed
their identification as isocorydine and corydine, respectively, reported in G. aleppicum by
Barakat et al. (2016). Two compounds, 27 and 31, afforded precursor ions at m/z 372 and
a molecular formula of C21H25NO5, suggesting the glaucine structure with an additional
OH group. Characteristic neutral loss of –NH2CH3 from the precursor ion of compound
31 resulted in a product ion at m/z 341.1370 and 16 Da less at m/z 325.1424 (C20H20O4

+).
For compound 27, the neutral loss of H2O from the precursor ion at m/z 372.1832 led to
the formation of an intense fragmentation ion at m/z 354.1682 (C21H24NO4

+). A small
product ion at m/z 323.1275 (C20H18O4

+) formed as a result of –NH2CH3–H2O loss was
also detected in its MS/MS spectrum. By comparison of the fragmentation behavior of these
compounds, compound 31 was identified as cataline, while compound 27, which differs
only in the position of the OH group, as hydroxyglaucine [11,45]. Using the same approach,
compound 32 with a precursor ion at m/z 352.1203 (and the following fragmentation ions
at m/z: 337.0920, 336.0836, 322.0688, 307.0775) was proposed to be corunnine (glauvine),
previously identified in G. flavum var. vestitum [51]. Three compounds, 16, 22, and 19,
generated product ions at m/z 328 (C19H21NO4), which was 28 Da less than that of glaucine.
The fragment ions of compounds 16 and 22, generated after CID, were almost identical and
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greater than 200 Da, suggesting aporphine alkaloids. However, the acquired spectrometric
data were found to be insufficient for unambiguous identification of compounds 16 and 22,
and therefore, they were identified as structural isomers—isoboldine and boldine. In the
case of compound 19, the benzyltetrahydroisoquioline structure was under consideration
due to being observed in the MS/MS spectrum major product ions with m/z less than
200 Da, suggesting α and/or β-cleavage of the alkaloid skeleton. Its fragmentation ions (at
m/z 297.1105, 265.0840) observed in MS/MS spectra were 2 Da less than that of compound
20, tentatively identified as reticuline (Han et al., 2010), while major product ions of high
intensity (at m/z 192.1003, 175.0735, 137.0576) were almost the same as that of reticuline,
suggesting 1,2-dehydroreticuline structure, identified for the first time in G. acutidentatum
extracts (see Table 2). Compounds 20 and 25 shared similar fragmentation ions but they
differed only in retention time and occurrence. Compound 20, tentatively identified as reti-
culine, was detected in all five extracts, while compound 25 (reticuline isomer) was found
solely in methanolic extracts. Analysis of the product ion of compound 24 (C20H25NO4), at
m/z 189.0875 generated by β-cleavage, suggested an additional CH3 group in reticuline
structure, while detection of the product ion at m/z 137.0575 indicated the presence of one
OH and one OCH3 group in C-ring as in the case of reticuline. Considering the retention
time (after reticuline) and fragmentation behavior described above, compound 24 was
assigned as laudanine [52], while compound 18 with similar to laudanine precursor ion
at m/z 344.1866 (C20H25NO4) and reticuline-like fragmentation pattern, was proposed
to be reticuline derivate. Taking into account the biosynthetic pathway of isoquinoline
alkaloids like reticuline [53–55], the structures of N-methylcoclaurine (17) and its derivative
4′-O-methyl-N-methylcoclaurine (21) were also noted in the positive ionization mode of all
analyzed extracts [56]. The results of the LC/MS study revealed another compound (15)
having a precursor ion [M+H]+ at m/z 314.1759 similar to 4′-O-methyl-N-methylcoclaurine,
supporting the molecular formula of C19H23NO3. By comparing the acquired spectrometric
data with those reported by Zuo et al. [50], compound 15 generated similar fragmenta-
tion ions as described for magnocurarine. The intensive product ion at m/z 297.0995 was
detected as a result of neutral loss of –NH(CH3)2 from the precursor ion. Further frag-
mentation resulted in distinctive product ions at m/z 175.0684 and 143.0417, suggesting
β-cleavage with subsequent elimination of the –CH3OH group, whereas the fragmentation
ion at m/z 107.0421 indicated substitution with a single hydroxyl group in the C-ring
as presented by Zuo et al. [50]. However, two additional product ions at m/z 143.0417
and 121.0571 with low intensities were spotted in the MS/MS spectrum, suggesting that
compound 15 may be lotusine rather than magnocurarine [56], hence compound 15 was
tentatively identified as lotusine. The last type of alkaloids found in G. acutidentatum
extracts were protopine alkaloids, which are characterized by B-ring cleavage and/or RDA
fragmentation with the subsequent formation of product ions below 230 Da [50]. Two
peaks, 28 and 29, with precursor ions at m/z 354.1237 and 370.1624, respectively, had the
same basic skeleton of protopine alkaloid. By comparing their fragmentation behavior
with those reported by Barakat, et al. [57], compound 28 was unambiguously identified as
protopine, while compound 29 as α-allocryptopine, identified for the first time in G. acuti-
dentatum. Diagnostic ions with m/z values of 189 and 188, resulting from B-ring cleavage
and/or RDA fragmentation, observed in the MS/MS spectra of both compounds, con-
firmed our assumption [50]. In addition, small product ions at m/z 336.1223 and 352.1520
were found to be generated by the neutral loss of H2O from the precursor ion of compound
28 and compound 29, respectively, distinguishing them from tetrahydroprotoberberine and
N-methyltetrahydroprotoberberine alkaloids [50].
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Table 2. Chemical profile of extracts from Glaucium acutidentatum aerial parts.

