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Abstract: Background: This study assesses the effects of the ‘Radiant’ image enhancement technique
on fetal nuchal translucency (NT) measurements during first-trimester sonographic exams. Meth-
ods: A retrospective analysis of 263 ultrasound images of first-trimester midsagittal sections was
conducted. NT measurements were obtained using a semi-automatic tool. Statistical methods were
applied to compare NT measurements with and without ‘Radiant’ enhancement. An in vitro setup
with predefined line distances provided additional data. Results: Incremental increases in NT mea-
surements were observed with varying levels of ‘Radiant’ application: an average increase of 0.19 mm
with ‘Radiant min’, 0.24 mm with ‘Radiant mid’, and 0.30 mm with ‘Radiant max.’ The in vitro results
supported these findings, showing consistent effects on line thickness and measurement accuracy,
with the smallest mean deviation occurring at the ‘Radiant mid’ setting. Conclusions: ‘Radiant’
image enhancement leads to significant increases in NT measurements. To avoid systematic biases in
clinical assessments, it is advisable to disable ‘Radiant’ during NT measurement procedures. Further
studies are necessary to corroborate these findings and to consider updates to the NT reference tables
based on this technology.

Keywords: nuchal translucency; first trimester screening; image enhancement; aneuploidies;
prenatal diagnostics

1. Introduction

The relevance of NT assessment as part of the first-trimester screening (FTS) is proven
and internationally accepted as a sonographic standard in the detection of major fetal
aneuploidies. First introduced in 1992 by Nicolaides et al., nuchal translucency was the
initial sonographic parameter that enhanced sensitivity in first-trimester screening for fetal
anomalies [1]. Prior to this, the risk assessment for fetal Trisomy 21 primarily depended on
maternal age and hormone levels [2]. By incorporating additional sonographic markers
(nasal bone, tricuspid valve flow, ductus venosus flow), the detection rate for fetuses with
Trisomy 21 could be increased to over 95%. Due to the fundamental importance of accurate
risk calculation, optimal image quality is essential for the precise measurement of the
NT [3,4].

Early detection via NT measurement allows for strategic planning and timely medical
interventions, ensuring comprehensive prenatal care. In essence, NT measurement during
the first trimester is indispensable not only for the early detection of chromosomal and
structural anomalies but also for comprehensive fetal health assessment and nuanced risk
evaluation. This underscores its vital role in enabling informed clinical decisions and
tailored prenatal care throughout pregnancy [5–7].
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Given the rapidly advancing assets of modern ultrasound devices, an improvement in
image quality can be noticed over the years. Some imaging techniques have the potential
to alter line thickness and measurements of NT. This algorithm changes the appearance of
B-mode sonographic images.

The technology uses the B-mode image to create a 3D render based on the brightness
of each part of the image. This results in a virtual three-dimensional landscape in the shape
of the lines recorded. Then, the device shines a virtual light source onto the 3D relief from
the direction of the ultrasound probe. Parts of the relief that are parallel to the surface
reflect the virtual light source and are, therefore, recorded as a strong signal. Lateral parts
of each line create a ‘slope‘ in the 3D relief and, therefore, reflect the virtual light to the
side, making them less likely to reproduce a signal. This creates an effect of lateral contrast
enhancement and, therefore, reduces line thickness.

In our estimation, this effect is most noticeable during NT measurements. The aim of
this study was to investigate the impact of the ‘Radiant Image Enhancement Technique’ on
the measurement of nuchal translucency (NT) and its subsequent clinical relevance.

2. Materials and Methods
Nuchal Translucency with and without ‘Radiant’ Applied

Images of NT measurements obtained from July to October of 2022 (n = 263) on
Voluson Expert 22 (GE Healthcare, Solingen, Germany, Software Version EC400) were
reviewed in the on-device archive, and the ‘Radiant’ image enhancement technique was
applied post-exam directly on the device. The gestational age for all examinations was
11 + 0 to 13 + 6 weeks, as this represents the timespan used for FTS. All examinations were
conducted by experienced examiners certified according to the quality criteria of the Fetal
Medicine Foundation (FMF) London.

For each examination, if multiple NT images were available, the one that most ac-
curately adhered to FMF standards was selected. FMF standards for NT measurements
describe methods for obtaining a true midsagittal section. We checked for those standards—
correct magnification, visible nose bone, non-visible zygomatic bone, clearly distinguishable
thalamus and midbrain, neutral fetal position, and thin nuchal membrane [8]. Adherence
to these standards was ensured because all physicians are certified annually by the FMF for
first-trimester screening. Image-enhancing modalities, including ‘Harmonic Imaging’, ‘Ul-
tra HD’, Speckle Reduction Imaging (SRI), and Compound Resolution Imaging (CRI), were
activated for all cases, as they are standard in our first-trimester scans. Unlike ‘Radiant’,
these settings cannot be deactivated after image capture due to their operational method.
Maintaining these settings for all cases helps to minimize confounding variations. In the
subsequent text, references to ‘Radiant off’ or ‘Native’ indicate that ‘Radiant’ was not used,
while ‘Ultra HD’, SRI, and CRI remained active, as previously mentioned.

