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Abstract: Super-resolution (SR) is a technique that restores image details based on existing infor-
mation, enhancing the resolution of images to prevent quality degradation. Despite significant
achievements in deep-learning-based SR models, their application in underwater sonar scenarios is
limited due to the lack of underwater sonar datasets and the difficulty in recovering texture details.
To address these challenges, we propose a multi-scale generative adversarial network (SIGAN) for
super-resolution reconstruction of underwater sonar images. The generator is built on a residual
dense network (RDN), which extracts rich local features through densely connected convolutional
layers. Additionally, a Convolutional Block Attention Module (CBAM) is incorporated to capture
detailed texture information by focusing on different scales and channels. The discriminator employs
a multi-scale discriminative structure, enhancing the detail perception of both generated and high-
resolution (HR) images. Considering the increased noise in super-resolved sonar images, our loss
function emphasizes the PSNR metric and incorporates the L2 loss function to improve the quality of
the output images. Meanwhile, we constructed a dataset for side-scan sonar experiments (DNASI-I).
We compared our method with the current state-of-the-art super-resolution image reconstruction
methods on the public dataset KLSG-II and our self-built dataset DNASI-I. The experimental results
show that at a scale factor of 4, the average PSNR value of our method was 3.5 higher than that of other
methods, and the accuracy of target detection using the super-resolution reconstructed images can be
improved to 91.4%. Through subjective qualitative comparison and objective quantitative analysis,
we demonstrated the effectiveness and superiority of the proposed SIGAN in the super-resolution
reconstruction of side-scan sonar images.

Keywords: image super-resolution; generative adversarial network; underwater sonar images;
underwater target detection

1. Introduction

The detection and identification of underwater targets such as shipwrecks, aircraft
wreckages, pipelines, and reefs are crucial tasks in marine science research, resource
exploration, and ocean mapping [1]. These tasks have significant implications for maritime
traffic safety, marine fishery development, sonar detection, and military operations. Side-
scan sonar, known for its high-resolution imaging capabilities, has long been the preferred
technology for underwater target detection and identification [2-5]. However, due to
limitations in range and the complexity of the measurement environment, a large number
of low-resolution side-scan sonar images still exist, greatly hindering the development of
underwater target identification. Super-resolution (SR), a technique that enhances image
resolution through reconstruction, can improve the quality of underwater sonar images and
play a crucial role in enhancing target detection accuracy [2-5], target segmentation [6-8],
and other image scenarios [9-12].

Super-resolution (SR) is an image processing technology aimed at reconstructing high-
resolution (HR) images from low-resolution (LR) images or videos [13]. Depending on the

J. Mar. Sci. Eng. 2024, 12, 1057. https:/ /doi.org/10.3390/jmse12071057

https:/ /www.mdpi.com/journal /jmse


https://doi.org/10.3390/jmse12071057
https://doi.org/10.3390/jmse12071057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://doi.org/10.3390/jmse12071057
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12071057?type=check_update&version=1

J. Mar. Sci. Eng. 2024, 12, 1057

2 of 15

number of input images, SR can be classified into single-image SR (SISR) or multi-image
SR (MISR). SISR generates high-resolution images from a single low-resolution image and
is widely used in environmental monitoring, medical image processing, video surveillance,
and security. The key to SISR lies in exploring the mapping relationship between HR and LR
images. Previous studies have proposed various methods to learn this mapping. Traditional
filtering and interpolation techniques such as linear interpolation [14,15] generate HR
images based on neighborhood information. Although these methods are computationally
efficient, they simplify the mapping relationship in SISR, leading to overly smooth images
that lack important details, especially texture and target edges.

With the development of deep learning, convolutional neural networks (CNNs)
were introduced to the SR field by Dong et al. [16]. As deep learning neural networks
evolved, many researchers designed powerful neural network models such as ResNet [17],
DenseNet [18], and Residual Dense Blocks (RDBs) to further enhance SR models. These
include multi-layer networks like VDSR, the enhanced deep SR (EDSR) network [19],
the deep recursive convolutional network (DRCN) [20], and very deep residual channel
attention networks (RCANSs) [21].