No Tentative Identification Rt
(min)

Molecular
Formula

Precursor
Ion (m/z) Fragment Ions (m/z) HAE-M HAE-W MAC-M MAC-W INF-W Ref.

Organic acids

1. Malic acid 1.85 C4H6O5 133.0008 a 115.0037; 89.0245; 72.9956;
71.0158

√ √ √ √ √
[58]

2. Maleic acid 2.18 C4H4O4 115.0058 a 73.0305; 71.0154; 87.0103
√ √ √ √ Fragmentation;

PubChem

3. Citric acid 2.26 C6H8O7 191.0230 a 111.0067; 87.0079; 57.0341
√ √ √ √

[58]

4. Succinic acid 2.86 C4H6O4 117.0207 a 99.0101; 73.0310; 55.0211
√ Fragmentation;

PubChem

5. Fumaric acid 3.45 C4H4O4 115.0040 a 99.0088; 73.0298
√ Fragmentation;

Kegg

6. Isopropylmalic acid 13.62 C7H12O5 175.0633 a 115.0390; 113.0615; 85.0655
√ √ √ √ √

PubChem

Phenolic acids

7. Dihydroxybenzoic acid
hexoside 12.20 C13H15O9 315.1090 a 153.0562; 135.0455;

123.0453; 109.0289
√ √ √ Fragmentation;

PubChem

8. beta-D-Glucosyl-2-coumarate 16.26 C15H18O8 325.0969 a 163.0376; 119.0502
√ √ √ Fragmentation;

PubChem

9. 3-p-Coumaroylquinic acid 16.71 C16H18O8 337.0932 a 191.0548; 163.0397; 119.0500
√ √ √ √ Fragmentation;

PubChem

10. Ferulic acid derivative 19.58 — 551.1859 a 193.0503; 178.0268;
149.0609; 134.0356

√ √ √ √ √ Fragmentation;
PubChem

11. 2-Feruoyl-isocitric acid 21.16 C17H20O9 367.1090 a
193.0490; 173.0453;
155.0343; 134.0366;
111.0448

√ √ √ √ √
[48]

12. Caffeoylmalic acid
(=Phaselic acid) 21.62 C13H12O8 295.0545 a 179.0336; 135.0429; 134.0179;

133.0137; 115.0040
√ √

[47]

13. Malic acid p-coumarate 24.52 C13H12O7 279.0558 a 163.0393; 133.0138; 119.0497
√ √ √ √ √ Fragmentation;

PubChem
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Table 2. Cont.

No Tentative Identification Rt
(min)

Molecular
Formula

Precursor
Ion (m/z) Fragment Ions (m/z) HAE-M HAE-W MAC-M MAC-W INF-W Ref.

14. Feruloylmalic acid 25.27 C14H14O8 309.0650 a
193.0511; 178.0270;
149.0609; 134.0371;
115.0049

√ √ √ √ √
Fragmentation

Alkaloids

15. Lotusine 13.24 C19H23NO3 314.1759 b

269.1086; 237.0828;
175.0684; 143.0417;
121.0571;
107.0421

√ √ √ √ √
[56]

16. Isoboldine or boldine 14.02 C19H21NO4 328.1537 b 297.0995; 282.0759; 265.0728;
251.0570

√ √ √ √ √
[11]

17. N-methylcoclaurine 14.79 C18H21NO3 300.1579 b
269.1145; 237.0897; 175.0734;
137.0555;
107.0467

√ √ √
[50,55]

18. Reticuline derivative 15.16 C20H25NO4 344.1866 b
299.1262;
267.1000; 192.1006; 175.0745;
137.0587

√ √ √ √ √
Fragmentation

19. 1,2-dehydroreticuline 15.52 C19H21NO4 328.1534 b
297.1105; 265.0840; 192.1003;
175.0735;
137.0576

√ √ √ √ √ Fragmentation;
PubChem

20. Reticuline 16.11 C19H23NO4 330.1710 b
299.1275; 267.1012; 192.1013;
175.0745;
137.0594

√ √ √ √ √ Fragmentation;
PubChem
[52]

21. 4′-O-Methyl-N-
methylcoclaurine 16.21 C19H23NO3 314.1759 b 299.1129; 269.1153; 175.0767;

137.0590; 107.0485
√ √ √

[53,55]

22. Isoboldine or boldine 16.86 C19H21NO4 328.1542 b 297.1116; 282.0873; 265.0857;
251.0570

√ √ √ √ √ Fragmentation;
[11]

23. Isocorydine 17.53 C20H23NO4 342.1715 b 311.1266; 280.1064; 279.0997;
206.1163; 189.0746

√ √ √ √ √
[57]

24. Laudanine 17.77 C20H25NO4 344.1827 b 313.1390; 281.1077; 206.1152;
189.0875; 137.0575

√ √ √ √ Fragmentation;
[52]
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Table 2. Cont.

