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Abstract: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide.
Colonoscopy is the primary method to prevent CRC. However, traditional polyp detection methods
face problems such as low image resolution and the possibility of missing polyps. In recent years,
deep learning techniques have been extensively employed in the detection of colorectal polyps.
However, these algorithms have not yet addressed the issue of detection in low-resolution images.
In this study, we propose a novel YOLO-SRPD model by integrating SRGAN and YOLO to address
the issue of low-resolution colonoscopy images. Firstly, the SRGAN with integrated ACmix is used
to convert low-resolution images to high-resolution images. The generated high-resolution images
are then used as the training set for polyp detection. Then, the C3_Res2Net is integrated into the
YOLOv5 backbone to enhance multiscale feature extraction. Finally, CBAM modules are added
before the prediction head to enhance attention to polyp information. The experimental results
indicate that YOLO-SRPD achieves a mean average precision (mAP) of 94.2% and a precision of
95.2%. Compared to the original model (YOLOv5), the average accuracy increased by 1.8% and the
recall rate increased by 5.6%. These experimental results confirm that YOLO-SRPD can address the
low-resolution problem during colorectal polyp detection and exhibit exceptional robustness.

Keywords: polyp detection; colonoscopy; medical image processing; deep learning; SRGAN; YOLO;
ACmix; Res2net

1. Introduction

Colorectal cancer (CRC) is one of the top three leading causes of cancer death in the
United States [1]. Adenomatous polyps carry a significantly higher probability of malignant
transformation at a quicker rate than hyperplastic polyps [2]. Early detection of these
colorectal poslyps through colonoscopies can significantly curtail the risk of progression to
cancer [1]. Computer-aided diagnosis (CAD) can help physicians accurately detect polyps,
decide treatment plans, and predict patient prognosis. Hence, early enteroscopies enable
the excision of nascent polyps to prevent advancement towards cancer and subsequent
degeneration [3].

Traditional intestinal endoscopy encounters limitations due to factors impacting the
field of view, structure, and image resolution. Detecting polyps in low-resolution images
undoubtedly poses a greater challenge for physicians. Furthermore, the process of detecting
colorectal polyps necessitates a high degree of physician expertise and is thwarted by
physician subjectivity [4], resulting in an estimated manual oversight rate of colorectal
polyps at approximately one-quarter [5].

Deep learning can be applied in many fields. In the field of medical imaging, the tasks
of object detection, recognition, and classification of medical images have become easier
and play an important role in practical medical detection [6–8]. Texture, color, and shape
features of images are commonly employed in traditional detection of colorectal polyps,
such as scale-invariant feature transform (SIFT) [9], support vector machines (SVMs) [10],
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and Gaussian mixture models [11] for classification. However, these traditional methods
heavily rely on the given data features and limit their ability to capture the complex varia-
tions in polyp images. This leads to poor performance in real-world scenarios. Therefore,
these methods are prone to overfitting and exhibit poor generalization.

In the field of medical image processing and cancer detection, super-resolution (SR)
reconstruction plays a distinctive role [12,13]. SR reconstructs low-resolution images
into high-resolution images, helping to improve image resolution and enhance image
details. Pavlou et al. [14] proposed using SRGAN to enhance the resolution of OCT images,
distinguishing between BCC lesions and scar tissue in cryoimmunotherapy. Shi et al. [15]
proposed utilizing an improved SRGAN to reconstruct phase contrast polarimetry (PCP)
images with enhanced resolution, and they incorporated a counting network for added
functionality. These studies demonstrate the potential of SR in enhancing diagnostic quality
in medical image processing.

Currently, researchers are increasingly employing artificial intelligence (AI) methods
to assist in colonoscopy for detecting polyps. Zhu et al. [16] improved polyp diagnosis
accuracy by introducing the PAM-Net and GWD loss functions. Ghose et al. [17] proposed a
method that uses data augmentation and fine-tunes parameters to improve polyp detection
performance. Yasmin et al. [18] proposed the GastroNet to detect and classify gastrointesti-
nal polyps and abnormalities and achieved high accuracy through hyperparameter tuning.
These approaches employ detection algorithms for polyp identification. However, several
challenges still exist in using these methods to assist in detecting polyps.