Despite significant breakthroughs achieved by complex CNNs in image super-resolution
reconstruction, issues such as blurred image edges, high noise levels, and poor perceived
image quality persist. The advent of generative adversarial networks (GANSs) led to their
introduction into the SR domain by Ledig et al. [22]. Since the emergence of SRGAN [22],
numerous GAN-based models have been applied to super-resolution image generation. En-
hanced SRGAN (ESRGAN) reduced image artifacts by extending Residual Blocks (RRDBs),
while fine-grained-attention GANs (FASRGANSs) [23] improved the capability to generate
high-quality images through image scoring.

Despite the significant achievements of super-resolution (SR) in optical images [24-27],
the effectiveness of SR generation for underwater samples remains unsatisfactory. The
complexity and diversity of interference in underwater environments result in substan-
tial differences in texture and detail between sonar images and optical images. Existing
algorithms such as RCAN [21], EDSR [19], SRResNe [28], and SRGAN have demonstrated
suboptimal performance in the super-resolution reconstruction of side-scan sonar images.
Specifically, EDSR and SRGANSs exhibit limited capabilities in image restoration and texture
reproduction, leading to unclear images. Furthermore, RCANs and SRResNe suffer from
noise amplification issues while enhancing image resolution.

To address these issues and improve the image quality of super-resolution reconstruc-
tion for side-scan sonar images, this paper proposes a multi-scale adversarial generative
network. The network details are as follows: The generator utilizes Residual Dense Blocks
(RDB) to design a five-layer Residual Dense Network (RDN), extracting rich local features
through densely connected convolutional layers [28-31]. The final layer of the generator
incorporates a Convolutional Block Attention Module (CBAM) to capture detailed texture
information by focusing on different scales and channels [32,33]. The discriminator adopted
a multi-scale discriminative structure to enhance the detail perception of both generated
and high-resolution (HR) images through the comprehensive scale-aware judgment of
sonar images [34,35]. Additionally, considering the increased noise in super-resolved sonar
images, our loss function emphasized the peak signal-to-noise ratio (PSNR) to reduce noise
and improve output image quality. We also constructed a dataset (DNASI-I) for side-scan
sonar experiments. Subjective qualitative comparisons and objective quantitative analyses
with the current state-of-the-art super-resolution image reconstruction methods were con-
ducted on the public dataset KLSG-II and our dataset DNASI-I1. The experimental results
demonstrated the significant effectiveness and superiority of SIGAN in the super-resolution
reconstruction of side-scan sonar images.



J. Mar. Sci. Eng. 2024, 12, 1057

30f15

2. Methods
2.1. Overall Structure of SIGAN

The SIGAN is a multi-scale generative adversarial network model specifically designed
for underwater side-scan sonar images. Similar to traditional super-resolution generative
adversarial network structures, as shown in Figure 1, the SIGAN mainly consists of two
parts: the generator and the discriminator.
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Figure 1. Overall structure of SIGAN.

As shown in Figure 1, the generator takes the low-resolution (LR) image as an input,
which sequentially passes through the input layer, Residual Dense Network (RDN) struc-
ture, CBAM attention mechanism module, and finally through the output layer to produce
the high-resolution (HR) reconstructed image. The HR image and the high-resolution
original image (original image) are then simultaneously inputted into the multi-scale dis-
criminator for discrimination. The VGG16 network is used to extract image features for
comparison and to calculate the loss function, which is then backpropagated to both the
generator and the discriminator.

During the entire training process, the goal of the generator is to reconstruct high-
resolution images (HR) from low-resolution side-scan sonar images (LR) that the discrim-
inator cannot distinguish. The goal of the discriminator is to differentiate between real
side-scan sonar images (original image) and the reconstructed images (HR) generated by
the generator.
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2.2. CBAM-Based Generator Structure

Our proposed SIGAN generator consists of four parts, as shown in Figure 2. The input
layer is a single convolutional layer activated by the ReLU function. The output layer is an
upsampling layer to generate super-resolution reconstructed images. The main part of the
generator consists of Residual Dense Blocks (RDB) and the CBAM attention mechanism
module.

Channel
Attention
Moudle

Concat
Input feature
Output feature

i

Concat

Figure 2. SIGAN generator structure.