For each image, NT measurements were initially taken without the ‘Radiant’ enhance-
ment. Subsequently, the same image underwent repeated measurements with ‘Radiant’
applied at the settings ‘min’, ‘mid’, and ‘max’. These measurements were performed using
GE’s ‘SonoNT’ tool (GE Healthcare, Solingen, Germany, Software Version EC400), which
allows the user to define a rectangular region within the image for standardized NT mea-
surement using the device. This tool was selected due to its proven ability to significantly
reduce interobserver variability [9,10].

In addition to our patient-based examinations, we conducted an in vitro study using
an inorganic object to objectively assess changes in line thickness relative to the actual size
of the measured material. For this, we utilized a mechanical device designed to stretch a
condom between its membrane walls at a predefined distance. The stretched condom was
submerged in distilled water, and the ultrasound probe was positioned underwater, orthog-
onal to the condom’s membrane. This method replicates the experimental setup used by
Heiko Dudwiesus in his prior research on the effects of Harmonic Imaging [11]. The setup is
illustrated in the figures (Figures 1–4). These measurements were conducted using the same
ultrasound machine and probe as in our first-trimester screening to minimize variability.
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Figure 4. B-mode-image of the in vitro setup. The two horizontal lines are the membranes of
a condom, with a predefined distance in between. The cone-like structures below are sound-
absorbing foam.

To establish a setting comparable with clinical data, we measured the distance between
the condom membranes under various settings, including the factory preset with ‘Ultra
HD’, SRI, and CRI activated, which we regularly use in first-trimester screenings. We
also took measurements with ‘Harmonic Imaging’ activated, and with no enhancements
(‘Fundamental’), while keeping SRI and CRI activated throughout.

For each setting, we compared ‘Radiant’ with ‘Radiant off’ by measuring the distance
between the membranes using the ‘SonoNT’ tool. This examination was conducted with
actual distances of 1.0 mm and 2.5 mm between the membranes. Although the operator
was aware of the settings being used, the reliance on the automated ‘SonoNT’ tool for
measurements obviates the need for operator blinding, as the tool’s design significantly
reduces interobserver variability [9,10].

In each examination, details such as gestational age, crown-rump length (CRL), date of
the original examination, and the attending physician’s name were documented. In cases
with suspected aneuploidy, invasive diagnostics were conducted as part of the clinical
procedure (CVS).

The measurements obtained under different ‘Radiant’ settings were analyzed using
the t-test for dependent variables, employing IBM SPSS (Version 29.0) software.

For this, the acquired NT values for each step of “Radiant” were compared to the
group of NT values measured without “Radiant”. The resulting difference in mean NT was
named “∆NT”. The resulting p values of statistical significance are listed in Table 1.

Table 1. Average difference in NT values (∆NT) between ‘Radiant off’ and each step of ‘Radiant’.

‘Radiant off’ vs.: ∆NT CI SD Significance

vs. ‘Radiant min’ 0.19 mm 0.17–0.21 0.010 p < 0.001

vs. ‘Radiant mid’ 0.24 mm 0.22–0.27 0.012 p < 0.001

vs. ‘Radiant max’ 0.30 mm 0.27–0.33 0.016 p < 0.001
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The study was approved by the ethical committee of RWTH University, Aachen,
Germany (No. EK 24-039).

3. Results

Table 2 shows the mean values of gestational age (GA), crown-rump length (CRL), NT,
and maternal age by group, along with their relative frequencies.

Table 2. Mean values by risk groups.

Normal Trisomy 21 Trisomy 18 Monosomy X

n 259 (98.48%) 1 (0.38%) 2 (0.78%) 1 (0.38%)

Mean GA 12w 4d 11w 6d 11w 6d 11w 2d

Mean CRL 64 mm 52 mm 51 mm 52 mm

Mean NT 1.98 6.97 6.36 7.10

Mean age 34 42 33 31

Mean BMI 25.7 24.9 20.4 26.0

NIPT rate * 61 (23.6%) 0 0 0

AC rate * 0 0 0 0

CVS rate * 4 (1.5%) 1 (100%) 2 (100%) 1 (100%)

ICSI/IVF * 17 (6.6%) 1 (100%) 0 0
* Absolute and relative numbers are given for NIPT (Non-Invasive Prenatal Testing), AC (Amniocentesis), CVS
(Chorionic Villus Sampling), and assisted reproduction (ICSI/IVF: Intracytoplasmic Sperm Injection, In Vitro
Fertilization) carried out in our study population.

