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Abstract: Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products
represent the major sources of unwanted by-products. The sustainability, waste recovery, and reval-
orization of food by-products have been proposed as the main goals of the so-called circular economy.
In fact, food wastes are enriched in by-products endowed with beneficial effects on human health.
Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers,
polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities,
inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells
(NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the
gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore,
marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids,
polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford an-
tioxidant and anti-inflammatory protection. The present review will cover the major by-products
derived from food wastes, describing the mechanisms of action involved in the antioxidant and
anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some
by-products have also been explored in clinical trials, while others, such as marine by-products, need
more investigation for their full exploitation as bioactive compounds in humans.

Keywords: gut microbiota; food by-products; antioxidant activity; anti-inflammatory activity; healthcare;
circular economy

1. Introduction

There is growing evidence that a large amount of industrial food is wasted as un-
wanted by-products, with their enormous accumulation in the environment [1]. For exam-
ple, the waste of fruit and vegetables is equal to 50% of production in the processing and
post-harvest period [2]. To overcome the above-cited problem, the circular economy has
been proposed as an effective strategy to promote the sustainability, waste recovery, and
revalorization of by-products [3,4]. In fact, many food wastes are enriched with chemical
compounds endowed with nutritional and bioactive functions, as in the case of plant-
and marine-derived by-products [5,6]. The above-indicated by-products are enriched in
phenols, carotenoids, phytosterols, polysaccharides, proteins, fatty acids, vitamins, and
minerals, which may be beneficial in the management of inflammatory and degenerative
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diseases [7]. Then, modern industry is involved in the recycling and reuse of food by-
products, which is based on the replacement of synthetic products with natural extracts for
preventive and therapeutic use [8]. Of note, the effective recovery of bioactive products
depends on certain variables, such as type of cultivar, type of culture methods, weather,
sunlight, and exposure of plants to infectious agents, insects, and pesticides.

With special reference to the properties exerted by food by-products, antioxidant and
anti-inflammatory activities are the most predominant. Thus, their administration may be
beneficial in the case of oxidative and inflammatory conditions. Oxidative stress with the
generation of reactive oxygen species (ROS) leads to harmful effects in the host, such as
cellular membrane damage, alteration in the intestinal permeability, and endotoxemia [9].
Moreover, chronic exposure to stress due to lifestyle, cigarette smoking, and radiation may
lead to aging and neurodegenerative disorders through the release of oxidants [10].

Oxidative stress and inflammation are intertwined with each other, as in the case
of intestinal inflammation [11]. For instance, mucosal infiltration with neutrophils gives
rise to ROS generation, migration of immune cells to the epithelium, and production of
inducible nitric oxide synthase (iNOS) [12]. In addition, ROS act upon Toll-Like Receptors
(TLRs), thus permitting the translocation of Nuclear Factor kappa-light-chain-enhancer of
activated B cells (NF-kβ) to the nucleus, with the release of pro-inflammatory cytokines,
adhesion molecules, and inflammatory enzymes [13]. Among pro-inflammatory mediators,
interleukin (IL)- 1β, IL-6, IL-8, and Tumor Necrosis Factor (TNF)-α are the most prevalent
during inflammation (e.g., inflammatory bowel disease and rheumatoid arthritis), thus
representing appropriate targets for natural products [14].

A comprehensive analysis of the current literature, through searching the related
biological and clinical data on major scientific databanks, e.g., Scopus, Clarivate Analytics,
PubMed, and EMBASE, also using the ‘cited by’ and ‘similar articles’ options available in
PubMed, was carried out to prepare this review. All relevant data have been selected and
reported after a critical appraisal.

In the present review, emphasis will be placed on the beneficial effects of certain
by-products from fruit, vegetables, cereals, and marine products with special reference to
their antioxidant and anti-inflammatory activities, and modulation of the gut microbiota.

2. Major By-Products Extracted from Fruit, Vegetables, and Cereals

Daily, tons of vegetables, fruits, and cereals are discarded as undesired foods, as well
as during industrial processing to make oil, wine, pasta, bread, and juices. In the present
review, emphasis will be placed on some representative waste products.

2.1. Grape By-Products

Grape (Vitis vinifera) represents one of the most important horticultural crops in
the world, with 78 million produced globally [15]. Vitis vinifera employed in the wine
industry provides grapes, raisins, juices, and leaves as major by-products [16]. During
grape vine production, leaves are discarded, but recently, their bioactive components,
such as polyphenols and fibers, have been extracted and utilized [17]. Leaves contain six
hydrobenzoic acids and six hydroxycinnamic acids, flavanols, and anthocyanins, which
have been investigated in experimental studies [18].