2.2.1. RDN Structure

The Residual Dense Network (RDN) was proposed by Yulun Zhang in 2018 and
effectively utilizes the hierarchical features of convolutional layers. The overall structure of
the network has three main characteristics: First, the RDB module connects the state of the
previous RDB module to each layer of the current RDB module through skip-connections,
forming a continuous memory mechanism. Second, through local feature fusion within
the RDB module, the local features of the previous RDB module are adaptively fused with
the current module’s local features, resulting in more extensive and stable training. After
adequately capturing the internal features of the module, global feature fusion (GFF) is
used to jointly learn the global hierarchical features.

2.2.2. CBAM Structure

The adequate learning of target detail features and background features in side-scan
sonar images is crucial for the generator to produce high-quality images. To enhance the
learning of global information and local features in the input image and to strengthen the in-
teraction between channel and spatial dimensions, this paper introduces the Convolutional
Block Attention Module (CBAM) in the generator, placed after the RDN layer. Figure 2
shows the overall architecture after adding the CBAM module. The CBAM consists of
two independent sub-modules: the Channel Attention Module (CAM) and the Spatial
Attention Module (SAM). Compared to attention mechanisms that focus solely on spatial
features, this design achieves better results while saving parameters and computational
power and can be conveniently inserted into various layers of the network. This module
aims to reduce information diffusion while amplifying cross-dimensional interactions in
the channel and spatial dimensions of the image, thereby improving network performance.
By focusing on relevant features and minimizing interference, the CBAM module enhances
the detail and fineness of side-scan sonar images, which is crucial for generating realistic
and high-quality output images.
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2.3. Multi-Scale Discriminator Structure

In the field of super-resolution, traditional methods typically input the image directly
into the discriminator to obtain a single score or a score map [36,37]. However, for side-scan
sonar images rich in detail and texture features, using a single score for decision-making
is too absolute as it ignores the local and multi-scale features of the image. Additionally,
the complex background features of underwater images make it difficult to use the entire
image as a reference for the quality of super-resolution image reconstruction. To address
these issues, SIGAN, based on the SRGAN discriminator structure with the VGG16 style,
designs a multi-scale discriminator structure with five scales. It mainly consists of four
parts: the encoder, multi-scale module, decoder, and output layer, as shown in Figure 3.
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Figure 3. SIGAN discriminator structure.

The encoder extracts multi-scale image features of side-scan sonar through the VGG16
network, using convolutional layers to reduce the size of feature maps while increasing
the number of feature maps. The encoder is designed with five layers, corresponding to
image sizes of 512, 256, 128, 64, and 32; the decoder and output layer utilize bilinear feature
interpolation for upsampling and use convolutional layers to reduce the number of feature
maps.

Multi-scale module: In the SIGAN discriminator, we aimed to improve the discrimi-
nator’s ability to discriminate through receptive fields of different sizes at different scales,
rather than relying solely on a global judgment from a single image. For example, for the
2nd, 3rd, and 4th scales, the image sizes are 64 x 256 x 256, 128 x 128 x 128, and 256 x 64
x 64, respectively, with receptive field sizes of 3 X 16 x 16,3 x 8 x 8, and 3 x 4 x 4. The
generated patch score maps, map_2, map_3, and map_4, provide more accurate feedback
for the image’s local regions, thereby enhancing the network’s ability to recover detailed
textures at different scales. This method is particularly effective in processing side-scan
sonar images [38].

2.4. Loss Function Composition

The loss function proposed for SIGAN consists of four parts: adversarial loss, percep-
tual loss, TV loss, and 5 loss introduced with a focus on the PSNR metric. The calculation
method of the loss function is as follows:

IsicaN = aely + Bel,z, + xolyre + dolTy 1)

Among these, a/B/x /6 represents the respective weights. Currently, mainstream
super-resolution algorithms reduce the emphasis on the PSNR metric to pursue the visual
quality of the reconstructed image. However, for underwater side-scan sonar images,
the level of noise is a crucial factor affecting image discrimination. Therefore, in our loss
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function definition, the weight of the I loss is set relatively high. This approach aims to
reduce the noise in the generated images. The calculation method for MSE is as follows:

1 & 2

l = MSE = — 22 Xij — Yij) ()
mn = i3

Among these, x;; and y;; represent the predicted and actual values of the ijth pixel of
the image, respectively. The calculation method for PSNR is as follows:

MAX;

PSNR = 20el0
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™

where MAX represents the maximum pixel value in the image. The adversarial loss is
defined as follows:

Lodo = — ZlogD Zlogl— I;)) (4)

where I is the real side-scan sonar image, [ is the super-resolution reconstructed image, and
D(I;) is the probability that the discriminator classifies the ith side-scan sonar image as real.
To avoid reliance on pixel-level loss, we used the VGG loss based on the ReLU activation
layers of the VGG network as defined in SRGAN. ¢; ; denotes the feature maps obtained
from the ith max-pooling layer before the jth convolutional layer (after activation) in the
network. The perceptual loss in this paper is defined as follows:

2

lpre = WoH Hz; 21 Z @i (I s = 9i,i(Gog (I") ) (5)
x=1y=

In this formula, W;; and H;,; describe the dimensions of the feature maps in the
VGG network.

Total Variation Loss, derived from total variation denoising in image processing, was
calculated by summing the square roots of the squared differences between each pixel and
its right and bottom neighbors:

N[

1

n
2 2
X; X; Xjy1i— X;i 6
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3. Experimental Validation

To demonstrate the practicality and efficacy of the SIGAN in the super-resolution
reconstruction of side-scan sonar images, we conducted comparative analyses with several
state-of-the-art super-resolution (SR) networks, including EDSR, the SRGAN, the RCAN,
and MSRResNet. To ensure a fair comparison, these models were evaluated under the
same dataset conditions. The hardware setup for model training comprised two Intel
Xeon Silver 4410T processors and four NVIDIA GeForce RTX 4090 graphics cards. The
software environment was configured with PyTorch 1.6.0, CUDA 11.8, and Python 3.10 on
Windows 10.

3.1. Datasets

Given the scarcity of publicly available side-scan sonar datasets, we collected various
underwater sonar images from diverse scenarios and locations across the nation. The data
sources included publicly available datasets (e.g., KLSG-II), datasets obtained through
collaborations with other universities, and data from in situ ocean exploration experiments.
The dataset encompassed a wide range of content, including seabed shipwrecks, aircraft
wreckages, underwater rocks, schools of fish, divers, and seabed sand dunes. We compiled
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this data to create our dataset, named DNASI-I. To validate our methodology, we selected
two datasets for experimentation: the publicly available side-scan sonar dataset KLSG-
II and our proprietary dataset DNASI-I. The KLSG-II dataset is available for download
on GitHub (URL: https://github.com/HHUCzCz/-SeabedObjects-KLSG--11, accessed
on 3 June 2024). Both datasets underwent identical processing techniques. Specifically,
we randomly cropped all images to 128 x 128 pixels, covering three categories: seabed
shipwrecks, aircraft wreckages, and underwater rocks. Finally, we selected 100 images with
distinct target texture structures and easy comparability from our dataset DNASI-I to serve
as the test set (t100). Sample images from the datasets are shown in Figure 4.

KLSG—1I DNASTI- 1

Figure 4. Sample images from the datasets. The left side shows selected images from KLSG-II, and
the right side shows selected images from DNASI-I.

3.2. Objective Evaluation Metrics

The evaluation metrics adopted in this study included peak signal-to-noise ratio
(PSNR), the Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Sim-
ilarity (LPIPS). The PSNR was used to calculate the mean squared error between two
images, deriving a peak signal-to-noise ratio to assess the similarity between the training
and generated images. The SSIM quantifies structural information from the perspective
of image composition, independent of brightness and contrast, reflecting the structural
integrity of objects within the scene. LPIPS measures the perceptual differences between
two images by learning the inverse mapping from the generated to real images, prioritizing
perceptual similarity. These metrics collectively assist in comprehensively assessing the
quality of generated images.

3.3. Visual Comparison with Other SR Methods

We trained the models using the RCAN, EDSR, MSRResNet, the SRGAN, and our
method (the SIGAN). Subjective visual comparisons were conducted for magnification
factors of r =2, r =4, and r = 8. Figure 5 shows the results generated by training our SIGAN
model on the KLSG-II dataset. Figure 6 presents the results generated by different networks
trained on the KLSG-II dataset.