3.1. Nuchal Translucency with and without ‘Radiant’ Applied

Comparing values without ‘Radiant’ applied to those with ‘Radiant‘ applied revealed
a significant difference in average NT values. For clarity, this difference will be denoted
as ‘∆NT’. Significant discrepancies were observed across the three settings of ‘Radiant’—
minimum, medium, and maximum—compared to ‘Radiant off’. Figure 5 illustrates the
mean ∆NT values for each ‘Radiant’ method, with brackets indicating the respective
95% confidence intervals (95% CI).
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The most notable difference in NT was observed between ‘Radiant off’ and ‘Radiant
max’; on average, NT measurements were 0.30 mm greater when ‘Radiant max’ was
applied. This difference was statistically significant (p < 0.001; 95% CI: 0.27–0.33). The
∆NT between ‘Radiant off’ and ‘Radiant min’ was smaller, averaging 0.19 mm, yet still
significant (p < 0.001; 95% CI: 0.17–0.21). The average ∆NT between ‘Radiant off’ and
‘Radiant mid’ was 0.24 mm, also statistically significant (p < 0.001; 95% CI: 0.22–0.27). The
results are presented in Table 1 and Figure 5.

3.2. Relation of Native NT and ∆NT

To examine if the radiant effect was more pronounced in large or small NT values, we
examined whether ∆NT is dependent on the original NT value. There was no connection
between native NT and ∆NT. Figure 6 shows ∆NT (for ‘Radiant max’) in relation to native
NT values. The statistical correlation was poor with Fisher’s correlation at −0.152.
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3.3. In Vitro Examination with and without ‘Radiant’ Applied

To corroborate our findings from live patient examinations, we established an in vitro
setup with constant, predefined line distances of 1.0 and 2.5 mm, as previously described.
The in vitro results align with those observed during live NT measurements. The ‘Radiant’
setting resulted in thinner, more defined line thicknesses. In the ‘Fundamental’ mode—
the native B-image without enhancements—the lines were slightly thicker, with distances
between lines increasing by 0.1 to 0.2 mm for both measured distances. ‘Harmonic Imaging’
did not affect smaller distances but had a more noticeable impact on larger ones, increasing
line distance by up to 0.5 mm. With ‘Harmonic Imaging’, deviations from the actual
distances were significant, showing a reduction of −0.3 mm for 1.0 mm of actual distance,
and ranging from −0.4 to −0.9 mm for 2.5 mm of actual distance. This effect is visible in B-
mode images as blurring and increased line thickness, which reduces the measured distance.
The comparison of line thickness using only ‘Harmonic Imaging’ versus ‘Harmonic Imaging’
combined with ‘Radiant’ is depicted in Figure 7.
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Using ‘Ultra HD’, measurements were generally more accurate, with a maximum
deviation of −0.2 mm for both 1.0 mm and 2.5 mm of actual distances. ‘Ultra HD’ appears
to enhance precision by reducing line thickness. Although the effect of combining ‘Radiant’
with ‘Ultra HD’ was observable, it was less dramatic than when combined with ‘Harmonic
Imaging’. All in vitro measurement values are listed in Tables 3 and 4.

Table 3. In vitro measurements of 1.0 mm distance (values in mm).

1.0 mm Fundamental HI High Ultra HD
Radiant off 0.70 0.70 0.80

Radiant min. 0.90 0.70 0.90
Radiant mid. 0.90 0.70 1.00
Radiant max. 0.80 0.70 0.90

Table 4. In vitro measurements of 2.5 mm distance (values in mm).

2.5 mm Fundamental HI High Ultra HD
Radiant off 2.20 1.60 2.30

Radiant min. 2.20 1.70 2.60
Radiant mid. 2.30 2.10 2.60
Radiant max. 2.40 2.10 2.60

Additionally, we observed that at smaller distances, measurements tended to increase
up to ‘Radiant mid’ but decreased slightly at ‘Radiant max’. This pattern is documented in
Table 3 for both ‘Fundamental’ and ‘Ultra HD’ settings. The trend was also evident during
data acquisition in vivo, where smaller NT values initially increased with ‘Radiant mid’
but sometimes slightly decreased with ‘Radiant max’. However, this phenomenon was not
evident in our in vitro measurement at a 2.5 mm line distance (see Table 4).

