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Abstract: Background: People with spinal cord injuries (SCIs) often have trouble remaining ac-
tive because of paralysis. In the past, exercise recommendations focused on the non-paralyzed
muscles in the arms, which provides limited benefits. However, recent studies show that electrical
stimulation can help engage the paralyzed extremities, expanding the available muscle mass for
exercise. Methods: The authors provide an evidence-based approach using expertise from diverse
fields, supplemented by evidence from key studies toward the management of electrical stimulation
therapies in individuals with SCIs. Literature searches were performed separately using the PubMed,
Medline, and Google Scholar search engines. The keywords used for the searches included functional
electrical stimulation cycling, hybrid cycling, neuromuscular electrical stimulation exercise, spinal
cord injury, cardiovascular health, metabolic health, muscle strength, muscle mass, bone mass, upper
limb treatment, diagnostic and prognostic use of functional electrical stimulation, tetraplegic hands,
and hand deformities after SCI. The authors recently presented this information in a workshop
at a major rehabilitation conference. Additional information beyond what was presented at the
workshop was added for the writing of this paper. Results: Functional electrical stimulation (FES)
cycling can improve aerobic fitness and reduce the risk of cardiovascular and metabolic diseases.
The evidence indicates that while both FES leg cycling and neuromuscular electrical stimulation
(NMES) resistance training can increase muscle strength and mass, NMES resistance training has
been shown to be more effective for producing muscle hypertrophy in individual muscle groups.
The response to the electrical stimulation of muscles can also help in the diagnosis and prognosis
of hand dysfunction after tetraplegia. Conclusions: Electrical stimulation activities are safe and
effective methods for exercise and testing for motor neuron lesions in individuals with SCIs and other
paralytic or paretic conditions. They should be considered part of a comprehensive rehabilitation
program in diagnosing, prognosing, and treating individuals with SCIs to improve function, physical
activity, and overall health.

Keywords: neuromuscular electrical stimulation; functional electrical stimulation; spinal cord injury;
tenodesis effect

1. Introduction

Individuals with spinal cord injuries (SCIs) and other paralytic or paretic conditions
often face challenges in maintaining their health and mobility due to reduced physical
activity [1–5]. A host of comorbidities develop from a combination of the neuropathology
of the injury and the decreased physical activity levels associated with the injury [6]. Com-
mon comorbidities include cardiometabolic conditions such as neurogenic obesity [7–9],
metabolic syndrome [10,11], cardiovascular complications [12–14] including orthostatic
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hypotension [15,16] and autonomic dysreflexia [17,18]. Early recommendations for exercise
after SCI suggested voluntary exercise with the non-paralyzed muscles of the arms, which
limited the activity workload due to the reduced amount of available active skeletal mus-
cle [19–21]. However, recent scientific research has demonstrated the benefits of electrical
stimulation-evoked exercise, leading to the recommendation of neuromuscular electrical
stimulation (NMES) resistance training and functional electrical stimulation (FES) cycling
for individuals with SCIs [22,23].

NMES involves using electrical impulses to stimulate the paralyzed muscles, inducing
muscle contractions, and increasing the range of physical activities that can be performed.
This includes resistance training, which can enhance muscle strength, endurance, and
power [24–29]. FES exercises, such as cycling, also use electrical impulses to stimulate
the affected muscles, enabling the individual to engage in physical activities that would
otherwise be impossible [30–33].

The review sought to summarize important advancements in NMES and FES inter-
ventions for individuals with SCIs. Through an analysis of studies, this review showcases
evidence supporting the use of these interventions for enhancing lean mass volume; improv-
ing cardiovascular and metabolic outcomes; potentially reducing bone loss; and diagnosing,
prognosing, and treating hand dysfunction in this population.