A comparative analysis was performed using images of underwater rocks, aircraft,
and shipwrecks. At a magnification of r = 2, images generated by the RCAN, EDSR, and
the SRGAN exhibited pronounced sharpening effects, resulting in overly harsh edges and
image distortions. Conversely, images from MSRResNet appeared overly smooth, leading
to a loss in high-frequency information. At a magnification of r = 4, while EDSR-based
methods managed to restore some textures, they also introduced artifacts not present in the
original images, causing distortions. The RCAN and SRGAN methods produced images
with unclear edges and blurring. The images from MSRResNet continued to suffer from
excessive smoothness, resulting in distortions. At a magnification of r = 8, a detailed image
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of a sunken ship was analyzed. Comparisons of the ship’s surface structure revealed that
MSRResNet and EDSR restored images with uneven edges, though some high-frequency
details were preserved. The RCAN and SRGAN handled edge details well but resulted in
overall blurry images.

256 X256

512X512

r=8

1024 X1024

Figure 5. Results generated by training the SIGAN.

2?6

1024 X1024

RCAN EDSR MSRResNet SRGAN SIGAN (ours)

Figure 6. Results generated by different networks trained on the KLSG-II dataset. Note: to make the
comparative analysis more intuitive, we scaled the 512 x 512 and 1024 x 1024 images down to 256 x
256 for uniformity. The actual image comparison is reflected in Figure 5.
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In contrast, our SIGAN method, utilizing attention mechanisms, focused more adeptly
on the super-resolution generation of targets, thus offering significant advantages in han-
dling edge details. For instance, at a magnification of r = 4 in Figure 6, the SIGAN effectively
managed the edge details of the aircraft wreckage, enhancing edge resolution while pre-
serving high-frequency image details. Due to the loss function’s emphasis on the PSNR
metric, our method produced noticeably fewer image artifacts compared to other methods,
successfully avoiding the introduction of noise while enhancing resolution.

Training was also conducted on the DNASI-I dataset, with the results shown in
Figure 7:

256 X256

MSRReset N SIGAN ors)

512X512

MSRResNet SRGAN SIGAN (ours)

0 256 512 1024

1024X1024

RCAN EDSR MSRResNet SRGAN SIGAN (ours)

Figure 7. Results generated on the DNASI-I dataset using different networks.

Representative images were selected for comparison. At a magnification of r = 2, im-
ages generated by the RCAN, EDSR, and the SRGAN still exhibited pronounced sharpening
effects. At a magnification of r = 4, a noisier image was selected for comparison, revealing
significant noise increase in MSRResNet and the SRGAN, while our method managed
noise effectively, not exacerbating it with increased resolution. At a magnification of r = 8,
an image with detailed horizontal features of a sunken ship showed that the deck railing
structures restored by the RCAN and SRGAN were blurry and discontinuous, yielding
suboptimal results.

In contrast, our SIGAN approach provided clear advantages, especially noticeable
at higher magnifications. The attention mechanism in the SIGAN allowed for superior
detail preservation and clarity, demonstrating enhanced capability in handling complex
image textures without compromising on noise, which is crucial for practical applications
in underwater imaging.

3.4. Objective Evaluation with Other Methods

Table 1 presents the quantitative analysis of our SIGAN method on the KISG-II dataset,
using magnification factors of r = 2, r = 4, and r = 8 for different categories such as
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shipwrecks, aircraft, and underwater rocks. We calculated the average results for PSNR,
SSIM, and LPIPS. The most outstanding performance indicators are highlighted in bold.

Table 1. Performance metrics on the KISG-II dataset for various methods. The underlined parts
represent the data with better performance.

KLSG-II RCAN EDSR MSRResNet SRGAN SIGAN

r Class PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Shipwreck 28.209 0.7966 0.196 29.145 0.8276 0.153 29.641 0.8356 0.152 28209 0.7966 0.16  30.1563 0.8524 0.199

5 Aircraft 28.555 0.78  0.1458 29.244 0.8033 0.1303 31.054 0.9364 0.1046 28555 0.78  0.1458 31.3621 0.8836 0.0828
Rocks 22.707 05652 0.251 23.023 0.5625 0.2433 24.514 0.6765 0.2256 22.707 0.5652 0.251  26.5623 0.7246 0.228
Set100 26433 0.7167 0.188 28.809 0.7028 0.1826 29.134 0.7994 0.1589 26.433 0.7167 0.188 29.1156 0.8324 0.1285
Shipwreck 27.866 0.5667 0.4035 24.516 0.5843 0.314 25595 0.6321 03141 23.866 0.5667 0.4035 27.2544 0.7315 0.1998