No Tentative Identification Rt
(min)

Molecular
Formula

Precursor
Ion (m/z) Fragment Ions (m/z) HAE-M HAE-W MAC-M MAC-W INF-W Ref.

25. Reticuline isomer 18.29 C19H23NO4 330.1710 b
299.1230; 267.0935; 192.1000;
175.0736;
137.0588

√ √ Fragmentation;
[52]

26. Corydine (=glaucentrin) 18.45 C20H23NO4 342.1675 b 311.1258; 280.1037; 279.0994;
189.0890

√ √ √ √ √
[57]

27. 3-Hydroxyglaucine 18.68 C21H25NO5 372.1832 b 354.1682;
323.1275; 308.1061

√ √ √ √ √
PubChem

28. Protopine 18.79 C20H19NO5 354.1327 b
336.1223; 275.0678;
206.0782; 189.0762; 188.0687;
149.0592

√ √ √ √ √ PubChem;
[57]

29. α-Allocryptopine 19.34 C21H23NO5 370.1624 b
352.1520; 306.0887; 290.0906;
206.0783; 189.0751; 188.0706;
181.0828; 165.0883

√ √ √ √ √
[57]

30. Glaucine
syn. Boldine dimethyl ether 20.83 C21H25NO4 356.1879 b

325.1371; 310.1138; 295.1033;
294.1188;
279.0962; 251.1011

√ √ √ √ √ PubChem;
Fragmentation

31. Cataline 22.45 C21H25NO5 372.1797 b 355.1753;
341.1370; 325.1424; 312.1342

√ √ √ √ √
[11,45]

32. Corunnine (=glauvine) 30.19 C20H18NO5 352.1203 b

337.0920; 336.0836;
322.0688; 307.0775;
306.0744; 294.1212;
279.1000; 251.1025

√ √ √ √ √
[51]

33. Glaucine isomer
(e.g., takatonin) 32.06 C21H25NO4 356.1879 b

325.1421; 310.1176; 295.1043;
294.1230;
279.0991; 251.1047

√ √ √ √ √ Fragmentation;
PubChem

Coumarins

34. Dihydroxycoumarin-hexoside 15.49 C15H16O9 339.0710 a 177.0194
√ √ Fragmentation;

PubChem

35. Dihydroxycoumarin 21.50 C9H6O4 177.0216 a 159.8905; 133.0291; 105.0344
√ √ Fragmentation;

PubChem
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Table 2. Cont.

No Tentative Identification Rt
(min)

Molecular
Formula

Precursor
Ion (m/z) Fragment Ions (m/z) HAE-M HAE-W MAC-M MAC-W INF-W Ref.

Flavonoids

36. Rutoside 23.15 C27H30O16 609.1636 a 301.0132; 300.0227; 271.0230;
255.0163; 178.9974; 151.0001

√ √ √ √
[47]

37.
Tetrahydroxymethoxyflavone
O-rutinoside (Isorhamnetin
3-O-rutinoside)

24.12 C28H32O16 623.1696 a

315.0464; 314.0414;
300.0198; 299.0166;
271.0204; 243.0299;
151.0022

√ √ Fragmentation;
PubChem

38. Isoquercitrin 24.27 C21H20O12 463.0666 a 301.0368; 300.0295; 271.0262;
255.0310; 178.9994; 151.0041

√ √
[47]

39.
Tetrahydroxyflavone-7-O-
hexoside
(Kaempferol-7-O-hexoside)

25.08 C21H20O11 447.0915 a 285.0390; 284.0326; 255.0282;
227.0343; 151.0023

√ √ Fragmentation;
PubChem

40.

Tetrahydroxyflavone-3-O-
hexoside-pentoside
(Kaempferol-3-O-hexoside-
pentoside)

25.37 C27H30O15 593.1599 a 285.0408; 255.0309; 227.0366;
151.0021

√ √ Fragmentation;
PubChem

41.

Pentahydroxyflavone-3-O-
rhamnoside
(Quercetin-3-O-rhamnoside
isomer)

25.77 C27H30O16 609.1543 a 301.0343; 300.0268; 271.0230;
255.0306; 178.9971; 151.0054

√ √ Fragmentation;
PubChem

42. Isorhamnetin-3-O-hexoside 25.92 C22H22O12 477.1025 a 314.0428; 299.0217;
271.0269; 151.0017

√ √
[59]

43. Quercetin 30.63 C23H20O12 301.0396 a 178.9975; 151.0023
√

[47]

44. Isorhamnetin 34.58 C16H12O7 315.0553 a 300.0290; 271.0196; 151.0034
√

[59]

Isoprenoids

45. Norisoprenoid glucoside 15.52 C19H34O9 451.2207 c 405.2145; 225.1456;
179.0584; 167.1064

√ √ √ √
PubChem
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Table 2. Cont.