• Low-resolution images leads to insufficient accuracy in polyp detection.
• During colorectal polyp detection, the intestinal environment is complex. Some polyps

are small, making them more difficult to identify.

To solve the problems of low-resolution image in polyp detection, this paper proposes
a polyp detection method based on super-resolution reconstruction. Super-Resolution Gen-
erative Adversarial Network (SRGAN) [19] is used to increase the resolution of colonoscopy
images and decrease manual missed detection due to low-resolution images. The improved
You Only Look Once (YOLO) then uses the reconstructed images as input to help physicians
identify polyps.

The main contributions of this study are listed below:
(1) We propose YOLO-SRPD (Super-Resolution Reconstruction for Polyp Detection) to

address the problems of low-resolution polyp images during the detection by combining
super-resolution reconstruction and YOLOv5.

(2) To enhance partial texture and details of polyps, we introduce attention-based
mixed convolution modules (ACmix) in the generator and discriminator of SRGAN.

(3) We propose the improved YOLOv5 algorithm by incorporating the Res2net-based
C3 module in the backbone. The Res2net-based C3 module can enlarge the convolutional
receptive fields and enhance multiscale feature extraction within the backbone network.

(4) This paper also incorporates the CBAM attention mechanism into head layers of
YOLO. CBAM can focus on polyp information and enhance overall detection capability.

This paper proposes an algorithm for polyp detection that involves the use of SRGAN
to reconstruct low-resolution images, followed by detection algorithm. Section 2 reviews the
pertinent research on deep learning in medical diagnosis, with a focus on polyp detection.
In Section 3, we describe the algorithms and framework employed in this study. Section 4
presents experimental results and algorithm comparisons. Finally, a summary of the paper
is provided in Section 5.

2. Related Work

Deep learning has made substantial advancements in cancer detection, particularly in
the areas of lesion detection and segmentation. Many studies have shown that employing
deep learning models can significantly enhance the accuracy of cancer detection [20–22],
enabling effective differentiation between normal and cancerous tissue. Tan et al. [23]
proposed a small target breast mass detection network, introducing an adaptive positive
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sample selection algorithm to automatically select positive samples. This method signifi-
cantly improved the detection accuracy of small masses in breast mass detection. However,
there may be issues with missed detections in the edge regions during the breast cancer
detection process. Deep learning models heavily rely on a large and accurate dataset for
training, and insufficient data can potentially compromise their generalization capabilities.

The majority of traditional colorectal polyp detection relies on physicians’ medical
expertise. Therefore, problems like misdetection and missing detection may arise during
the detection process due to inexperience and manual mistakes of physicians. Accurate
and quick diagnosis of colorectal polyps using AI technology has become possible in the
field of medical detection [24–26].

With the application of computer vision in the medical field, convolutional neural
networks (CNNs) play a crucial role in segmentation [27–30] and detection of colorectal
polyps. Ozawa et al. [31] demonstrated the viability of CNN as a polyp detection support
system by proposing a polyp classification architecture based on a single-shot multibox
detector (SSD) on a private dataset. In 2020, Kayser et al. [32] employed the RetinaNet
network for intestinal polyp diagnosis to lessen the impact of image artifacts. In 2020,
Kayser et al. [32] employed the RetinaNet network for polyp detection in datasets such as
EAD2019 [33], CVC-Clinic [34], ETIS-Larib [35], and Kvasir-SEG [36], aiming to mitigate
image artifacts and achieved a precision of 53.7% and a recall of 72.6%. Zeng et al. [37]
proposed the RetinaNet model, which employed CNNs to capture structural patterns in
human colon optical coherence tomography (OCT) images.