There is evidence that caffeic and chlorogenic acids, and flavonoids, such as quercetin,
contained in vine leaves, in vitro exert antioxidant activity, with the inhibition of linoleic
acid peroxidation [19], while scavenging certain radicals, such as superoxide radicals and
lipid peroxyl radicals [20]. In mice, quercetin protects the liver from oxidative stress, reduc-
ing the levels of nitric oxide (NO), while increasing the levels of glutathione peroxidase [20].
Also, ferulic acid has been shown to attenuate ethanol and carbon tetrachloride CO-induced
hepatotoxicity in rats [21]. Evidence has been reported that aqueous grape leaf extract-
mediated hepatoprotection depends on the activation of nuclear erythroid-related factor
2 (Nrf2), with the inhibition of glutathione reductase [22]. As far as neurodegeneration is
concerned, in a model of Alzheimer’s disease, leaf polyphenols reduced neuronal damage
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caused by ROS, also attenuating neuroinflammation [23]. With special reference to adipo-
genesis, syringic acid promoted lipolysis in adipocytes via an ROS-mediated mechanism
in high-fat diet (HFD)-induced obesity in mice [24]. Also, the antidiabetic activity of vine
leaves has been ascribed to their content in condensed tannins, catechins, and procyani-
dins [25]. The anti-inflammatory activity of grape leaves depends on their ability to inhibit
the translocation of Nf-kβ from the cytoplasm into the nucleus, with the decreased release
of pro-inflammatory cytokines [i.e., IL-1, IL-6, and TNF-α] [26]. In fact, evidence has been
provided that the highest dose of leaf extract reduced the levels of IL-6 by 60% and IL-8 by
40%, with IL-1β decreased to the basal level [27].

Grape pomace (GP) is a solid by-product from the wine-making process, enriched in
skin and seeds, and 60–70% of polyphenols remain in the pomace after wine making [28].
GP is mainly composed of polyphenols and dietary fibers, which account for its proper-
ties [29]. GP polyphenols encompass hydroxybenzoic acids and hydroxycinnamic acids,
stilbenes (resveratrol), and flavonoids [flavanols, anthocyanins (malvidin), and flavonols
(quercetin, myricetin, and kaempferol)] [30].

Of note, dietary fibers are polysaccharides, such as cellulose, xyloglucans, arabinans,
galactans, xylans, mannans, pectins, and lignin, which are bound to polyphenols, and other
non-digestible compounds, the so-called “antioxidant dietary fiber” [31].

Then, the combination dietary fibers/polyphenols can enhance the healthy properties
of grape by-products.

From an inflammatory and oxidative point of view, GP components have been shown
to act on the NF-kβ and NrF2 pathway in rodents, pigs, and humans [32,33]. In addition,
both polyphenols and dietary fibers, extracted from GP, suppressed the expression of TLR2
and TLR4 on intestinal cells [34–36]. In an experimental model of ulcerative colitis, GP led
to a reduction in pro-inflammatory cytokines (IL-1, IL6, and TNF-α), intercellular adhesion
molecule 1, and metalloproteinase 9, with an increase in the anti-inflammatory cytokine,
IL-10 [37–39]. Noteworthy, polyphenols also exert anti-inflammatory activity inducing
T regulatory cells, with the production of the anti-inflammatory cytokine, IL-10 [15,40].
In a similar experimental model, GP consumption resulted in the dramatic reduction
in myeloperoxidase (MPO) activity, with the suppressed migration and infiltration of
neutrophils into the intestinal mucosa [41].

Nrf2 is a pathway involved in antioxidant responses and sequestered in the cytoplasm
by binding to a Kelch-like echt-associated protein 1 (Keap1) [42]. Keap 1 dissociates from
Nrf2 when the concentration of ROS in the cytoplasm is upregulated, thus allowing Nrf2
to translocate to the nucleus and bind to the antioxidant response elements in its target
genes. Therefore, such a process results in the generation of antioxidant enzymes, such as
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) [43]. In
this respect, the administration of GP to experimental models of inflammation led to an
increase in SOD, CAT, and GPX, with reduced levels of ROS, NO, and iNOS, and enhanced
activation of Nrf2 [44].