No Tentative Identification Rt
(min)

Molecular
Formula

Precursor
Ion (m/z) Fragment Ions (m/z) HAE-M HAE-W MAC-M MAC-W INF-W Ref.

Fatty acids

46.

4,10-dimethyl-9-[3,4,5-
trihydroxy-6-
(hydroxymethyl)oxan-2-
yl]oxydodeca-2,4,6-trienedioic
acid

25.58 C20H30O10 429.1831 a 249.1131; 205.1232
√ √ √ √ √

PubChem

47. Fatty acid 33.73 C18H34O5 329.2386 a 229.1441; 211.1336;
171.1014

√ √ √ √ √
PubChem

48. Fatty acid 46.86 C18H30O3 293.2158 a 275.2018; 224.1411;
195.1386; 171.1016

√ √ √ √ √
PubChem

49. Glyceryl linolenate 51.61 C21H36O4 353.2712 b 335.2530; 261.2168;
243.2060

√
PubChem

50.
2-hydroxy-6-[(8Z,11Z)-
pentadeca-8,11,14-
trienyl]benzoic acid

51.80 C22H30O3 241.2119 a 297.2194; 229.1177;
159.0807; 106.0422

√
PubChem

51. Linoleic acid amide =
9,12-Octadecadienamide 52.36 C18H33NO 280.2652 b 263.2340; 245.2235

√ √ √ √
PubChem

52. Linolenic acid (9Z,12Z,15Z)-
octadeca-9,12,15-trienoic acid 52.71 C18H30O2 279.2336 b 109.1001; 95.0849;

81.0697; 67.0544;55.0547
√ √

PubChem

53. Hexadecanamide 53.46 C16H33NO 256.2652 b 102.0903; 88.0751;
74.0598; 57.0703

√ √ √ √ √
PubChem

54. Oleamide 53.701 C18H35NO 282.2809 b 265.2488; 248.2385
√ √ √ √

PubChem

55. Linolenyl alcohol 54.01 C18H32O 265.2546 b 247.2389
√

PubChem

M, methanol; W, water, HAE, homogenizer assisted extraction, MAC, maceration; INF, infusion.; a [M−H]−, b [M+H]+, c [M+HCOO]−, ions with the highest intensity in MS/MS are
indicated in bold,

√
—compound present in the extract.
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A few fatty acids (46, 47, 48, 49, 50, 51, 52, 53, 54, 55) and one isoprenoid (45) were
tentatively identified in negative or positive ionization mode.

3.3. Antioxidant Activity

Free radicals are responsible for oxidative damage of biomolecules in living or-
ganisms and hence triggering pathologies like Alzheimer’s, cardiovascular disease,
diabetes, and cancer among others. Antioxidants prevent and limit the destructive
effects of free radicles. Natural antioxidants are widely used for many functional food
and pharmaceutical formulations [60]. In the present study, the antioxidant activity
of different extracts of G. acutidentatum aerial parts was evaluated, and the results are
presented in Table 3. Generally, the antioxidant activity of different extracts varied
according to the solvent/method of extraction and assay. The anti-DPPH and anti-ABTS
activities were in the range of 0.86–41.42 and 66.45–103.59 mg TE/g, respectively. Both
methanolic extracts (HAE-M and MAC-M = 41.42 and 33.20 mg TE/g, respectively,
p < 0.05) revealed higher anti-DPPH than all aqueous extracts (0.86–19.48 mg TE/g).
Contrary to DPPH scavenging activity, the three aqueous extracts exerted significantly
(p < 0.05) higher anti-ABTS activity than the methanolic ones, with the highest signifi-
cant (p < 0.05) value recorded from INF-W. Nevertheless, although the two methano-
lic extracts had the lowest values, they exerted higher anti-ABTS activity than the
anti-DPPH one. All extracts displayed considerable ion-reducing capacity, and the
highest significant (p < 0.05) Cu2+ reducing capacity was obtained respectively from
HAE-M (113.55 mg TE/g) and MAC-M (104.07 mg TE/g). The former also exhibited
significantly (p < 0.05) the highest Fe3+ reducing capacity (74.52 mg TE/g) followed by
HAE-W, INF-W, and MAC-M (65.54–60.58 mg TE/g, p ≥ 0.05). The chelating properties
of different extracts ranged between not active and 19.81 mg EDTAE/g, and although
HAE-W revealed significantly (p < 0.05) the highest activity, the other two aqueous
extracts (MAC-W and INF-W) were not active. The highest total antioxidant activ-
ity via the phosphomolybdenum assay was shown from the two methanolic extracts
(HAE-M = 1.20 and MAC-M = 1.00 mmol TE/g, p < 0.05).