One of the critical challenges in gastric polyp detection is the wide range in size and
shape of gastric polyps. In order to solve this issue, Laddha et al. [38] developed a feature
fusion module based on deep learning to identify target problems on the CLV-14SL [39]
dataset, achieving a precision of 93%, a recall of 91%, and a mean average precision (mAP)
of 91%. Zhang et al. [40] proposed a ResYOLO model which was trained on nonmedical
data and fine-tuned using colonoscopy images. Tang et al. [41] used GAN to generate
polyp images for YOLO training. The accuracy was improved by using Gaussian blur to
simulate blurred images and deblur the images. Carrinho et al. [42] utilized the YOLOv4
and achieved real-time detection through optimization and quantization with NVIDIA
TensorRT. However, this optimization may sacrifice the generalization ability on different
types of images. Tang et al. [43] proposed narrow-band imaging (NBI) technology on a pri-
vate dataset to enhance polyps’ contrast and vascular patterns, and this method positively
impacts polyp identification and classification tasks. Chou et al. [44] employed discrete
wavelet transform (DWT) and GAN2 (presumably referring to StyleGAN2) to enhance the
discriminative characteristics of polyps. Chen et al. [45] proposed an accelerated R-CNN
architecture that leverages self-attention mechanisms for polyp detection. They achieved a
precision of 94.3%, a recall of 92.5%, and F1-score of 93.4% on a private dataset.

The deep-learning-based intestinal polyp detection framework offers practical appli-
cations in the detection of intestinal polyps and the reduction of missed detection rates.
The YOLOv5 framework is the primary basic framework discussed and employed in this
study. YOLOv5 satisfies the demands for high accuracy and frame rate in colonoscopy
detection scenarios.

3. Materials and Methods

In this paper, we propose a model for intestinal polyp detection that combines a fused
SR and an improved YOLOv5 algorithm. The pertinent structure is depicted in Figure 1.
The process starts with the low-resolution image (ILR) being reconstructed into a super-
resolution image (ISR) by using SRGAN. ILR are obtained by applying a Gaussian filter
to high-resolution images (IHR) and then downsampling. Subsequently, the reconstructed
images are input into YOLOv5 to detect colon polyps.
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Figure 1. Illustration of the polyp detection architecture.

3.1. Super-Resolution Reconstruction Using SRGAN

Compared to traditional image processing algorithms, SRGAN can generate high-
quality images with enhanced details and textures. Furthermore, it achieves visually more
realistic results by leveraging deep learning techniques. The SRGAN algorithm is employed
to generate high-resolution images from low-resolution inputs. The approach comprises
a generator network and a discriminator network. The generator network incorporates
multiple residual block structures, followed by sub-pixel convolution layers.

The discriminator network module consists of seven convolutional layers with the
LeakyReLU activation function. To differentiate between IHR and ISR, two fully connected
layers and a sigmoid activation function are added after the convolutional layer. The per-
ceptual loss function of SRGAN [19] is shown in Equation (1). The perceptual loss is
composed of two parts: content loss (lSR

X ) and adversarial loss (lSR
Gen).

lSR = lSR
X + 10−3lSR

Gen . (1)

This study employs the VGG19 network for content loss, where the content loss is
represented in Equation (2).

lSR
VGG/i,j =

1
Wi,jHi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
ϕi,j(IHR)x,y − ϕi,j(GθG (ILR))x,y

)2
, (2)

where W and H are the width and height of the feature map, i and j denote the j-th
convolutional layer before the i-th max pooling layer, ϕ denotes the obtained feature map,
and ϕi,j(GθG (ILR))x,y represents the pixel value (x, y) in the feature map extracted from ILR.

The adversarial loss function is expressed in Equation (3).

lSR
Gen =

N

∑
n=1

− logDθD (GθG (ILR)) , (3)

where DθD (GθG (ILR)) denotes the discriminator that judges the image generated by the
generator GθG (ILR) as a natural image.

Although SRGAN could improve the image quality and increase pixel count, wrong
detections may still occur. It is vitally important to preserve texture and detail in medical
image reconstruction. This paper adds the self-attention convolution module ACmix to
both the generator and discriminator networks of SRGAN. This addition aims to enhance
colorectal polyp detection and facilitate the training of super-resolution images that closely
resemble real images.