The effects of GP on the composition of the gut microbiota are under scrutiny. The
gut microbiota can degrade GP components with the generation of flavonoids and short-
chain fatty acids (SCFAs: butyrate, propionate, and acetate) from dietary fibers [45]. Then,
these metabolites can modify the bacterial composition of the gut, either by reducing the
formation of pathogen biofilms, e.g., Escherichia coli, Actinobaceria, and Verrucomicrobia or
favoring the expansion of those bacteria, such as Enterococcus, Prevotella, Bifidobacterium,
and Faecalibacterium, which can extract sugars from the complex polyphenols/dietary fibers
for a probiotic effect to occur [46,47]. In large animals, GP administration promoted the
proliferation of beneficial bacteria in the caecum and enhancement in antioxidant and anti-
inflammatory activities, e.g., release of IL-10 [48,49]. Concerning human trials with grape
by-products, the administration of Leucoselect Phytosome® (a dietary supplement enriched
in the flavonoid epigallocatechin) to frail elderly subjects was able to potentiate the other-
wise impaired T helper 1 response [50]. Increased levels of IL-2 and interferon (IFN)-γ were
observed, as an indication of the immune enhancement induced by polyphenols. In an-
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other trial, polyphenols extracted from the seeds of red grape (Nero di Troia cultivar) when
administered to 25 patients affected by contact dermatitis to nickel could reduce the release
of pro-inflammatory cytokines, while increasing the production of the anti-inflammatory
cytokine, IL-10 [51]. In these patients, a parallel improvement in cutaneous lesions was also
recorded. The ability of grape marc polyphenols to enhance the anti-inflammatory pathway
has also been confirmed in vitro, using peripheral blood mononuclear cells (PBMCs) from
healthy volunteers [52]. In fact, Negroamaro and Koshu Vitis vinifera extracts were able to
in vitro expand Foxp3+ T regulatory cells, with increased production of IL-10. On the other
hand, in subjects at risk of metabolic syndrome and cardiovascular disease, the increase in
SCFAs and polyphenol metabolites after GP supplementation was not significant, with high
interindividual variability related to differences in the gut microbiota and miRNA [53,54].

Conclusively, polyphenols contained in grape by-products are endowed with anti-
inflammatory and antioxidant activities, and their daily intake, as in the case of a Mediter-
ranean diet, may prevent the outcome of chronic disease. The effects of these compounds
on the Gut microbiota with the protection of the intestinal barrier integrity should be taken
into consideration. In this respect, a GP-mediated increase in Lactobacillus duelddebruckii
enhances the intestinal barrier integrity in the gut with a higher expression of occludin and
zonulin [45].

2.2. Olive By-Products

Olive pomace by-products consist of fruit pulp and husk, crushed olive stones, and
wastewater. During olive oil extraction, 98% of the total phenolic compounds are present
in pomace and wastewater, with oleuropein, hydroxytyrosol, tyrosol glucoside, and 4-
hydroxyphenylacetic acid as major polyphenols [55,56].

Furthermore, pomace oil is enriched in oleic, palmitic, linoleic, and stearic acids [57].
Several studies on the effects of olive pomace have been conducted in vitro and in vivo.
Using EAhy926 human endothelial cells under hypoxia, pomace extracts, enriched in
hydroxytyrosol, tyrosol, and oleuropein, suppressed metalloproteinase inhibitor-1 and NF-
kβ expression, as well as TNF-α, cyclooxygenase (COX)- 2, iNOS, and NO levels [58]. An
ethanolic extract of oil pomace enriched in the above-mentioned polyphenols decreased the
release of NO and NF-kβ in steatosis human endothelial cells [59], while in human corneal
and conjunctival epithelial cells exposed to TNF-α and ultraviolet-B radiation, it suppressed
the generation of pro-inflammatory cytokines and ROS [60]. In a model of dry eye disease,
the same extract reduced the gene expression of cytokines (IL-1, IL-6, and TNF-α) and
chemokines (IL-8 and monocyte chemoattractant protein-1 (MCP-1)) in the conjunctiva and
lacrimal glands [61]. In HepG2 cells and nontumorigenic human hepatoma cells, pomace
extracts prevented oxidative damage, and this activity was enhanced by cyclodextrin
encapsulation in tert-butyl hydroperoxide-exposed cells [62]. In BV-2 microglial cells,
activated by lipopolysaccharides, pomace reduced the generation of ROS and NO [63].

With special reference to clinical trials conducted with olive pomace, the administra-
tion of yogurt supplemented with olive pomace to healthy and overweight volunteers
antagonized the action of platelet-aggregating factor (PAF), inhibiting PAF metabolism [64].
In healthy volunteers (aged 20–30 years) consuming 50 g of a functional biscuit, enriched
with 20% olive paste, a decrease in serum triglycerides after 3 h was observed [65]. Further-
more, after 3 h, an increase in plasma antioxidant activity was recorded, likely due to the
polyphenol and oleic acid contained in the biscuits.