Table 3. Antioxidant properties of extracts from Glaucium acutidentatum aerial parts.

Extracts DPPH (mg TE/g) ABTS (mg TE/g) CUPRAC (mg TE/g) FRAP (mg TE/g) Chelating (mg EDTAE/g) PBD (mmol TE/g)

HAE-M 41.42 ± 0.62 a 77.00 ± 2.01 c 113.55 ± 6.44 a 74.52 ± 4.74 a 15.42 ± 0.33 b 1.20 ± 0.17 a

HAE-W 8.94 ± 0.32 d 89.52 ± 0.43 b 60.96 ± 1.65 d 65.54 ± 3.15 b 19.81 ± 0.05 a 0.03 ± 0.01 d

MAC-M 33.20 ± 0.27 b 66.45 ± 5.79 d 104.07 ± 1.04 b 60.58 ± 0.40 b 12.79 ± 0.29 c 1.00 ± 0.12 b

MAC-W 0.86 ± 0.03 e 91.70 ± 0.89 b 61.78 ± 0.35 d 42.60 ± 1.03 c na 0.06 ± 0.01 d

INF-W 19.48 ± 0.48 c 103.59 ± 1.49 a 85.76 ± 0.47 c 65.13 ± 2.05 b na 0.40 ± 0.03 c

Values are reported as mean ± SD of three parallel measurements. PBD: Phosphomolybdenum; MCA: Metal
chelating Activity; TE: Trolox Equivalent; EDTAE: EDTA equivalent. M, methanol; W, water, HAE, homogenizer
assisted extraction, MAC, maceration; INF, infusion. Different letters in the same column indicate significant
differences in the extracts (p < 0.05).

The present study represented the first report on the antioxidant activity of G.
acutidentatum. Overall, all extracts displayed considerable antioxidant activity, which
varied according to assay and type of the extract. Although secondary metabolites
are present in all plant organs, their nature, quantity, and biological potential vary
according to many factors like organ studied, extraction methods, and solvent used.
In the present study, it was noted that HAE by methanol allowed higher extraction of
antioxidants. The HAE is an ecologically friendly and economical extraction technique
as it requires a lower consumption of solvent, and the time needed for extraction is
relatively short [61]. Also, hot water extraction is more suitable for recovering extracts
with radical scavenger and metal-reducing properties than maceration by water. In
fact, high extraction temperature for the appropriate time resulted in aqueous extracts
with high antioxidant activity [10]. Antioxidant molecules like ferulic acid deriva-
tives [62], malic acid [63], and citric acid [64] were identified in all extracts. The alkaloid
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boldine, detected in all extracts, was also reported to exert significant antioxidant ac-
tivity [65]. Additionally, it was reported that the antioxidant potential of p-coumaric
acid increases significantly upon conjugation with quinic acid, monosaccharides, and
amines [66]. Thus, the presence of 3-p-coumaroylquinic acid and beta-D-glucosyl-2-
coumarate in many extracts may also enhance their antioxidant activity. Furthermore,
several studies reported a positive correlation between the antioxidant activity of ex-
tracts to their phenolic composition and concentration [67,68]. This agrees well with
the present results obtained from the anti-DPPH, Cu2+ reducing, and total antioxidant
activities, where the methanolic extracts revealed the highest TPC, TFC, and antioxi-
dant activity. In addition, antioxidant molecules like quercetin, isorhamnetin and their
derivatives [69,70], derivatives of kaempferol [71], and dihydroxycoumarin and its gly-
coside [72], which were only identified in the methanolic extracts might be responsible
for its high antioxidant activity. Furthermore, the higher anti-ABTS and Fe3+-reducing
properties of the aqueous extracts could be attributed to the presence of antioxidant
compounds that are highly soluble in water. In fact, the chemical structure of molecules
creates variations in their solubility properties in different solvents and, consequently, in
the antioxidant activity of extracts [73]. Taken together, the obtained antioxidant results
can reflect the importance of G. acutidentatum extracts as a valuable source of natural
antioxidants, and we strongly recommend further analysis of the individual components
of this plant to detect in vivo systems.