The ACmix module effectively combines the advantages of traditional convolution
and the self-attention mechanism to improve the network’s focus on details. The structure
of this module is illustrated in Figure 2.

Figure 3 presents the ACmix architecture, which operates in two stages. First, the input
H × W × C feature map is broken into N features by three 1 × 1 convolutions, obtaining
rich intermediate features. The feature information generated in stage I is sent into the
convolution and self-attention branches in stage II. In the convolution branch, the features
first travel through a convolution kernel of size K, after which the feature data are divided
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into K2 subset feature maps through the dense layer, and, ultimately, a new feature map is
generated. The features in the self-attention branch are separated into N groups, and three
1 × 1 convolutions are employed for self-attention multiplication. The two learnable
parameters α and β are then used to add the features of the two branches to the channel.
To obtain the final feature map, as illustrated in Equation (4), the feature output of the two
branches is finally sent through the ACmix module.

Fout = αFatt + βFconv , (4)

where Fout represents the final output features, Fatt represents the self-attention branch, and
Fconv denotes the convolutional branch, while α and β are parameters that can be learned.

Figure 2. Structure of improved SRGAN.

Figure 3. Structure of ACmix.
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3.2. Improved YOLOv5 Polyp Detection Algorithm

Aiming to enhance the efficiency of the conventional YOLO detection algorithm, this
paper proposes improvements to YOLOv5, specifically, a C3 fusion feature extraction
module based on Res2net [46] within the backbone network. Additionally, we incorporate
an attention mechanism, CBAM [47], into the detection layer. As a result, an intestinal
polyp detection framework based on YOLOv5s is proposed. The precise configuration is
exhibited in Figure 4.

Figure 4. Improved YOLOv5-based polyp detection framework.

3.2.1. C3 Module Fused with Res2Net

The conventional C3 module has limited feature extraction capabilities, as it only
employs three convolution layers. The main innovation of Res2Net lies in employing
hierarchical cascaded feature group convolutions, which facilitate the enlargement of
receptive fields. The finer-grained multibranch structure is used to achieve more effective
feature extraction. We propose a new module, the C3_Res2Net module, which combines
the C3 module and Res2Net. This module improves the accuracy of the YOLOv5, better
extracts features of different scales, and broadens the receptive field. Consequently, it
allows for more comprehensive capture of intestinal image feature information. The final
C3 convolution module in the backbone network is replaced with the C3_Res2Net module
in this article.

The primary architecture of C3_Res2Net is depicted in Figure 5. Initially, the feature
map undergoes a 1 × 1 convolution, partitioning the features into s subsets, with the
parameter s set to 4 in this study. Except for x1 and x2, the other subgroups can accept
features from the left branch and perform element-wise addition. Then, a corresponding
3 × 3 convolution is applied, denoted by gi, thereby expanding the receptive field of the
feature convolution. Subsequently, the final output yi of the split features is recombined
and passed through a 1 × 1 convolution to produce the resulting feature. Consequently,
within the fused C3_Res2Net module, features are extracted at a finer granularity, allowing
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for more effective handling of global and local features, thereby improving recognition
accuracy. The corresponding mathematical expression can be represented by Equation (5):

yi =


xi, i = 1 ,
gi(xi), i = 2 ,
gi(xi + yi−1), 2 < i ≤ s .

(5)

Figure 5. C3_Res2net Block (a) and Res2Net Module (s = 4) (b).

3.2.2. CBAM Attention Mechanism Module

The attention mechanism is commonly used in machine learning. The accuracy of the
network can be affected by the presence of both small polyps and blocked intestinal polyps.
To solve this problem, we introduce the CBAM before the prediction head. By incorporating
the CBAM, we aim to enhance the accuracy of polyp detection and minimize the impact of
the complex intestinal environment. The CBAM is composed of the spatial attention module
(SAM) and the channel attention module (CAM). It simultaneously generates channel and
spatial attention feature map information before performing adaptive calibration on the
input feature map. Figure 6 depicts its primary structure.

Figure 6. CBAM attention mechanism module.