2. Methods

The authors used the evidence-based process of combining their expertise from diverse
fields supplemented by separate scientific literature searches for key evidence related to
the management of electrical stimulation therapies in the rehabilitation of individuals
with SCIs. The search engines used for the literature searches included PubMed, Medline,
and Google Scholar. The keywords used for the separate searches included functional
electrical stimulation cycling, neuromuscular electrical stimulation resistance training,
spinal cord injury, cardiovascular health, metabolic health, muscle strength, muscle mass,
bone mass, upper limb treatment, and diagnostic and prognostic use of functional electrical
stimulation for the hands of those with tetraplegia. The inclusion criteria included articles
involving individuals with SCIs; the use of electrical stimulation for treatment, diagnosis,
or prognosis; and outcomes related to cardiovascular health, metabolic health, muscle
strength, muscle mass, bone mass, and upper limb function. The exclusion criteria included
articles 20 years or older and those that did not match the inclusion criteria. The authors
recently presented this information in a workshop at a major rehabilitation conference.
Additional information beyond what was presented at the workshop was added for the
writing of this paper. Individuals that suffer a traumatic SCI undergo an initial rapid
decline in muscle mass and strength and bone mass. For this reason, we focused on
research that attempted to regain lost muscle and bone a year or more post-injury after
muscle atrophy and bone demineralization had slowed. Thus, for the topics of muscle,
bone, and cardiometabolic health, we focused on chronically injured individuals (>1 year
post injury). For the diagnostic and prognostic evaluations for individuals with tetraplegia,
the paper focused on more acute SCIs.

3. Results
3.1. Cardiovascular and Metabolic Health (Table 1)

A systematic review of research by van der Scheer and colleagues [34] found that
30 out of 36 peer-reviewed studies provided moderate to high evidence supporting the
effectiveness of FES cycling in improving muscle health if performed for 30 min, three
times a week for 16 or more weeks. These studies applied electrical stimulation settings to
maximize power output at 30–50 revolutions per minute cycling cadence. However, there
was weaker evidence of whether FES leg cycling activities could provide sufficient ‘dose
potency’ to increase power output and aerobic fitness, and the authors gave those health
outcomes a ‘low certainty’ GRADE rating (Figure 1).
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Figure 1. Significant improvements by outcome category (modified from van der Scheer et al. [34],
reprinted from Street and Davis Forward, [35].

One randomized controlled trial found that voluntary arm crank exercise (ACE) sig-
nificantly outperformed FES leg cycling for improvements in peak oxygen utilization
(VO2peak) [36]. Specifically, FES leg cycling only resulted in a 2.5% increase in VO2peak,
compared to an over 20% increase achieved through ACE. Similarly, a separate study found
that FES leg cycling was less effective than ACE, hybrid cycling (FES legs cycling plus
ACE), and outdoor arm and leg cycling in reaching training levels to improve VO2peak [37].
However, upon the re-analysis and speculation of the exercise intensity required to achieve
a cardiovascular training effect for low-aerobic-fitness-conditioned individuals (such as
individuals with tetraplegia, elderly individuals, or morbidly obese individuals), it was
hypothesized that it is possible that FES leg cycling could lead to improvements in car-
diovascular fitness in these low-fitness clinical populations [38]. Nonetheless, the authors
concluded that hybrid FES cycling usually led to greater cardiovascular fitness improve-
ment due to the higher cardiovascular demand during submaximal exercise.

The aerobic fitness benefits of FES leg cycling were highlighted by Johnston and as-
sociates [39] in 30 5-to-13-year-old children with SCIs after performing 40 min of FES leg
cycling, passive cycling, or NMES therapy three times per week for six months. They discov-
ered a significant increase in VO2peak (16%) with FES leg cycling, while no improvements
were observed in VO2peak in the passive cycling or NMES therapy groups. However, the
NMES therapy group was the only group to show decreased blood cholesterol levels (17%).