3.4. Enzyme Inhibition Activity

Enzymes are currently receiving increased attention due to their potential thera-
peutic effects for several diseases like Alzheimer’s disease, diabetes, and some skin
disorders. The present study evaluated different extracts of G. acutidentatum aerial parts
for their capacity to inhibit the AChE, BChE, Tyr, α-amylase, and α-glucosidase enzymes.
Results are shown in Table 4. The two methanolic extracts (HAE-M and MAC-M) re-
vealed significantly (p < 0.05) higher enzyme inhibition properties in all tested enzymes
than the aqueous extracts. HAE-M recorded the highest anti-AChE (2.55 mg GALAE/g),
and α-amylase inhibition (0.51 mmol ACAE/g) activities, while MAC-M exerted the
best anti-BChE (3.76 mg GALAE/g) activity. They also displayed comparable anti-Tyr
activity (25.15 and 26.79 mg KAE/g, p ≥ 0.05). All aqueous extracts were either less ac-
tive or ineffective against these enzymes. The results of acetylcholinesterase inhibition
activity supported those of Kocanci, Hamamcioglu and Aslım [4], who found that the
activity of the methanolic extract exceeded that of the aqueous extract, and it was in a
concentration-dependent manner. Furthermore, this activity could be partly attributed
to caffeoylmalic acid [47] and quercetin [74], which were detected only in the methanolic
extracts and were reported to exert significant anti-AChE activity. Also, many alka-
loids in Glaucium species are proven to have neuroprotective effects. Glaucine [7] and
protopine [75,76], detected in all extracts, were reported to exert significant anti-AChE
activity. Dolanbay, Kocanci, and Aslim [17] reported that alkaloids of G. corniculatum,
like α-allocryptopine, suppress oxidative stress-induced neuronal apoptosis by sup-
pressing the mitochondrial apoptotic pathway and regulating the cell cycle. The high
anti-Tyr [77] and α-amylase inhibition [78] activities of the two methanolic extracts
could be associated with the richness of these extracts in flavonoids. It is worth mention-
ing that this is the first report on the butyrylcholinesterase, tyrosinase, and α-amylase
inhibitory properties of G. acutidentatum, and although these tests were in vitro, the
results shed some light on the activity of extracts in the direction of neuroprotection,
melanogenesis, and antidiabetic effects indicated that the plant could be a promising
source of enzyme inhibitors.
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Table 4. Enzyme inhibitory properties of in extracts from Glaucium acutidentatum aerial parts.

Extracts AchE
(mg ALAE/g)

BChE
(mg GALAE/g)

Tyrosinase
(mg KAE/g)

Amylase
(mmol ACAE/g)

HAE-M 2.55 ± 0.10 a 1.45 ± 0.10 b 25.15 ± 1.00 a 0.51 ± 0.02 a

HAE-W 1.25 ± 0.09 c 1.09 ± 0.03 c na 0.09 ± 0.01 d

MAC-M 2.07 ± 0.11 b 3.76 ± 0.31 a 26.79 ± 2.36 a 0.45 ± 0.01 b

MAC-W 0.65 ± 0.06 d na na 0.30 ± 0.01 c

INF-W 0.53 ± 0.05 d na na 0.09 ± 0.01 d

Values are reported as mean ± SD of three parallel measurements. GALAE: Galantamine equivalent; KAE: Kojic
acid equivalent; ACAE: Acarbose equivalent; na: not active. M, methanol; W, water, HAE, homogenizer assisted
extraction, MAC, maceration; INF, infusion. Different letters in the same column indicate significant differences in
the extracts (p < 0.05).

3.5. Cytotoxic Effects

It was observed that methanolic extracts from G. acutidentatum showed lower cytotoxicity
toward non-cancerous cells than aqueous extracts (Table 5). Interestingly, HAE-M resulted in
higher cytotoxicity (CC50 = 371.95 µg/mL) than maceration (CC50 = 591.60 µg/mL). A similar
effect was observed for extraction with water; the HAE produced an extract with the highest
cytotoxicity to VERO cells, with CC50 of 157.73 µg/mL, whereas in the case of maceration
and infusion, the cytotoxicity was noticeably lower, with CC50 of 225.70 and 332.97 µg/mL,
respectively. G. acutidentatum aqueous extracts did not show any selective cytotoxicity
toward AGS and RKO cancer cells, while methanolic extracts showed noticeable selectivity,
with the Selectivity Index (SI) between 1.17 and 2.01. MAC-M provided extracts with
significantly (p < 0.0001) higher cytotoxicity toward RKO and AGS cells, compared to their
effect toward non-cancerous cells (Figure 1F), while HAE-M showed significantly (p < 0.01)
higher cytotoxicity only against RKO. All tested G. acutidentatum extracts showed selective
toxicity toward FaDu cancer cells, with SI between 1.62 and 9.04. For the aqueous extract
obtained by maceration, the obtained CC50 value (24.98 µg/mL) against FaDu was the
lowest among all tested samples and was also significantly (p < 0.0001) lower than that
obtained against non-cancerous cells indicative of its high anticancer activity (SI = 9.04). The
dose–response influence of both methanolic extracts on cancer cell lines was comparable
(Figure 1D,E). Conversely, aqueous extracts showed diverse effects on both the normal and
cancer-originating cell lines. Both HAE and infusion-obtained aqueous extracts showed
a similar effect on RKO and AGS (Figure 1A,C), but in the case of maceration-derived
aqueous extract (Figure 1B), lower toxicity was observed toward RKO, compared to AGS.
Figure 1B also depicts the selective toxicity of maceration-derived aqueous extract toward
FaDu cells, where at the concentration of 2 µg/mL, the viability of VERO, RKO, and AGS
cells was comparable to the non-treated control cells (approx. 100% viability), while the
viability of FaDu cells was approx. 75%.

Table 5. Cytotoxicity and anticancer selectivity of Glaucium acutidentatum extracts.