Olive leaves represent another by-product accumulated by pruning olive trees and
during oil extraction. Olive leaf extract (OLE) is highly enriched in polyphenols, such as
tyrosol, hydroxytyrosol, oleuropein, catechin, caffeic acid, luteolin, and rutin, as major
components [66]. Of note, there is evidence that the combination of various polyphenols
exerts more beneficial effects than the individual one [67]. OLE possesses potent antioxidant
activity with chemoprotective properties. In fact, hydroxytyrosol can mitigate the oxidative
stress provoked by H2O2 and peroxynitrite on cells and DNA, thus blocking cell cycle
advancement at the G1 phase, while inducing apoptosis [68].
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Also, OLE oleuropein inhibits motility and cancer cell growth through apoptosis,
thus reducing the incidence of cervical cancer cells, colon cancer, and breast cancer [69].
Quite interestingly, the removal of glucose from oleuropein decreases its inhibitory activity,
thus suggesting a glucose-based entry pathway into the cell [70]. Therefore, cancer cells
and overexpressing glucose transporters are more susceptible to oleuropein effects. In an
in vitro study, PBMCs isolated from healthy volunteers, when treated with OLE extracts,
underwent some changes, such as an increase in the number of natural killer cells and
enhanced release of IFN-γ, thus indicating a potential reinforcement of the antitumor
activity [71].

Evidence has been provided that oleuropein exerts cardioprotective effects, reducing
ROS production and improving endothelial functions [72].

Furthermore, it lowers the blood vessel tension with more vessel spreading and
antihypertensive effects [73]. Moreover, OLE polyphenols have been shown to prevent
the formation of arterial plaques either by decreasing adhesion molecules on leukocytes
and platelets or by preventing platelet aggregation [74]. Epidemiological and in vitro
studies have demonstrated that OLE polyphenols can reduce the occurrence of age-related
diseases. It has been reported that oleuropein could prevent or attenuate the aggregation
of Ab peptides, which play a pathogenic role in the outcome of Alzheimer’s disease [75].
Moreover, polyphenol extracts play an anti-inflammatory effect that is very beneficial
during aging-dependent pathologies, even including Alzheimer’s disease [76].

During the washing and processing of the oil fruit, the so-called oil mill wastewater
(OMWW) is produced in large amounts [77]. OMWW is highly enriched in polyphenols,
and, among them, hydroxytyrosol, tyrosol, oleuropein, verbascoside, vanillic acid, caffeic
acid, p-coumaric acid, ferulic acid, and elenolic acid are the main components [78]. The
antioxidant activity of OMWW has been investigated in vitro, using the AOO9 extract on
HUVEC proliferation [79]. AOO9 inhibited ROS release before and after H2O2 treatment,
as well as the in vitro migration and invasion of HUVEC [80]. Another OMWW extract,
OliPhenolia®, performed a mild antioxidant effect on aerobic workout and acute recovery
in healthy volunteers [81]. Experimentally, in old rats treated with OMWW, enriched in
hydroxytyrosol, skeletal muscle decline due to age-related oxidative stress improved [82].
In terms of neuroprotection, in TgCRND8 mice, cognitive deficits and neuropathology
were improved by OMWW extract, using a diet supplementation [83]. These in vivo data
were supported by an in vitro study showing a decrease in the NO-induced cytotoxicity of
murine brain cells following treatment with hydroxytyrosol-rich OMWW extract [84].

The anti-inflammatory effects of OMWW have been tested in in vitro experiments treat-
ing colorectal cancer cells with AOO9 [85]. In fact, AOO9 inhibited either the proliferation,
migration, invasion, adhesion, and sprouting of cancer cells or release of pro-angiogenic
and pro-inflammatory cytokines. Furthermore, OMWW exerted a cardioprotective effect
during anticancer therapy with 5FU and cisplatin, reducing IL-6 mRNA [86,87].

2.3. Apple By-Products

Apples are the most consumed fruit, characterized by a high content of anthocyanins,
hydroxycinnamic acid, quercetin, carotenoids, and vitamins C and E accounting for their
antioxidant and anti-inflammatory activities [88]. The use of apples and their by-products
(pomace and peel) is very common in the preservation of food products, as in the case of
fish protection from oxidation [89]. Moreover, apple polyphenols from pomace and peel
contribute to retaining the quality of meat and meat products [90,91].

Quite interestingly, the incorporation of apple pomace into noodles, vegetable juices,
and yogurt increased the nutritional properties of these food products in terms of dietary
fibers and protein content, as well as the potentiation of antioxidant activity [92,93]. In
particular, the presence of polyphenols may account for their anti-inflammatory and an-
tioxidant activities, with a reduction in pro-inflammatory cytokines (IL-1, IL-6, and TNF-α)
and increase in the release of the anti-inflammatory cytokine, IL-10. At the same time, one
cannot exclude the effects of apple by-products on the intestinal microbiota with an increase
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in SCFAs. In this respect, in weaning piglets fed apple by-products, modifications of the
intestinal architecture and function, as well as modulation of the intestinal microbiota, have
been documented, along with the production of lactobacilli and Faecalicaterium spp. [94].

These data suggest the potential application of apple by-products to human studies.
However, with special reference to safety issues, apple by-products contain pesticide
residues, and apple seeds can release cyanide glycosides, thus suggesting the need to pay
caution before use in humans [95].