The CBAM attention mechanism initiates by directing input feature values to CAM,
where weighted calculations occur. Subsequently, these processed values are directed to
SAM, where weighted calculations are once again performed. The specific calculations are
defined by Equations (6) and (7).

F′ = Mc(F)⊗ F , (6)
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F′′ = MS
(

F′)⊗ F′ , (7)

where F represents input features, F′ denotes the one-dimensional channel attention mod-
ule, MS(·) denotes the two-dimensional spatial attention module, F′′ denotes the output
eigenvalue, and ⊗ represents element-wise multiplication.

3.3. Evaluation Indexes

Evaluation indexes in DL are crucial tools for assessing algorithm performance. This
study primarily focuses on precision, recall, and mAP, which facilitate the assessment of
algorithmic effectiveness.

3.3.1. SR Evaluation Index

Peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM) serve
as standard metrics for assessing image reconstruction quality. PSNR measures the fi-
delity of image reconstruction, while SSIM quantifies the similarity between the recon-
structed ISR and IHR. The mathematical expressions for PSNR and SSIM are provided in
Equations (8) and (9).

PSNR = 10 × log10

(
MAX2

I
MSE

)
, (8)

where MSE represents the mean square error between the two images and MAX is the
maximum value that can be calculated from the image pixels. The PSNR value is generally
within the range of 20 to 50 dB, with higher PSNR values indicating better image quality.

SSIM =
(2µHRµSR + C1)

(
2σHR ,SR + C2

)(
µ2

HR + µ2
SR + C1

)(
σ2

HR + σ2
SR + C2

) , (9)

where µ represents the gray mean, σ represents the variance, and C1 and C2 are constants
that keep the equation valid. The SSIM value ranges from −1 to 1. In practical applications,
it is typically between 0 and 1. SSIM can measure the similarity between two polyp images.
The greater their structural similarity, the higher the SSIM value.

3.3.2. Indices for Object Detection Evaluation

In YOLO detection, evaluation metrics such as precision, recall, mAP (mean aver-
age precision), and F1-score are commonly employed. The specific formulas for these
metrics [48] are provided in Equations (10)–(13).

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

F1-score =
2 × Precision × Recall

Precision + Recall
, (12)

where TP (true positive) represents the number of correct predictions, FP (false positive)
denotes the number of incorrect positive predictions, FN (false negative) represents the
number of positive instances that the model failed to predict correctly. Precision represents
the proportion of correct positive predictions, and recall represents the proportion of all
correct predictions. The F1-score ranges from 0% to 100%. The F1-score represents the
weighted average of precision and recall. The F1-score of 100% represents the best possible
classification performance. The higher the F1-score, the better the model performance.

mAP =
AP
N

=

1∫
0

p(r)dr

N
, (13)
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where mAP represents the average AP values, N is the variety of classes contained, p is the
value of precision, and r is the value of recall.

4. Results
4.1. Experimental Platform and Parameters

The model experimentation was conducted on Windows 11, with a system comprising
16 GB of memory, an Intel i7-12700F 2.10 GHz CPU, and an NVIDIA GeForce RTX3070
graphics card. The relevant environmental configuration is listed in Table 1.

Table 1. Experiment-related environment configuration.

Environmental Configuration Specification

CUDA 11.7
CuDnn 8.7.0
Pytorch 2.0.0

4.2. Data Preparation

The dataset was obtained from a public dataset (the 8th National Student Biomed-
ical Engineering Innovation Design Competition held in China, 2023), and has been
anonymized to protect personal privacy. The dataset contains approximately 28,000 im-
ages of colorectal polyps and is used both for training the super-resolution reconstruction
process and conducting detection experiments. The dataset consists of a variety of images
(unstructured data) and corresponding annotation files (structured data). Using super-
resolution reconstruction technology, we have improved the resolution of the images and
enhance the ability to perceive fine structures. High-resolution images provide more detail
and help the model to more accurately identify and locate colorectal polyps.

This dataset includes two main types: hyperplastic polyps and adenomatous polyps,
which aids the model in distinguishing between these two different types of polyps during
detection, thereby providing more information for clinical decision making.