Glaucium
acutidentatum

VERO FaDu AGS RKO

CC50 CC50 SI CC50 SI CC50 SI

HAE-M 371.95 ± 22.69 229.60 ± 28.08 1.62 317.50 ± 8.84 1.17 270.45 ± 12.29 1.38
HAE-W 157.73 ± 7.12 90.95 ± 9.17 1.73 387.17 ± 16.2 0.41 447.87 ± 15.97 0.35
MAC-M 591.60 ± 21.45 274.65 ± 11.70 2.15 337.25 ± 6.72 1.75 294.70 ± 16.78 2.01
MAC-W 225.70 ± 20.95 24.98 ± 4.78 9.04 266.20 ± 17.88 0.85 506.73 ± 32.68 0.45
INF-W 332.97 ± 32.17 112.13 ± 11.75 2.97 929.40 ± 69.93 0.36 1191.50 ± 129.40 0.28

CC50—50% cytotoxic concentration (µg/mL ± SD), calculated from at least three replicates; HAE—homogenizer-
assisted extraction; M, methanol; W, water; MAC—maceration; INF—infusion; SI—anticancer selectivity index
(CC50VERO/CC50Cancer cells).
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Figure 1. The dose–response influence of Glaucium acutidentatum extracts on cell lines (Dose-response
effect of extracts obtained from G. acutidentatum using homogenizer-assisted extraction with wa-
ter (A), maceration with water (B), infusion (C), homogenizer-assisted extraction with methanol (D),
and maceration with methanol (E), (F) Comparison of the CC50 values obtained for different G.
acutidentatum extracts).

Kocanci et al. [4] studied the anti-proliferative potential of G. acutidentatum methano-
lic and aqueous extracts and reported the lack of cytotoxicity toward non-cancerous PC12
cells (CRL-1721; derived from a transplantable rat pheochromocytoma) and low toxicity
toward cancer-originating HT-29 (human colorectal adenocarcinoma) and HeLa (human
cervical adenocarcinoma) cell lines. The CC50 values for PC12 cells after 24 incubation
with methanolic or aqueous extracts were 979 µg/mL and 1383 µg/mL, respectively.
Unfortunately, the authors evaluated the anticancer potential using only two concentra-
tions, 500 and 1000 µg/mL, and reported only the percentage of cellular viability at those
concentrations, which resulted in the inability to calculate the CC50 values. Since higher
cytotoxicity was observed toward cells originating from colorectal adenocarcinoma, in
our studies, we have selected the RKO cells originating from colon cancer, as well as
FaDu and AGS cells, originating from hypopharyngeal and stomach cancer, respectively.

According to the American National Cancer Institute (NCI), the criteria for sig-
nificant anticancer activity for crude extracts is CC50 < 20 µg/mL after 48 h or 72 h
incubation [79]. Other reports [80–82] consider CC50 of up to 30 µg/mL as a promising
crude extract for further research. Taking this into account, it can be concluded that the
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MAC-W of G. acutidentatum shows promising anticancer activity against cells originating
from human hypopharyngeal carcinoma. This activity is highly dependent on the type
of cells and was not observed on RKO and AGS cells. Furthermore, some of the iden-
tified compounds in different extracts were reported to possess significant antitumor
activity. For example, boldine exerted a cytotoxic effect in a concentration-dependent
manner on human colorectal cancer (CRC) and osteosarcoma cell lines [83]. Isocorydine
exhibited a significant anticancer effect against oral squamous cell carcinoma (OSCC)
and also inhibited the proliferation of oral tongue squamous cells (Cal-27) by causing mi-
tochondrial dysfunction and interrupting cellular energy [84]. The aporphine alkaloids,
glaucine, and corydine, were shown to have inhibitory activity against several mouse
tumor cell lines, including leukemia P388 and L1210, melanoma B16, bladder cancer
MBC2, and colon cancer Colon 26 in culture [85]. Protopine was shown to be effective
against different cancer cells like colon cancer (HCT116 and SW480), liver cancer (HepG2,
HepG2, and Huh-7), breast Cancer (MDA-MB-231), pancreatic cancer (MIA Paca-2 and
PANC-1), prostate cancer (HRPC), lung cancer (A549) [86]. Besides these alkaloids, rutin
(flavonoid) has been reported to counteract numerous cancers via several mechanisms
such as cell cycle arrest, inflammation, malignant cell growth inhibition, oxidative stress,
apoptosis induction, and angiogenesis modulation, and all of these are mediated through
the regulation of cellular signaling pathways [87]. Ferulic acid derivatives (phenolic
acids) were shown to possess an important regularity effect on tumor resistance [88].
Future work should focus on identifying these compounds and elucidating their specific
roles against the tested cell lines.

3.6. Molecular Docking

The binding propensity of the dominant compounds in the extracts of G. acuti-
dentatum from Turkey flora against the studied target proteins was predicted using
molecular docking. In general, members of the genus Glaucium are known to be rich in
alkaloids. Therefore, we focused on the interactions between alkaloids and the selected
targets. After chemical identification and based on Table 2, we selected alkaloids present
in all methanol extracts because methanol extracts were generally more active than
water extracts.