4 Aircraft 24812 0.652 0.2613 25.065 0.5825 0.2932 30.386 0.8362 0.1026 24.812 0.652 0.2613 29.3691 0.8210 0.1212
Rocks 19.962 02297 0.3691 20.082 0.2254 0.3664 21.261 03122 0.378 19962 0.2297 03691 24.2145 0.6615 0.321
Set100 22.722 0.3971 03114 21478 03911 0.3288 23.993 0.5635 0.2547 22722 0.3971 03114 25.9541 0.761  0.25
Shipwreck 21.267 0.431 04035 22.06 0.4466 04171 22958 04844 04327 21267 0.431 04035 23.2155 0.631 0.35

3 Aircraft 22.804 04571 0.2613 22278 0.4247 04142 27.617 0.732 0.1482 22.804 04571 0.2613 25.4612 0.6315 0.2218
Rocks 18.92  0.1439 03691 19.261 0.152 0.4214 19.552 0.1685 0.4028 1892 0.1439 0.3691 21.1586 0.5365 0.499
Set100 20.741 0.3396 0.3114 21.163 0.3448 04178 21.874 0.3997 0.3514 20.741 0.3396 0.3114 22.1498 0.636  0.3599

An analysis of Table 1 revealed that our SIGAN method consistently outperformed
other methods across all scales, demonstrating significantly better average values for each
evaluation metric, specifically:

e  PSNR: the SIGAN and EDSR generally showed higher PSNR values, particularly at a
magnification factor of 2, where both algorithms demonstrated strong performance
across multiple categories. Notably, at r = 4, the SIGAN achieved an average PSNR of
25.95 on the Set100, nearly indistinguishable from high-resolution images.

e  SSIM: the SIGAN consistently performed well across different magnification factors
and categories, particularly in the “Shipwreck” and “Aircraft” categories, where the
SSIM values were high, indicating good structural fidelity of the images.

e  LPIPS: Low LPIPS values indicated that the perceived quality of the images was closer
to the original. EDSR stood out in the “Set100” category, showcasing its advantages
in perceived image quality. Similarly, the SIGAN showed lower LPIPS values at
lower magnification factors (such as 2x) in the “Shipwreck” and “Aircraft” categories,
indicating superior perceptual quality.

We also conducted a quantitative analysis of various methods on the DNASI-I dataset,
with the results presented in Table 2. The best-performing data is highlighted in bold:

From the analysis of Table 2, it is evident that the SIGAN continued to excel on the
DNASI-I dataset. Although the performance generally declines with increasing magnifica-
tion factors, it is noteworthy that our method maintained a certain level of stability without
significant drops. In Table 2, the SIGAN’s performance on the Set100 test set significantly
surpasses other methods on every evaluation metric. The quantitative comparisons clearly
demonstrate that our method is superior. At r = 4, the average PSNR on Set100 is higher by
3.5, illustrating the clarity and detail preserved by the SIGAN.

Comparing Tables 1 and 2, it is apparent that models trained on the DNASI-I dataset
perform better than those trained on the KLSG-II dataset at the same scale. Whether it is
our SIGAN approach or other networks like EDSR, this indirectly attests to the superior
performance and higher quality of our dataset in super-resolution tasks.
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Table 2. Performance metrics on the DNASI-I dataset for various methods. The underlined parts
represent the data with better performance.

DNASI-I RCAN EDSR MSRResNet SRGAN SIGAN

r Class PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS
Shipwreck 30.429 0.8763 0.1764 32.059 09103 0.1377 32.605 0.9392 0.1368 30.429 0.8763 0.144 33.1719 0.9377 0.1791

2 Aircraft 3141 0.858 0.1312 32169 0.8836 0.1173 34.16 1.03  0.0942 3141 0.858 0.1312 34.4983 0.9719 0.0745
Rocks 24978 0.6217 0.2259 25325 0.6188 0.2189 26.966 0.7442 0.2031 24978 0.6217 0.2259 29.2185 0.797  0.2052
Set100 29.076 0.7884 0.1692 31.69 0.7731 0.1643 32.047 0.8793 0.1431 29.076 0.7884 0.1692 32.027 0.9157 0.1156
Shipwreck 30.652 0.6234 0.3632 26.967 0.6428 0.2826 28.155 0.6953 0.2826 26.252 0.6234 0.3632 29.9803 0.8046 0.1798