2.4. Pumpkin By-Products

Pumpkin is a vegetable highly enriched in healthy bioactive substances, such as
polyphenols (curcumin, flavonoids, lignans), carotenoids, tocopherols, fatty acids, vitamins
C and E, linoleic acid, and selenium [96]. Pumpkins and different parts of pumpkins can be
used as functional ingredients for industrial applications. Pumpkin seed oil is a by-product
enriched in carotenoid pigments, with the ability to reduce the risk of colon and lung
cancer [97]. Seed oil could be protective during subacute aflatoxin poisoning in mice, in
view of its antioxidant properties [98].

In rats with nonalcoholic fatty liver disease treated with biscuits containing 15%
pumpkin seed meal and 3% seed oil, a reduction in lipidemia and transaminase activity
was observed [99].

Moreover, pumpkin seed intake is associated with a decreased risk of Alzheimer’s
disease, while lowering blood sugar in animals with impaired glucose metabolism [100,101].
The hypoglycemic effect of pumpkin seems to depend on polysaccharides, as observed
in alloxan-mediated diabetic rats [102]. Also, seed proteins and pumpkin leaves were
effective in preventing protein-energy malnutrition-induced oxidative brain damage in
rats [103]. As far as the anti-inflammatory activity of pumpkin is concerned, pumpkin
seed oil attenuated adjuvant-induced arthritis in rats, reducing free-radical release [104].
There is evidence that in mice, the antioxidant activity exerted by pumpkin fruit extracts
depends on the increased function of glutathione peroxidase and SOD with a reduction in
the malonaldehyde concentration [105].

Quite interestingly, pumpkin skin is fermented by human fecal microbiota, thus pro-
moting SCFA production, with the promotion of a healthy microbiota rich in Lactobacillaceae
and Faecalibacterium [106].

2.5. Tomato By-Products

The tomato processing industry is one of the largest in the horticultural area, char-
acterized by enormous waste and by-product accumulation. Lycopene, a carotenoid, is
the main compound in by-products and its valorization is under investigation, in view of
high contents in polyphenols (rutin, quercetin, caffeic acid, and kaempferol), dietary fibers
(polysaccharides, oligosaccharides, and lignin), oil, protein, and organic acids [107].

By-products encompass peels, seeds, pulp, rotten tomatoes, green tomatoes, and
tomato branches.

Lycopene possesses antioxidant properties, scavenging free radicals, and neutralizing
singlet oxygen and sulfonyl radicals [108]. The antioxidant effect of lycopene can be
enhanced by carotenoids and vitamins (vitamins E and C), mostly scavenging reactive
nitrogen and lipid peroxidation [109].

Lycopene has been shown to in vitro inhibit ROS generation, preventing low-density
lipoprotein oxidation [110]. Furthermore, it can prevent endothelial injury, modulate lipid
metabolism, and reduce the levels of IL-1, IL-6, and TNF-α as well as platelet aggrega-
tion [111].

The above effects indicate the potential cardioprotective activity of lycopene. In exper-
imental animals, lycopene administration was able to reduce pro-inflammatory cytokine
and transforming growth factor-β (TGF-B) release in the brain [112]. In eye disorders,
e.g., non-proliferative diabetic retinopathy, carotenoid supplementation could increase
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the optical density level of the macular pigment, thus suggesting the protective effects of
tomato by-products in various eye disorders.

Experimentally, tomato powder and distilled lycopene exert anti-neoplastic activities,
as in the case of prostate cancer and MCF7 human mammalian cancer cells [113].

In general terms, lycopene modulates immune responses, inhibiting iNOS, COX-2, and
lipoxygenase expression, as well as NF-kβ activity [114]. In addition, lycopene activates
the T cell-dependent adaptive immune response of mostly T helper 17 cells, with the
production of IL-17, thus protecting against bacterial infection [115].

Of note, quercetin is a polyphenol, contained in tomato by-products, which enhances
the beneficial effects exerted by lycopene [116].

It is conceivable that tomato by-products may modulate the gut microbiota with the
same mechanisms illustrated in the previous sections.

2.6. Rice By-Products

Rice is one of the most produced cereals in the world, providing a great caloric
contribution to the human diet. It contains carbohydrates (80%), proteins (7–8%), fats (3%),
minerals (6–7%), and fibers (3%), as well as tocopherol and tocotrienols [117].