The calculated binding energy scores (in kcal/mol) are shown in Figure 2. All the
dominant compounds demonstrated potential binding to these target proteins, with a
preference for AChE, CDK2, and FIH. For instance, 1,2-dehydroreticuline occupied the
catalytic channel of AChE, forming an H-bond with Ser293, π–cation, π–sigma, and π–π
stacking interactions with Trp286, as well as multiple van der Waals interactions with
amino acid residues in the tunnel (Figure 3A). Trp286 is one of the important residues
for the AChE activity [36]. Similarly, 1,2-dehydroreticuline formed similar interactions
with the structurally related enzyme BChE: H-bond with Ser198, π–cation, π–sigma, π–π
stacking, and hydrophobic interactions with Tyr332, Trp231, Phe329, and Ala328, respec-
tively, and a few van der Waals interactions (Figure 3B). Interestingly, the binding of
4′-O-Methyl-N-methylcoclaurine to amylase (Figure 4A), tyrosinase (Figure 4B), and glu-
cosidase (Figure 4C) was achieved through the formation of H-bonds, π–cation, π–sigma,
π–π stacking, and van der Waals interactions all over the active sites of these enzymes.
The catalytically essential Cu2+ ions in tyrosinase were also engaged in van der Waals
interaction (Figure 4B).

Furthermore, analysis of the binding of these bioactive compounds to possible
anticancer target proteins CDK2 and FIH was carried out as described above. Molec-
ular docking results suggested that some of the compounds, which include lotusine,
isoboldine, 1,2-dehydroreticuline, 4′-O-Methyl-N-methylcoclaurine, and corunnine pos-
sess CDK2 and HIF-1 inhibitory activities. For example, of the different interactions
present in the crystal structure of CDK complexed with inhibitor RC-3-89 (PDB ID: 4GCJ)
(Figure 5A), an H-bond with the backbone of Leu83 and the side chain of Asp86, and hy-
drophobic interactions with Val18, Leu134, and Ala144 were found to be in common with
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the docking complex of CDK2 with isoboldine (Figure 5B). Similarly, the FIH in complex
with zinc and “GSK128863” (PDB ID: 5OP6) (Figure 6A) and the docking complex of FIH
with 1,2-dehydroreticuline were compared (Figure 6B). Among the interacting residues
found in common, even though in some cases, the interaction was not the same, were
Tyr93, Phe100, Tyr102, Gln147, His199, and Thr196 via different interactions, including
H–bonds, π–cation, π–sigma, π–π stacking, and hydrophobic interactions (Figure 6). Col-
lectively, these interactions may add up to block the activity of the proteins. Molecular
docking is intended to provide initial insights into the interactions between the compo-
nents and ligands. Since the matrix of plant extracts is very complex and the possible
interactions between them (antagonistic or synergistic) are very complex, the abilities
cannot be explained only by the presence of a single compound. Therefore, the isolation
of the selected compounds and their biological activities is strongly recommended in
future studies.
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Figure 2. Docking score (predicted binding energy) of the main compounds in the extracts of Glaucium
acutidentatum. (1-Lotusine, 2-Isoboldine or boldine, 3-N-methylcoclaurine, 4-1,2-dehydroreticuline,
5-Reticuline, 6-4′-O-Methyl-N-methylcoclaurine, 7-Isocorydine, 8-Laudanine, 9-Corydine,
10-3-Hydroxyglaucine, 11-Protopine, 12-a-Allocryptopine, 13-Glaucine 14-syn. Boldine dimethyl
ether, 15-Cataline, 16-Corunnine).
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Figure 5. (A) CDK2 in complex with inhibitor RC-3-89 (PDB ID: 4GCJ) and (B) docking complex of
CDK2 with isoboldine.
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4. Conclusions

The present study presented the first detailed report on the phytoconstituents, an-
tioxidant, cytotoxic, and enzyme inhibition capacity of G. acutidentatum. The study also
demonstrated the impact of solvents and techniques of extraction on biological activities.
Results indicated that the aerial parts contained aporphine, beznyltetrahydroisoquinoline,
and protopine types of alkaloids and were rich in phenolics. Different extracts exerted
variable antioxidant and enzyme inhibition activities. However, using methanol as a sol-
vent in homogenizer-assisted extraction recovered substances with the highest antiradical
(DPPH) and ions-reducing capacity as well as enzyme inhibition activity against all tested
enzymes. Substances with the best anti-ABTS and chelating properties were extracted by
water through infusion and homogenizer-assisted extraction, respectively. Thus, it was
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clear that G. acutidentatum is a promising source of alkaloids and phenolic compounds
for variable pharmaceutical formulations. Quantification of the identified compounds is
recommended to provide insight into the relative abundance of these substances in different
extracts. Also, the isolation of bioactive molecules, using effective and environmentally
friendly methods, and illustration of their mechanism of action and safety, as well as in vivo
studies, are warranted.
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