Aerobic fitness improvements are typically dependent on workload intensity, so it
is reasonable to conclude that hybrid cycling, which combines FES leg cycling with ACE,
may provide greater aerobic and cardiovascular health benefits than either FES leg cycling
or ACE alone due to the larger muscle mass involved in such exercise. Brurok et al. [40]
investigated the effects of hybrid FES cycling thrice weekly for eight weeks. A high-
intensity interval training (HIIT) protocol utilized four exercise bouts at 85–90% of maximal
workload for ACE and 80% of 140 mA electrical stimulation amplitude for the legs during
the four-minute high-intensity exercise bouts. Three minutes of low-intensity exercise
(70% of maximal workload for ACE and assisted leg cycling without electrical stimulation)
was interspersed with the high-intensity bouts. After eight weeks of hybrid HIIT-FES
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cycling, the participants realized a 33% increase in stroke volume, a 27% increase in cardiac
output, and a 28% increase in VO2peak over the exercise-free control period. Similarly,
in a separate study, six weeks of hybrid HIIT-FES cycling with virtual-reality feedback
produced a 33% increase in power output and a 20% increase in VO2peak [41]. However,
because blood lipid and glucose levels were unchanged, the authors contemplated whether
more than six weeks of hybrid HIIT-FES cycling might be required to show benefits in
cardiovascular health blood markers. In this study, eight adults with SCI exercised for
32 min three times per week or 48 min twice weekly, totaling 96 min of hybrid HIIT-FES
cycling per week.

A study that combined NMES resistance training with FES leg cycling resulted in
higher VO2peak levels and reduced visceral adipose tissue. Twelve weeks of NMES
resistance training plus twelve weeks of FES leg cycling was compared to twelve weeks
of passive leg movement plus twelve weeks of FES leg cycling. The results showed that
NMES resistance training plus twelve weeks of FES leg cycling was more effective than
passive leg movement therapy followed by FES leg cycling in improving VO2peak levels,
with respective increases of 29% and 16% [42].

In a separate study, Gorgey et al. [43] demonstrated improvements in cardiovascular
blood markers with positive lipid changes after 12 weeks of twice-weekly NMES resistance
training. Free fatty acid levels decreased by 24%, triglyceride levels decreased by 38%, and
the cholesterol/high-density lipoprotein ratio also decreased.

Regarding potential metabolic benefits, Sanchez and associates [44] performed a
meta-analysis on nine studies investigating evidence that NMES effectively improves
glycemic control predominantly in a middle-aged and elderly population with type-2
diabetes, obesity, and SCI. The meta-analysis showed that NMES resistance training in
the legs significantly lowered fasting blood glucose. Likewise, Griffin and colleagues [45]
deployed 30 min of FES leg cycling during two to three weekly sessions for ten weeks on 18
individuals with chronic SCI. They found an improvement in glycemic response during oral
glucose tolerance testing and reduced levels of inflammatory markers, c-reactive protein
(CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) [45].

Table 1. Effects of electrical stimulation exercise on cardiovascular and metabolic health.

Source Participants Treatments Results

Farkas et al. [36] n = 13
Chronic SCI

6—FES-LCE 5x/week for 16 weeks
7—ACE 5x/week for 16 weeks

FES +2.5% VO2peak
ACE +20% VO2peak

Hasnan et al. [37] n = 9
Chronic SCI

9—completed ACE, FES-LCE,
FES-LCE, and outside hybrid
cycling at 40%, 60%, and 80%
of VO2peak.

FES-LCE + ACE and outside hybrid cycling
resulted in significantly higher VO2peak, PO,
and cardiac output than FES-LCE during all
three submaximal intensities

Johnston et al. [39] n = 30 Pediatric SCI
(age 5–13)

10—FES-LCE
10—passive cycling
10—NMES

FES-LCE +16% VO2peak
Passive cycling −27% VO2peak
NMES −17% cholesterol level

Brurok et al. [40] n = 6
Chronic SCI

6—hybrid HIIT-FES-LCE 3x/week
for 8 weeks after a 7-week control
period

+24% VO2peak
+33% stroke volume
Decreased cardiovascular disease risk

Hasnan et al. [41] n = 8
Chronic SCI

8—hybrid HIIT FES-LCE + virtual
reality 2–3 times per week (96 min
per week)

+33% POpeak
+20% VO2peak
Blood lipids and glucose (no change)

Gorgey et al. [42] n = 27
Chronic SCI

17—NMES-RT + FES-LCE 16-PMT +
FES-LCE

NMES-RT + FES-LCE +29% VO2
PMT + FES-LCE +16% VO2
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Table 1. Cont.

Source Participants Treatments Results

Griffin et al. [45] n = 18
Chronic SCI

18—FES-LCE 2–3 times per week
for 10 weeks

Cholesterol −1%
Triglyceride −4%
CRP −19%
IL-6 −22%
TNF-α −4%
Insulin levels at 60 and 120 min during oral
glucose tolerance test.