The kernel represents 70% of the rice grain, while rice by-products consist of husk,
bran, and germ [118]. Rice bran (the outer layer of the rice grain) is added to bread, thus
increasing the content of vitamin B, fibers, and minerals [119]. Rice bran oil is enriched
in ferulic, gallic, coumaric acids, cyanidins, gamma-oryzanol, and vitamin E with anti-
inflammatory and antioxidant activities but use in humans is limited because of its high
levels of free fatty acids [120]. Rice germ is richer in vitamin E than rice bran and contains
essential amino acids, linoleic, and linolenic acids, thus suggesting its potential application
to humans [121]. Furthermore, evidence has been provided that the enzymatic degradation
of dietary fibers in rice grains generates oligosaccharides with prebiotic effects at the
intestinal level [122].

Conclusively, rice by-products and, especially, rice bran have the potential for in-
dustrial applications, such as fortified foods and/or supplements, endowed with health-
promoting properties; however, more studies are needed for their better exploitation. In
Table 1, the components and bioactivity of plant by-products are summarized.

Table 1. A general view of plant by-products.

GRAPE BY-PRODUCTS

Major components: polyphenols, fibers [17].

Activities

In vitro anti-inflammatory activities with activation of T regulatory cells and release of the anti-
inflammatory cytokine, IL-10 [15,32,33].

In obese rats, modulation of gut microbiota with production of SCFAs and expansion of
Enterococcus, Prevotella, Bifidobacterium, and Faecalibacterium [45].

Potentiation of T helper 1 activity in elderly subjects [50], and mitigation of symptoms in contact
dermatitis to nickel in patients, with production of IL-10 [51,52].

OLIVE BY-PRODUCTS (olive pomace, olive leaf extract, and oil mill wastewater)

Major components: polyphenols, fatty acids, stearic acids, carotenoids, vitamin C and E [55–57,96].

Activities

In animal models, anti-inflammatory activities (inhibition of NF-kβ, TNF-α, PAF), increase in
antioxidant activities, and decrease in serum triglycerides [64,65,68,69,79,81].

In animal models, cardioprotective effects and prevention of arterial plaque formation [70,74].

In vitro, inhibition of proliferation and angiogenesis in cancer cells [85].

In animal models, prevention of Alzheimer’ disease outcome with attenuation of Ab peptide
aggregation [75].
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Table 1. Cont.

In obese rats, effects on the gut microbiota with increase in SCFAs and enhancement in intestinal
barrier integrity [87].

APPLE BY-PRODUCTS

Major components: polyphenols, carotenoids, vitamins C and E.

Activities

Antioxidant and anti-inflammatory activities [88].

In piglets, effects on the gut microbiota with expansion of lactobacilli and Faecalibacterium [94].

PUMPKIN BY-PRODUCTS

Major components: polyphenols, carotenoids, vitamins C and E, linoleic acid, selenium [96].

Activities

In animal models:

Decreased risk of Alzheimer’s disease [100,101].

Prevention of energy malnutrition [103].

Attenuation of arthritis [104].

Increase in SCFA production in the gut and expansion of Lactobacillaceae and Faecalibacterium spp. [106].

TOMATO BY-PRODUCTS

Major components: polyphenols, dietary fibers, proteins, lycopene [107].

Activities

In animal models:

Lycopene-mediated anti-inflammatory and cardioprotective effects [111,112].

Lycopene-mediated production of IL-17 with protection against bacterial infections [115].

RICE BY-PRODUCTS

Major components: carbohydrates, proteins, fats, minerals, fibers, polyphenols, vitamin E [117].

Activities

In animal models:

Enzymatic degradation of dietary fibers followed by generation of oligosaccharides in the gut
with probiotic effects [122].

In humans:

Limited use of rice bran oil for its high levels of free fatty acids [120].

By-products from fruit, vegetables and cereals, with their specific bioactive compounds
and related biological effects, are summarized in Figure 1.
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3. By-Products from Marine Food Sources

Among marine foods, microalgae exert beneficial effects when ingested with diet. For
this reason, food industries have increased the production of food enriched in microalgae,
growing them in open ponds and photobioreactors [123]. Different bioactive molecules
can be isolated from microalgae, especially diatoms (Bacillariophyceae), such as carotenoids,
polysaccharides, polyphenols, sterols, proteins/peptides, and fatty acids [124].

Fucoxantin, a carotenoid extracted from brown microalgae, in vitro exerts antioxidant
and anti-inflammatory activity on BV-2 microglial cells, reducing the release of IL-1, IL-6,
and TNF-α [125].

Polyphenols are secondary metabolites of microalgae endowed with antioxidant activ-
ities [126]. Experimentally, Nitrshia (N.) palea polyphenols, using Raw 264.7 macrophages,
inhibited the expression of pro-inflammatory cytokines and NO [127].

Oral administration of N. palea to mice with carrageenan-induced edema reduced
edema via the local inhibition of COX-2 and MPO activity [127].