4.3. Experimental Results

To further substantiate the effectiveness of the model proposed in this study for colon
polyp detection, comparative analyses were conducted with various diagnostic algorithms.
A series of ablation experiments were employed to evaluate the impact of different modules
on the algorithm.

4.3.1. SR Experiment Results

In the super-resolution reconstruction experiment, a total of 28,000 colonoscopy images
were processed. This reconstruction technique improves the resolution quality of the
captured images, resulting in enhanced accuracy for polyp identification. The achieved
PSNR value of 30.14 and SSIM measure of 0.79 demonstrate significant improvement in the
SR reconstruction, providing essential and more detailed information for future detection.
Figure 7 presents images from enteroscopy, both before (a) and after (b) SR reconstruction.
The clearer edges of the polyps after SR reconstruction contribute to improved subsequent
polyp detection. Figure 8 shows the details of some intestinal polyp images before and
after reconstruction. The reconstructed images contain more texture, structure, and other
detailed information.

Table 2 presents the PSNR and SSIM values for both the original SRGAN and the
improved model. The incorporation of the ACmix module effectively enhances the quality
of the generated image.
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Table 2. SR comparison experiment.

Methods PNSR/% SSIM/%

SRGAN 28.5 0.77
SRGAN + ACmix 30.14 0.79

Figure 7. Comparison of images before (a) and after (b) SR reconstruction.

Figure 8. Visualization results before and after colon polyp image reconstruction.

With the increase in experimental epochs, the curves of PNSR and SSIM are shown
in Figures 9 and 10. The table illustrates that the SRGAN that introduces the ACmix
self-attention convolution module improves the SSIM by 0.02 compared with the original
model. In comparison to the original SRGAN, the PSNR in this article increased by 1.64,
thereby improving the visual effect of intestinal polyp data.

Figure 9. PNSR training.
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Figure 10. SSIM training curve.

4.3.2. Experimental Results of Polyp Detection Modeling

The polyp detection model was trained using super-resolution (SR) reconstructed
images. The training process utilized a batch size of 16 and spanned over 150 training
rounds. Due to limitations in computational resources, we opted to train the polyp detection
model using 8000 images. This approach allows for a balance between computational
resources and the training of the polyp detection model. The dataset was divided into
an 8:1:1 ratio. In the polyp detection model, we used 3000 images of hyperplastic polyps
and 3400 images of hyperplastic polyps as the training set to ensure data balance during
the training process. The validation set and test set each contain 800 polyp images for
evaluating the training results. Table 3 depicts the comparative outcome of this model with
other experimental methods.

Table 3. Comparison experiment.

Methods Precision/% Recall/% mAP@0.5/% F1-Score/%

Faster R-CNN [49] 75.6 73.2 79.1 78.2
Faster R-CNN + SR 80.5 75.6 82.1 81.0

EfficientDet [50] 91.2 87.8 92.5 91.0
EfficientDet + SR 92.4 89.1 93.0 90.8

YOLOv5s 92.9 85.9 92.4 91.8
YOLOv5s + SR 94.1 88.6 92.7 91.8

YOLOv7-tiny [51] 79.2 68.1 73.8 80.7
YOLOv7-tiny + SR 82.5 72.4 78.1 82.6

YOLOv7 [51] 92.1 85.1 91.4 90.2
YOLOv7 + SR 93.6 87.5 91.4 91.8
YOLOv9 [52] 92.7 89.0 93.9 90.0
YOLOv9 + SR 94.2 91.4 92.6 93.5

Ours 95.2 91.5 94.2 94.1

In comparison to other models [49–51], the model proposed in this study exhibits
improved performance across three key indicators. The detection model presented here
surpasses the YOLOv5s benchmark by enhancing mean average precision (mAP) by 1.8%,
precision by 2.3%, and recall by 5.6%. When comparing YOLOv7-tiny and YOLOv7,
we observe distinct improvements in precision, recall, and mAP. Specifically, precision
increased by 16% and 3.1% for YOLOv7-tiny and YOLOv7, respectively. Additionally,
recall exhibited significant enhancements of 23.4% and 6.4% for the two models, while
mAP experienced notable improvements of 20.4% and 2.8%, respectively. Compared to
the Faster R-CNN model, the enhanced model demonstrates a notable 19.6% improvement
in precision, an 18.3% increase in recall, and a significant 15.1% enhancement in mAP.
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Utilizing EfficientDet resulted in achieving an mAP of 92.5%. These findings collectively
demonstrate the enhanced efficiency of detecting colorectal polyps using the proposed
model in this investigation.