Gorgey et al. [43] n = 9
Chronic SCI

11—NMES-RT 2 times/week for 16
weeks plus 2–6mg/day testosterone
11—testosterone only.

NMES grp
Triglyceride −38%
Cholesterol/HDL −14%
Free fatty acids −24%
Diet-only group
Free fatty acids −20%

RT = resistance training; PO = power output; LCE = leg cycling exercise; FES-LCE = functional electrical stimulation
leg cycling exercise; PMT = Passive Movement Therapy.

Summary

FES-LEC and ACE activities have been shown to provide cardiometabolic benefits;
however, hybrid FES cycling activities, which combine both FES-LEC and ACE, have been
found to be more beneficial for cardiometabolic health due to the engagement of more mus-
cle activity and increased levels of exercise intensity. Eight weeks of thrice-weekly hybrid
HIIT-FES cycling sessions showed increased stroke volume, cardiac output, and VO2peak
levels. Combining NMES-RT and FES-LEC twice weekly has also been demonstrated to
improve VO2peak levels, lower fasting blood glucose and improve cardiovascular blood
markers. FES-LEC and NMES-RT have also been found to reduce inflammatory markers
and improve glycemic control in middle-aged and elderly populations with type-2 diabetes,
obesity, and SCI. More large-scale randomized control trials are needed to help confirm the
findings of the current available evidence and to optimize the dose–response relative to the
level of injury and the goals of individuals.

3.2. Muscle Strength and Mass (Table 2)

Roxley and colleagues [46] demonstrated the muscle-strengthening benefits of pro-
gressive resistance exercise combined with FES leg cycling. A 12-week randomized control
trial on 28 individuals with incomplete SCIs combined 12 progressive resistance training
sessions (knee extension and flexion, ankle dorsiflexion, and plantarflexion) and 24 FES leg
cycling sessions, resulting in significantly greater quadricep and hamstring peak torque
than a control group performing FES leg cycling without progressive resistance training.
Moreover, the group that combined FES leg cycling with progressive resistance exercise
demonstrated a more significant increase in muscle mass than the FES leg cycling-only
group, 7% to 3%, respectively.

Gorgey et al. [42] also combined exercise protocols to optimize muscle hypertrophy.
Twelve weeks of NMES resistance training twice weekly increased the cross-sectional area
of the proximal, middle, and distal knee extensor muscle regions by 30–33%, 29–32%, and
26–28%, respectively. Furthermore, increases in knee extensor muscle hypertrophy were
maintained by an additional twelve weeks of FES leg cycling.

Dolbow and associates [47] used HIIT-FES leg cycling to elicit positive body compo-
sition changes, including an increased leg lean mass of 7% and a decreased total body
fat percentage of 2.5%. Five individuals with chronic SCIs performed HIIT-FES leg cy-
cling thrice weekly for eight weeks with nutritional counseling one time per week and
showed significantly greater improvements than the five-person control group that received
nutritional counseling only.
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While Farkas and colleagues [36] found only minimal non-significant increases in
VO2peak after FES leg cycling five times per week for 16 weeks, there were greater body
composition enhancements than ACE participants with a 4% increase in total body lean
mass, a 7% increase in leg lean mass, and a decrease of 4% in total body fat percentage.

Speed of cadence has also been shown to affect gains in muscle mass. Seventeen
individuals with SCIs were divided into the low-cadence and high-cycling-torque FES leg
cycling group (20 revolutions per minute at 2.8 Nm) and the high cadence with low torque
group (50 revolutions per minute at 0.8 Nm) for cycling sessions three times per week
for six months. Both increased in muscle volume, with the low-cadence group having a
significantly greater increase, 19% to 10%, respectively [48].