With special reference to PUFAs, Pinnularia borealis accumulates high amounts of
eicosapenteaenoic acid (EPA), and its supplementation to mice improved antioxidant
defenses and risk of cardiovascular disease [128]. Other studies have revealed the ability
of fatty acids extracted from Anomoenois sp. and Rhoipolodia sp. to inhibit angiotensin-
converting enzyme, thus affording cardioprotection to the host [129]. In 19 healthy elderly
subjects, the administration of EPA extracted from Phaeodactylum (P.) tricornutum generated
anti-inflammatory and antioxidant effects.

Sterols, a class of triterpenoid molecules extracted from microalgae, possess antioxi-
dant, anti-inflammatory, anticancer, and anti-cholesteroligenic activities [130].

Brassicasterol prevented atherosclerosis and induced hypocholisterolemia; campes-
terol was effective in cancer models; fucosterol and isofucosterol were protective in diabetes
models; and sistosterol was able to lower cholesterol [131].

Polysaccharides are generated in the chloroplast and cytosol of microalgae, where
they are present together with proteins and long-chain polyamines [132].

Leucosin or chrysolaminarin, isolated from Ondotella aurita and P. tricornutum, showed
antioxidant activity in vivo, using flat fish as a model [133].

Furthermore, a hydrosoluble extract of P. tricornutum reduced carrageenan-induced
paw edema and delayed hypersensitivity in rats, potentiating in vitro phagocytosis [134].
The effects of polysaccharides from the microalgae Spirulina (Arthrospira platensis) have
been explored [135]. Spirulina polysaccharides administered to normal mice could increase
phagocytosis and pro-inflammatory cytokine release via the activation of the NF-kβ, MAPK,
and JAK/STAT pathways [136]. In cyclophosphamide-immunosuppressed mice, Spirulina
polysaccharides improved the function of monocytes and B lymphocytes [137].

In zebra fish, polysaccharides extracted from Spirulina maximally stimulated the
innate immune response against Aeromonas hydrophila and Edwardsiella piscicida [138].

As far as antioxidant activity is concerned, Spirulina polysaccharides inhibit lipid
peroxidation, while increasing the SOD and CAT activities [139,140]. In HFD mice, Spirulina
polysaccharide administration increased the number of beneficial bacteria (Bacteroidetes
and Mollicutes), while decreasing the number of dangerous bacteria (Actinobacteria and
Verrucomicrobia), as well as reducing the risk of obesity [141]. Moreover, in mice, Spirulina
polysaccharides improved constipation symptoms, as well as liver inflammation [142,143].

Proteins from N. laevis have been demonstrated to convert angiotensin-I to angiotensin
II, playing both antihypertensive and antioxidant roles, as well as proteins from Bellerochea
mallus dramatically reducing blood pressure in spontaneous hypertensive rats [144].

Arthropods (e.g., crabs, lobsters, and shrimp) are rich sources of chitin with chi-
tooligosaccharides (COS) as major by-products [145]. COS derived from chitin and chitosan
by acid or enzymatic hydrolysis have been shown to exhibit antioxidant, anti-inflammatory,
immune-enhancing, and antitumor activities [146]. In this respect, COS reduced the produc-
tion of NO, iNOS, and prostaglandin E2 in Raw 264.7 macrophages [147]. Moreover, they
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exerted a protective effect against H2O2-induced umbilical vein endothelial cell apoptosis
and oxidative damage [148].

Quite interestingly, low-molecular-weight COS have been demonstrated to exert
the most potent anti-inflammatory activity, with a reduction in NO, iNOS, and COX-2
expression [149].

In light of the above results, it has been suggested to employ metabolic engineering
techniques to produce tailor-made COS products to be applied to human studies [150].

Of note, large amounts of waste of fish scales, skin, and bones have attracted atten-
tion. For instance, collagen peptides isolated from milkfish scales have been shown to
possess antioxidant and anti-inflammatory activities, as well as DNA-protective activi-
ties [151]. Therefore, these products may have potential application in cosmeceuticals and
in nutraceuticals. The main characteristics of marine food by-products are illustrated in
Table 2.

Table 2. General view of marine by-products.

MARINE-BY PRODUCTS

MICROALGAE
Major components: carotenoids, polysaccharides, polyphenols, sterols, proteins/peptides, and
fatty acids [124].
Activities
Fucoxantin (carotenoid): in vitro antioxidant and anti-inflammatory activities [125].
Polyphenols: in vitro inhibition of pro-inflamamtory cytokine and nitric oxide [127].
Polyunsaturared fatty acids: in animal models, antioxidant, anti-inflammatory, and
anti-cholesteroligenic activities [130].
Polysaccharides (Spirulina): in animal models, increase in innate immunity functions and B cell
activities [135–138], inhibition of lipid peroxidation [139,140], modulation of gut microbiota [141],
and improvement in constipation symptoms and liver inflammation [142,143].
Proteins: in animal models, antihypertensive and antioxidant roles [144].