4 Aircraft 27293 0.7172 02352 27572 0.6408 0.2639 33.425 0.9198 0.0923 27293 0.7172 0.2352 32.306 0.9031 0.1091
Rocks 21.958 0.2527 0.3322 22.09 0.2479 0.3297 23.387 0.3434 0.3402 21.958 0.2527 0.3322 26.6359 0.7277 0.2889
Set100 25.094 04368 02803 23.626 0.4302 0.296 26392 0.6199 0.2293 25.094 0.4368 0.2803 28.5495 0.8371 0.225
Shipwreck 23.394 0.4741 0.3632 24266 0.4911 0.3757 25254 0.5328 0389 23.394 04741 0.3632 25.5371 0.6941 0.315

8 Aircraft 25.085 0.5028 0.2352 24.506 0.4672 0.3725 30.378 0.8052 0.1334 25.085 0.5028 0.2352 28.0073 0.6947 0.1996
Rocks 20.812 0.1583 0.3322 21.187 0.1672 0.3791 21.508 0.1852 0.3625 20.812 0.1583 0.3322 23.2744 0.5902 0.4491
Set100 22.815 0.3736 0.2803 23279 0.3794 0376 24.061 0.4397 03163 22.815 0.3736 0.2803 24.3644 0.5781 0.2232

4. Discussion

The essence of deep-learning-based side-scan sonar image super-resolution is to extract
edge detail features from targets, such as the bows, masts, and shadows of shipwrecks,
from complex models. These features, learned from high-resolution images, are then
applied to enhance the detail in low-resolution images. Considering that the ultimate goal
of image super-resolution reconstruction is to improve the performance of downstream
target recognition tasks, this discussion focuses on analyzing the performance of SIGAN-
generated super-resolution reconstruction images in target recognition tasks. Additionally,
we conducted ablation studies to explore the contributions of various components of the
network, aiming to understand how super-resolution enhances the accuracy of target
recognition.

4.1. Performance in Target Recognition

To assess the effectiveness of super-resolution reconstructed side-scan sonar images in
target recognition tasks, we selected a dataset of 200 high-resolution side-scan shipwreck
images, each measuring 600 x 600 pixels, for testing. As a baseline, we used 2181 low-
resolution side-scan sonar images of 128 x 128 pixels, reconstructed using EDSR, the
SRGAN, the RCAN, MSRResNet, and our proposed SIGAN, followed by annotation
processing. The detection model employed was Yolov5, known for its light weight, accuracy,
and ease of deployment. The experimental groups are detailed as follows Table 3:

Table 3. Target recognition testing groups.

Group LR Images HR Images
Gl 2181 -
G2 2081 100 (EDSR)
G3 2081 100 (SRGAN)
G4 2081 100 (RCAN)
G5 2081 100 (MSRResNet)
G6 2081 100 (SIGAN)

Test images - 200

Testing was conducted using 200 real high-resolution side-scan sonar shipwreck target
images, and the models were evaluated using precision, recall, and average precision (AP),
widely used metrics in the field of object detection. The results are as follows:

From the results in Table 4, it was observed that the introduction of high-resolution
reconstructed images does not always directly improve the accuracy of target detection.
For example, compared to Group G1 (using only low-resolution images), Group G3 (using
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high-resolution images reconstructed by the SRGAN) saw a 2% decrease in precision. This
highlights that super-resolution algorithms may negatively impact detection performance
under certain conditions, potentially due to the loss of complex textures or excessive
smoothing during the reconstruction process. Notably, the super-resolution approach based
on EDSR (G2) achieved a precision of 91.1%, indicating a relatively high accuracy rate, yet
its recall was lower than the control group (G1). This suggests that although this method
can increase the probability of correctly identifying targets, it does not detect as many
targets as desired. This may reflect some limitations of the EDSR method in reconstructing
details, such as possibly losing some critical information while preserving local image
features. In contrast, our method (G6, using high-resolution images reconstructed by
SIGAN) performed excellently in both precision and recall, with a 2.6% increase in precision
over the original low-resolution images (G1), significantly demonstrating the effectiveness
of our approach. The high precision and recall indicated that images reconstructed by
the SIGAN not only retained crucial textures and structural details but also enhanced the
authenticity and diversity of the images, which are vital for applications in side-scan sonar
imaging.