Gorgey and associates [27] combined NMES resistance training with dietary recom-
mendations to demonstrate increases in thigh muscle mass. After 12 weeks of thrice-weekly
NMES resistance training and diet, individuals with chronic SCIs observed increases in the
whole-thigh cross-sectional area of 28%, the knee extensor cross-sectional area of 35%, and
the knee flexor muscle cross-sectional area of 16%. In a separate study, Gorgey et al. [49]
combined NMES resistance training twice weekly for 16 weeks with low-dose testosterone
patches (2–6 mg per day). They again found significant increases in skeletal muscle cross-
sectional area in the legs. Results from magnetic resonance images revealed a more than
20 cm2 increase in the whole-thigh muscle cross-sectional area and a 34% increase in the
proximal region of the knee extensor muscle group, with a 32% increase for the middle knee
extensor region and a 30% increase in the lower knee extension region. After accounting
for intramuscular fat (IMF), the percentages increased to 43%, 34%, and 33%, respectively.
Although the NMES resistance training concentrated on the knee extensors, the hip adduc-
tors and hamstring muscle groups also showed gains in cross-sectional areas. These gains
were also accompanied by an increased basal metabolic rate, decreased visceral adipose
tissue, and reduced inflammatory biomarkers [49].

NMES resistance training combined with testosterone has also been associated with a
29% fiber cross-sectional area and increased citrate synthase and succinate dehydrogenase.
Surprisingly, the number of myonuclei increased following NMES resistance training and
testosterone without successfully reporting fiber-type changes in histochemistry analysis
via muscle biopsy [50,51].

The above findings suggested that the use of NMES resistance training with and
without testosterone may promote health benefits and attenuate comorbidities in persons
with SCIs. Furthermore, using NMES resistance training with relatively inexpensive,
commercially available ankle weights may be as equally effective as using expensive FES
leg cycling bikes for home use.

The evidence indicates that while both FES leg cycling and NMES resistance training
can increase muscle mass, NMES resistance training outperforms FES leg cycling for
producing muscle hypertrophy in individual muscle groups.

A recent systematic review indicated that there is conclusive evidence of the effects of
electrical stimulation exercise on muscle size and lean mass. However, there is limited evi-
dence to support the effects on percentage fat mass, regional fat mass, or ectopic adiposity
following electrical stimulation exercise in persons with SCIs [52].

Table 2. Effects of electrical stimulation exercise on muscle strength and mass.

Source Participants Treatment Results

Farkas et al. [36] n = 13 chronic SCI 6—FES-LCE 5x/week for 16 weeks
7—ACE 5x/week for 16 weeks

FES +4% LM
FES +7% legs LM
ACE +2% LM
FES −4% BF%
ACE −5% BF%
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Table 2. Cont.

Source Participants Treatment Results

Gorgey et al. [42] n = 27 chronic SCI 17—NMES-RT + FES-LCE 16-PMT +
FES-LCE

NMES-RT + FES-LCE +30–33% proximal
Quadriceps CSA,
29–32% middle quadriceps CSA,
26–28% distal quadriceps CSA

Rosley et al. [46] n = 23 chronic
‘incomplete’ SCI

10—FES-LCE + PRT 1 session PRT
and 2 sessions FES-LCE weekly
over 12 weeks
13—FES-LCE
3 sessions/weekly over 12 weeks

FES-LCE + PRT left hamstring peak torque
+45% change, higher than FES-LCE
FES-LCE + PRT right quadricep peak torque
+31% change, greater than the FES-LCE
FES-LCE + PRT
Muscle volume +7% increase

Dolbow et al. [47] n = 10 chronic SCI
5—interval HIIT-FES cycling
3x/week for 8 weeks and diet
5—diet alone

HIIT-FES cycling group
Legs LM +7%
Total BF% −2.5%
Diet-only group
No changes

Gorgey et al. [43] n = 9 chronic SCI
11—NMES-RT 2 times/week for 16
weeks plus 2–6mg/day testosterone
11—testosterone only

NMES grp
Thigh CSA +28%
Knee ext CSA +35%
Knee flexor +16%

Gorgey et al. [49] n= 22 chronic SCI 11—NMES-RT 2 times/week for 16
weeks plus 2–6mg/day testosterone

NMES-RT Plus T grp (CSA)
Prox knee ext +34%
Mid knee ext +32%
Low knee ext +30%
-IMF
Prox knee ext +43%
Mid knee ext +34%
Low knee ext +33%

Johnston et al. [39] n = 17 chronic SCI

Low cadence 20 rpm
High cadence 50 rpm
9—low cadence
8—high cadence
3x/week for 6 months

Low cadence
+19% LM
High cadence
+10% LM

LM = lean mass; BF% = body fat percentage; CSA = cross-sectional area; PRT = progressive resistance training.