Figure 11 illustrates the comparison of the mAP@0.5 curves between YOLO-SRPD and
other models. As depicted in the graph, it is clear that our proposed method outperforms
other approaches as the number of training iterations increases, resulting in higher mAP
values. This improvement is particularly noticeable after around 60 training iterations.
However, the method proposed in this study performs slightly worse than the standalone
YOLOv5 in the first 40 epochs, mainly due to the introduction of SRGAN, which makes
the training process more complex and requires more time to stabilize and realize its
advantages. However, as training progresses, the proposed method outperforms the
original YOLOv5 model. This indicates that it provides higher detection accuracy after
sufficient training. The experimental results demonstrate the effectiveness of our suggested
method in detecting colon polyps. The experimental results demonstrate the effectiveness
of our suggested method in detecting colon polyps.

Figure 11. Comparison curve of different models.

This study conducted experiments to investigate the impact of replacing different C3
modules in the backbone of YOLOv5 with C3-Res2Net on the extraction of polyp feature
information. The experimental results are presented in Table 4.

The replacement location of the C3 module is displayed in Figure 12. In this study,
the C3 modules in the backbone are replaced with C3-res2net. There are a total of four
C3 modules in the backbone. Starting from the input of the backbone, they are numbered
sequentially as 1–4 (first, second, third, and fourth, as depicted in Figure 12). We investigate
the impact of replacing different modules on the accuracy of polyp detection.

Table 4. Comparison of the replacement positions by C3-Res2Net.

The Replacement Positions Precision/% Recall/% mAP@0.5/%

First 93.7 88.2 92.8
Second 93.8 91 92.6
Third 94.7 92 94
ALL 95.4 91.5 93.5
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Figure 12. The replacement location of the C3 module.

Based on the experimental data, it is evident that incorporating Res2Net into the last
layer of the C3 module is beneficial and improves the model’s detection accuracy.

In addition, Figure 13 shows the training results curve of YOLO-SRPD. Figure 13
can demonstrate that there were no issues such as overfitting during the training pro-
cess, proving that the model training results are satisfactory. During the training process,
the training loss (Figure 13a–c) rapidly decreases and then stabilizes as the number of itera-
tions increases, indicating that the model’s performance in detecting polyps is gradually
improving and the classification task is converging. In the validation loss (Figure 13f–h),
it gradually decreases and stabilizes as training progresses, showing that the model is
also learning better polyp predictions on the validation set. The precision (Figure 13d)
rapidly increases at the beginning of training and then stabilizes, indicating that the model
can more accurately identify positive samples. The mAP (Figure 13i) curve rises rapidly
at the beginning and quickly converges, indicating that the overall performance of the
model in the detection task is gradually improving. Furthermore, the similar trends of the
training loss and validation loss curves indicate that the model does not exhibit significant
overfitting. This demonstrates that our model performs well during training and gradually
achieves high detection performance.

Figure 13. Training results curve of YOLO-SRPD.

4.3.3. Ablation Experiment

The results of the ablation experiment are presented in Table 5. These data demonstrate
that the fusion of SR reconstruction, Res2Net module fused with the C3 module, and the
inclusion of CBAM improve the accuracy of intestinal polyp detection.
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Table 5. Ablation experiments.