Table 4. Effectiveness of different training sets on real measurement side-scan sonar shipwreck target
image detection. The bolded parts represent the data with better performance.

Precision Recall APO0.5 APO0.5:0.95
G1 88.8% 89.9% 0.938 0.558
G2 91.1% 85.7% 0.935 0.576
G3 86.8% 92.6% 0.932 0.576
G4 89.7% 90.1% 0.945 0.581
G5 90.9% 94.1% 0.962 0.566
G6 91.4% 94.6% 0.959 0.579

To prevent dataset bias on a single detection model, multiple detection models
(YOLOV5n, YOLOV5s, and YOLOv5m) were used for a precision comparison experiment
(Table 5). The analysis of the results showed that there are differences in precision among
the detection models due to varying complexities and training durations. However, a
horizontal comparison across the three experimental groups consistently showed the best
performance in Group G6, further validating the effectiveness of the experimental data.

Table 5. Precision comparison among different models. The bolded parts represent the data with
better performance.

Model/Group G1 G2 G3 G4 G5 G6
YOLOvV5n 88.8% 91.1% 86.8% 89.7% 90.9% 91.4%
YOLOV5s 89.6% 90.2% 87.5% 89.5% 91.4% 92.3%
YOLOv5m 90.1% 91.5% 89.6% 90.3% 91.9% 92.9%

4.2. Ablation Study

To verify the role of each component in image super-resolution, we conducted ablation
studies on the CBAM, the multi-scale structure of the discriminator, and the L2 loss function
using the method of controlled variables. The evaluation metrics employed were PSNR,
SSIM, and LPIPS. Four groups were designed for comparative experiments, with the
experimental setup, training dataset, and evaluation data consistent with Chapter 3. The
results are shown in Table 6.
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Table 6. Ablation study.
Group CBAM Model Multi-Scale L2 Loss PSNR SSIM LPIPS
T1 - - - 30.68 0.828 0.232
T2 Vv - - 32.288 0.781 0.054
T3 - Vv - 33.721 0.92 0.155
T4 - - Vv 34.925 0.938 0.147
T5 Vv Vv Vv 35.92 0.969 0.035

From the table, it is evident that compared to the control group (T1), Group T2, which
integrated the CBAM, focused on important channels and spatial regions, aiding the
model in concentrating on crucial information in the image. This significantly improved
the similarity of the reconstructed image on the target, as evidenced by the substantial
improvement in the LPIPS metric. Comparing T1 and T3, the multi-scale structure helped
the discriminator in distinguishing the authenticity of images, thereby enhancing the quality
of the generated images, which was reflected in the improved PSNR and SSIM metrics.
Comparing T1 with T4 shows the importance of the L2 loss function in enhancing the PSNR
metric, which increased by 4.3, significantly reducing the noise in the generated images.

5. Conclusions

Addressing the challenges of limited underwater target samples, small dataset sizes,
high acquisition difficulty, and low resolution in side-scan sonar imagery, we proposed a
super-resolution reconstruction method named the SIGAN, targeting shipwrecks, airplane
debris, and underwater reefs. We conducted comparative experiments with current state-
of-the-art super-resolution reconstruction methods. The experimental results demonstrated
that our proposed method exhibited significant superiority in both subjective performance
and objective data analysis. The generated images have clear edges and complete structures,
achieving a PSNR value of 32 on the DNASI-I dataset, which is significantly higher than
other similar super-resolution algorithms.

Additionally, we discussed the results of target detection and ablation experiments.
The results indicated that using the SIGAN for target detection improved accuracy by
2% compared to general methods and by 3.6% compared to the original images. These
findings preliminarily demonstrated the applicability and superiority of the SIGAN method
in handling the super-resolution reconstruction of underwater side-scan sonar images,
providing an effective solution to the issues of underwater target sample scarcity and low
image resolution. However, due to the current small scale of side-scan sonar datasets,
our method’s applicability to all side-scan sonar data remains unverified. Therefore, the
experimental results of this study have certain limitations. More publicly available data and
extensive experiments are needed in the future to further refine and validate our method.
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