Summary

NMES-RT and FES-LEC have both been shown to be safe and effective ways to increase
muscle mass and reduce body fat, with NMES-RT demonstrating a greater ability to increase
the skeletal muscle cross-section area in the targeted muscles. Adding testosterone patches
may also enhance the benefits. Twice-weekly sessions of NMES-RT for eight to twelve
weeks has been found to be a successful regime, while thrice-weekly FES-LEC has also been
successful. Adding progressive resistance exercise to FES-LEC has been shown to elevate
benefits. HIIT-FES leg cycling, combined with nutritional counseling, has demonstrated
potential for reducing body fat percentage. More research is required to determine optimal
protocols regarding the type of electrical stimulation exercise to optimize the goals of those
with SCIs and to determine at what stage the various protocols should be initiated in
SCI recovery.

3.3. Bone Mass (Table 3)

While evidence supports the concept that skeletal muscle hypertrophy can result from
several weeks of FES exercise, slower bone metabolism typically requires at least six months
to a year to produce improvements in bone health. Furthermore, positive bone health
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sequelae have not been consistent based on evidence. FES leg cycling and NMES resistance
training provide only modest recovery or slowing of the rate of bone loss after an SCI [53].

Holman and associates [54] studied the effects of sixteen weeks of NMES resistance
training on the legs along with receiving testosterone. Twenty men with SCIs were ran-
domly placed in the NMES resistance training and testosterone group or the testosterone-
only group. The effect sizes of changes in trabecular bone were estimated to be moderate
in the proximal tibia and small in the distal femur. The authors speculated that these
changes could increase significantly with more extended NMES resistance training and
testosterone duration.

Frotzler et al. [55] had eleven individuals with SCIs perform FES leg cycling 3–4 times
per week for a year, resulting in a 14% greater trabecular bone mineral density and a
7% increase in total bone mineral density in the distal femur. Similarly, Johnston and
colleagues [19] demonstrated that using low-cadence FES leg cycling (20 revolutions per
minute) three times per week for six months produced a 7% increase in trabecular bone.
The largest positive impact on bone resulted from electrical stimulation at 1.5 times the
body weight five times per week for two years, resulting in a 31% increase in bone mineral
density in the distal tibia of individuals with SCIs [56].

Another study used the stimulation amplitude and the number of leg extension
repetitions to highlight muscle and bone qualities in persons with SCIs. The authors noted
that an arbitrary current of less than 100 mA and a leg extension repetition number greater
than 70 out of 80 repetitions may suggest that persons with SCIs had greater muscle and
bone qualities. The authors were capable of driving several regression equations to predict
muscle size and knee bone mineral densities in persons with SCIs [57].

Available evidence suggests that the best results have been attained with FES or
NMES leg exercises at least three times per week for several months to two years, with
high-resistance exercises also necessary.

Table 3. Effects of electrical stimulation exercise on bone.

Source Participants Treatment Results

Holman et al. [54] n = 10 chronic SCIs NMES-RT 2x/week
Distal femur—small trabecular increase
Proximal tibia—medium
trabecular increase

Frotzler et al. [55] n = 11 chronic SCIs FES-LCE 3–4x/week for 1 year
+14% BMD trabecular bone (distal femur)
+7% BMD total bone
(distal femur)

Shields and
Dudley-Javorski, [56]

n = 7 (6 weeks
post-SCI)

FES to plantar flexor muscles of one
leg. The other leg was the control +31% BMD (distal tibia)

Johnston et al. [48] n = 17 chronic SCIs

Low cadence 20 rpm
High cadence 50 rpm
9—low cadence
8—high cadence
3x/week for 6 months

+7% trabecular bone in distal femur

BMD = bone mineral density.