ARTHROPODS
Major component: chitooligosaccharides (COS) [145].
Activities
COS: in vitro, antioxidant, anti-inflammatory, immune-enhancing, and antitumor activities [145–149].

FISH BY-PRODUCTS (fish scales, skin, bones)
Activities
Collagen peptides from fish scales: in vitro antioxidant, anti-inflammatory, and DNA-protective
functions [151].

4. Effects of Food By-Products on the Intestinal Microbiota

The normal microbiota is characterized by a high diversity with a predominance
of Firmicutes and Bacteroidota for maintining a healthy gut environment [47]. Dysbiosis
depends on the disruption of the intestinal microbiota composition, thus leading to disease,
such as inflammatory bowel disease [46].

Dietary fibers are major by-products extracted from vegetables and fruit, as well as
seaweeds, and largely utilized by the food industry to promote the circular economy [152].
Dietary fibers are non-starch polysaccharides neither digested nor absorbed in the human
intestine, including pectin, inulin, chitins, and β-glucans [153]. Pectin is a complex of
acidic heteropolysaccharides based on homogalacturonan, rhamnogalacturonan I (RGI)
and RGII, and xylogalacturonan [154]. Inulin is mainly made up of β-(2-1)-fructosyl-
fructose linkages [155]. Alginate is a polysaccharide contained in the cell wall of brown
seaweeds, and composed of two hexuronic acids, D-mannuronic acid and L-guluronic
acid [156]. The above-mentioned dietary fibers are fermented by the colonic microbiota,
exerting prebiotic and antioxidant effects in the host [157,158].

In a model of obese colitis mice, pectin administration increased the ratio between
Bacteroidetes and Firmicutes, reducing the secretion of IL-1β and IL-6, with the attenuation
of colitis [159]. Further evidence has been provided that the coadministration of pectin and



Antioxidants 2024, 13, 796 11 of 19

polyphenols was very effective in the modulation of the gut microbiota in obese mice or
mice with colitis via the inhibition of the NF-kβ pathway and cytokine secretion [160–162].
Moreover, dietary fiber administration to obese animals prevented metabolic abnormali-
ties, with SCFA production and increased expression of uncoupling protein 2 ultimately
stimulating the oxidative metabolism in the liver and adipose tissue via AMPK [163].

Alginate administration to mice reduced Salmonella and Staphylococcus inflammatory
capacity [164]. In obese mice, the administration of alginate increased the ratio of Bac-
teroidetes/Firmicutes and the levels of Bifidobacteria and Prevotella, with the production of
succinate and lactate, thus promoting healthy benefits, such as improvement in glucose
homeostasis and attenuation of obesity-associated disorders [165].

Inulin has been used in various clinical trials. In patients with chronic kidney disease,
inulin administration increased the number of Bifidobacterium and Lactobacillaceae with the
production of SCFAs and decrease in C-Reactive Protein, TNF-α, and NADPH Oxide-2 [166].
In obese women, inulin administration increased the number of beneficial bacteria, such as
Faecalibacterium (F.) prausnitzii, with an enhanced production of SCFAs [167]. In another
group of obese individuals, the coadministration of inulin and polyphenols increased the
production of SCFAs [168]. In the same direction, the combination of inulin and pectin was
beneficial in patients with type 2 diabetes (T2D), and in obese patients through increased
levels of F. prausnitzii, decreased levels of Roseburia, and generation of anti-inflammatory
activity, as well as better sensitivity of insulin for T2D patients [169].

Conclusively, dietary fiber by-product administration generates a remarkable amount
of SCFAs in the gut, thus correcting microbiota alterations.

Major features of dietary fiber by-products are shown in Figure 2.
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5. Conclusions

Over recent years, the human use of natural products has been rapidly growing.
Fruit, vegetables, cereals, and or their derivatives (e.g., wine and olive oil) have been
shown to contribute to human health, as in the case of a Mediterranean diet. Food and
marine food by-products represent another enormous source of bioactive compounds,
and, among them, polyphenols, proteins, polysaccharides, and dietary fibers are the most
exploitable ones for preventive and therapeutic use. At the same time, the use of by-
products avoids their indiscriminate accumulation in the environment, supporting the
concept of the circular economy.

Some by-products are not fully exploited and related research is limited to in vitro
and in vivo models. Furthermore, their formulation as encapsuled agents is under scrutiny.
Moreover, modulation of the gut microbiota represents another beneficial property of food
by-products with the enhancement in the intestinal barrier and decreased dissemination of
intestinal pathogens to systemic circulation. Considering the increase in chronic disease and
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cancer, mostly associated with obesity and T2D, dietary by-products may represent future
sources of bioactive products for human use. Finally, persistent consumption of vegetable
and marine by-products usually also has the advantage of being free of side effects.
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