4. Discussion

This retrospective single-center cohort study was conducted to validate clinical obser-
vations and assess the impact of a novel image enhancement technology called ‘Radiant’.
By applying ‘Radiant’ to in-device images post-examination, we simulated real patient
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scenarios, thereby creating a consistent experimental setting. To minimize confounding
variables, each image was processed through all stages of ‘Radiant’. Additionally, we
employed the ‘SonoNT’ tool to further enhance interobserver reliability.

Further, the ‘Radiant’ image enhancement technology significantly improves image
quality by sharpening the visual output. This is evidenced by our controlled experiments,
where the most accurate measurements of horizontal line distances were obtained using
‘Radiant mid’. Consequently, it appears that without the use of ‘Radiant’, NT measure-
ments are consistently underestimated. In general, the measurement of horizontal line
distances seems to be most precise when combining ‘Ultra HD’ and ‘Radiant’, because
this combination created the least deviation from the actual distance presented (greyed in
Tables 3 and 4).

In our well-controlled in vitro setup, the measurement of horizontal line distances
was most precise when combining ‘Ultra HD’ and ‘Radiant mid’, because this combination
created the least deviation from the actual distance presented (greyed in Tables 3 and 4).
Without ‘Radiant’, all our in vitro measurements were underestimated. Consequently, one
might propose that using ‘Radiant’ in vivo might reflect a more precise measurement.

When introducing a new diagnostic method that yields significantly different values,
it is crucial to assess the clinical implications. Over a three-month period, our cohort of
263 cases demonstrated that the number of cases with nuchal translucency (NT) measure-
ments exceeding 3.5 mm increased incrementally with each level of ‘Radiant’ enhancement
applied. Specifically, without ‘Radiant’, four cases exceeded this threshold and were sub-
jected to invasive testing (CVS or AC), confirming two cases of Trisomy 21, one of Trisomy
18, and one of Monosomy X. With ‘Radiant’ enhancements—‘Radiant min’, ‘Radiant mid’,
and ‘Radiant max’—the numbers increased to five, six, and seven cases, respectively. No-
tably, the additional cases identified with ‘Radiant’ showed no further signs of aneuploidy
in second-trimester screenings and did not require invasive procedures.

This results in a marked increase in the false-positive rate (FPR) from 0% with ‘Radiant
off’ to 43% with ‘Radiant max’. However, drawing definitive conclusions from these rates
is challenging due to the small sample size. Nonetheless, our in vitro results suggest that
‘Radiant’ may enhance the precision of NT measurements. The apparent contradiction
between higher precision and increased FPR may indicate that the traditional reference
values are outdated. Given that ‘Radiant’ tends to produce systematically larger, yet
potentially more accurate, NT values, this discrepancy could be due to historically smaller
reference values.

Recent technological advancements in ultrasound imaging underscore the need to
revisit the NT reference tables established by Nicolaides et al. in 1992, which have been
periodically updated in response to technological progress [1,8,12]. The ongoing debate
about NT cutoff margins, including proposed thresholds of 3.0 mm, 3.5 mm, and the 99th
percentile, should be informed by these advancements. These cutoffs are crucial as they
align closely with current reference tables used in first-trimester screening [13].

To conclusively validate the findings reported, further investigations involving larger
cohorts are essential. In practical terms, the use of ‘Radiant’ has subjectively enhanced the
visual perception of anatomical landmarks in everyday clinical practice. This improve-
ment not only supports the objective effects observed but also enhances the utility of this
technology in routine first-trimester screening.

In our study, we observed that smaller NT values, around 1 mm, ‘Radiant max’ settings
were slightly decreased compared to ‘Radiant mid’. This phenomenon was also replicated
in our in vitro setup. However, the current dataset does not provide sufficient information
to determine the cause of this effect.

Despite measures to minimize interobserver variations and create a consistent experi-
mental setting, the generalizability of the study is limited due to its small sample size and
the singular model of ultrasound device used, restricting the applicability of our findings to
other settings or devices. At the time of manuscript preparation, no other device or brand
offers technology comparable to ‘Radiant’.
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For historical context, a similar enhancement in clinical practice was observed with
the introduction of ‘Harmonic Imaging’ (HI) in the late 1990s. This technology markedly
improved texture assessment and overall image quality, leading to its rapid integration as a
standard feature in sonographic evaluations [14].

5. Conclusions

Given the observed increase in the precision of NT measurements and the enhanced
overall image quality provided by ‘Radiant’, we recommend its adoption for first-trimester
sonographic examinations. However, for clinical decision-making, we advise using ‘Radiant
off’ mode until more comprehensive data on false-positive rates and updated NT reference
values become available.
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