Summary

Changes in bone mass are much slower than muscle mass due to the relatively slow
metabolic rate in skeletal bone. FES and NMES activities have been shown to provide a
limited recovery of bone mass or decelerate the bone loss rate after an SCI. The current
evidence shows that FES-LEC and NMES-RT programs require high-volume and high-
intensity exercise to produce benefits in bone tissue. High-intensity exercise three to five
times per week provides the best opportunity to slow bone loss or improve bone mineral
density in individuals with SCIs. Training for at least six months to over a year may be
required to achieve meaningful benefits. More research is needed to provide conclusive
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exercise guidelines for bone health after an SCI. Because of the limited benefits of electrical
stimulation activities on bone health, future studies should focus on combining electrical
stimulation exercises with bone maintenance medications or nutrition.

3.4. Diagnosis, Prognosis, and Treatment for Upper Limbs (Table 4)

A further aspect of the application of electrical stimulation demonstrates the variety
of its use, taking the upper extremities as an example in people with tetraplegia. Here,
the application consists of a systematic diagnosis, prognosis, and treatment sequence. As
previously published, the integrity of the lower motor neuron (LMN) can be tested by
selectively assessing the upper limb muscles [58,59]. For this purpose, the muscles that are
decisive for grasping and releasing objects are tested using a standardized measurement
procedure employing electrical stimulation via a nerve, i.e., with a short pulse width. As the
electrical excitability of nerve fibers (from 50 s = 0.05 ms) is earlier than that of muscle fibers
(from 10 ms), the targeted stimulation of the motor points in the corresponding muscle can
be used to determine whether an LMN lesion is present. This requires a reliable 2-channel
stimulator that guarantees the output of the displayed intensity (amplitude mA) based on
250–300 µs (0.25–0.30 ms) with a frequency of 35 Hz. A pen electrode is recommended as
the active electrode for higher precision (Figure 2).
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The question of why this is ultimately important in treating the hands of people with
tetraplegia is based on the fact that developing the tenodesis effect is still an essential aspect
of upper-limb rehabilitation [60,61]. The tenodesis effect enables the affected person to
grasp and release objects tentatively. Active dorsiflexion of the wrist leads to closure of
the fist, which is achieved by passive insufficiency of the long finger flexors, which are
positioned in approximation to provoke shortening. The hand is opened passively by
relaxing the dorsiflexion, which consecutively leads to finger extension with volar flexion.

Clinical observations have shown that achieving this tenodesis effect is rarely success-
ful in ensuring everyday functionality of the hand despite standardized positioning and
appropriate splinting, including physio- and occupational therapy. Factors like edema,



J. Clin. Med. 2024, 13, 2995 10 of 14

pre-existing contractures, and spasticity can influence the desired result. Another reason
that should be considered is damage to the LMN on critical muscles that determine grasp
and release. The key actuators are the extensor digitorum communis (EDC), the extensor
pollicis longus (EPL), and the abductor pollicis longus (APL) for finger and thumb extension
and the flexor digitorum profundus (FDP) and flexor pollicis longus (FPL) for flexion.

In a study involving 86 individuals with tetraplegia, it was shown that four different
scenarios of hand forms develop, which have different innervation patterns regarding the
LMN integrity of the critical muscles for hand opening and closing [62]. A subsequent
investigation of the differently developing thumb positions, which also contribute signif-
icantly to the functionality of grasping and releasing, confirmed the findings previously
obtained for the finger extensors and flexors [63].

In terms of hand form, the following four scenarios were identified:
1. The open flat hand, in which both the EDC and the FDP show LMN damage.
2. The hand that shows an incomplete tenodesis effect but with few functional limita-

tions. In this case, the integrity of the LMN is preserved on both the EDC and FDP.
3. The classic hand with the well-functioning tenodesis effect, in which the EDC

typically has a damaged LMN and the FDP an intact LMN.
4. The undesired claw hand, which is functionally unsuitable for manipulating objects.

This is characterized by an intact LMN on the extensor side (EDC) and a damaged LMN on
the flexor side (FDP).

This finding has implications for the treatment of the tetraplegic hand in rehabilitation.
The use of electrical stimulation can be targeted based on the knowledge of the type of
damage. In scenario 1, for example, where both the EDC and the FDP are denervated,
long-pulse stimulation is indicated to prevent denervation atrophy, which results in the
alteration of the muscle into connective and fatty tissue [64]. The likelihood of contractures
developing is high.