Yolov5 SR C3-Res2net CBAM Precision/% Recall/% mAP@0.5/% F1-Score/%
√

92.9 85.9 92.4 91.4√ √
94.1 88.6 92.7 91.8√ √ √
94.8 88.2 93.8 92.7√ √ √ √
95.2 91.5 94.2 94.1

To verify the effectiveness of all modules in YOLO-SRPD, the ablation experiments
were conducted to investigate the impact of each module. After incorporating the SR
module, precision increased by 1.2%, indicating its efficacy in recovering information from
low-resolution polyp images. Further addition of the C3_Res2net module led to a 0.7%
increase in precision, a 1% rise in recall, and a 0.8% increased in mAP@0.5, demonstrating
the strong multiscale feature extraction capability of the C3 module with residual structure,
as it effectively extracts features from polyps of different scales. Moreover, incorporating
SR, C3_Res2net, and CBAM together resulted in significant improvements across these
three metrics. In summary, the improved model exhibits significant enhancements in both
accuracy and precision.

4.4. Cross-Dataset Validation

To further verify the robustness of the model proposed in this paper, we conducted
experiments on different public datasets. Table 6 presents the experimental results of YOLO-
SRPD on various datasets. Meanwhile, the experimental results in Table 6 show significant
differences compared to the results on other publicly available datasets. The experimental
outcomes demonstrate that the detection performance of the model decreases significantly
during cross-dataset evaluation. The information island effect in medical images greatly
impacts the model’s generalization ability.

Table 6. Experiments on different public datasets.

Dataset Precision/% Recall/% mAP@0.5/%

ETIS-Larib 89.6 87.4 88.8
CVC-ClinicDB 90.2 82.7 89.0

Kvasir-SEG 86.7 88.6 89.4

4.5. Visualization Detection of Colon Polyps

Figure 14 presents the results of polyp detection, depicting results for two distinct
polyp types. The model demonstrates proficiency in detecting various polyp types.

Figure 14. Examples of polyp detection.
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5. Conclusions

Some polyps may progress to colorectal cancer tumors. Early colonoscopy can detect
and remove some polyps. However, the low resolution of colonoscopy images and the small
size of some polyps pose a diagnostic challenge. By using SRGAN for super-resolution
reconstruction of images, the pixel size was increased by a factor of 4. This process led to an
improvement in the clarity and texture of polyp images, thereby enhancing their visibility.

To address the challenge of misdiagnosis in colorectal polyps attributed to low-
resolution images during colonoscopy, this study presents a model integrating an enhanced
SRGAN for image super-resolution and an improved YOLOv5s model for polyp detection.
Firstly, the study addresses the problem of insufficient resolution in colorectal polyp images
by performing super-resolution reconstruction. An improved SRGAN model is employed,
incorporating mixed self-attention mechanisms and convolutional modules (ACmix) in
both the generator and discriminator of SRGAN. This enhancement bolsters subsequent
convolutional neural networks in effectively extracting features. Secondly, the YOLOv5s
model is improved by integrating the Res2Net module into the C3 module, resulting in
the proposed C3_Res2net fusion module. This modification increases the receptive fields
of convolutional kernels, thereby enhancing the detection rate of polyps of varying sizes.
Additionally, a CBAM attention mechanism is incorporated to augment the model’s focus
on colorectal polyps. The experimental results indicate that the model proposed in this
paper exhibits high accuracy in detecting colorectal polyps. With an mAP of 94.2% and
a precision of 95.2%, the model effectively localizes polyps in the colon. Consequently,
employing this proposed model facilitates efficient detection of polyp locations. In the
future, we will further investigate lightweight models for polyp detection to achieve even
faster screening capabilities.

Compared to other detection models, the method proposed in this study demonstrates
higher accuracy, making it a practical tool for assisting medical professionals in colorec-
tal polyp detection and reducing the rate of missed diagnoses. However, it is crucial to
acknowledge that this heightened accuracy comes with an associated increase in compu-
tational complexity. Future research will explore lightweight target detection models to
address these computational challenges. In recent years, more effective super-resolution
reconstruction algorithms have been proposed. Therefore, our next research direction will
focus on the reconstruction and detection of colorectal polyp images using the latest algo-
rithms. In addition, we also aim to combine the advantages of super-resolution algorithms
with the YOLO series detection algorithms, making the integration of these into a hybrid
framework for comprehensive detection a future research direction.
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