In the case of the claw hand described in scenario 4, the consequence in treatment is
that classic taping of the hand to support the development of the tenodesis effect should
preferably be avoided (Figure 3). Applying the stimulus via tape to the dorsal side of the
fingers activates the muscle spindles. Muscle spindles are sensitive longitudinal traction
receptors in skeletal muscle. Stretch-induced activation excites the Ia and II afferents in
the spindle.
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The discharge of the muscle spindle’s afferents depends on the muscle’s resting length.
It can be increased by applying pressure to the muscle belly or tendon or by moving the
joint in a direction that increases the stretch of the muscle.

In other words, taping the hand is counterproductive to developing a tenodesis
effect [65].

The effective and efficient electrical stimulation of the various neurologically damaged
muscles of the upper limb is essential for successful treatment. Electrical stimulation can be
used as a diagnostic tool to determine the damage. Applied and used promptly following
an SCI, it allows a prediction about the development of hand function [32].

Table 4. Use of electrical stimulation for diagnosis, prognosis, and treatment for upper limbs.

Source Participants Testing or
Treatment Results

Bersch et al. [58] n = 32
Tetraplegia

Retrospective analysis
Defined motor points and wrist and
finger activities to detect UMN/LMN
Lesions

16 hands developed tenodesis grasp
all with LMN of EDC
24: no tightness of finger flexors

Bersch et al. [59] n = 24
Tetraplegia

Tested forearms for
LMN/UMN lesions
44 arms analyzed

FDPIII—26 arms with UMN lesion
10 arms with partial denervation
5 arms with denervation
FPL—16 arms with UMN lesion
12 arms with partial denervation
14 arms with denervation

Jung et al. [60]

n = 37
Tetraplegia (preserved
wrist extension with
paralysis in fingers)

Assessment of passive tenodesis
grasp (open and closed)
GRASSP testing

Those with 4–5/5 muscle strength
showed higher GRASSP scores than
those with 3/5 wrist extension

Bersch et al. [62]
n = 220
Tetraplegia
Data Base

Retrospective analysis of AIS and
MMT of arm and hand muscles at
different time points

Hand and arm function predicted
by MP and AIS and used as the
basis for providing an
individualized treatment plan

Koch-Boner et al. [63]
n = 82
159 hands
Tetraplegia

Divided into 3 thumb positions (key
pinch, slack thumb, and
thumb-in-palm).
Muscle testing and motor
point testing

Muscles showed a different
expression of MP and the MMT
values between key punch and
thumb slack positions. MMT of FPL
was greater in the group
“thumb-in-palm” compared with
the “key pinch” position

Bersch & Friden [64]

n = 22
Tetraplegia
ECU and 1st dorsal
interosseous denervated

Electrical stimulation 33 min, 5x/wk,
12 wks

ECU
+27% muscle thickness
+71% pennation angle
1st dorsal interosseus
+46% muscle thickness
+100% pennation angle

GRASSP = Graded and Redefined Assessment of Strength, Sensibility, and Prehension.

Summary

The electrical stimulation testing of upper-extremity muscles can provide diagnostic
information regarding upper or lower motor neuron injury to muscles that are key to
upper-extremity function. This information can also be used to determine the prognosis of
possible future deformities of the hands and how to best approach rehabilitation to achieve
the tenodesis effect for grasping and overall functional recovery as well as reconstructive
surgery, including muscle-tendon and nerve transfers. The research is extensive and
detailed in this area, with guidelines that can help provide targeted electrical stimulation
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exercises to help decrease the risk of contractures and improve the recovery of hand
function. Further research is required to determine the optimal dose–response effects of
electrical stimulation training on injuries of varying levels and degrees of completeness.

4. Conclusions

Overall, electrical stimulation activities are safe and effective methods for exercise
(NMES and FES) and testing for motor neuron lesions in individuals with SCIs and other
paralytic or paretic conditions. They should be considered part of a comprehensive rehabil-
itation program in diagnosing, prognosing, and treating individuals with SCIs to improve
function, physical activity, and overall health.
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