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Abstract: Understanding fish distribution, behavior, and abundance is crucial for marine ecological
research, fishery management, and environmental monitoring. However, the distinctive features of
the underwater environment, including low visibility, light attenuation, water turbidity, and strong
currents, significantly impact the quality of data gathered by underwater imaging systems, posing
considerable challenges in accurately detecting fish objects. To address this challenge, our study
proposes an innovative fish detection network based on prior knowledge of image degradation. In
our research process, we first delved into the intrinsic relationship between visual image quality
restoration and detection outcomes, elucidating the obstacles the underwater environment poses to
object detection. Subsequently, we constructed a dataset optimized for object detection using image
quality evaluation metrics. Building upon this foundation, we designed a fish object detection network
that integrates a prompt-based degradation feature learning module and a two-stage training scheme,
effectively incorporating prior knowledge of image degradation. To validate the efficacy of our
approach, we develop a multi-scene Underwater Fish image Dataset (UFD2022). The experimental
results demonstrate significant improvements of 2.4% and 2.5%, respectively, in the mAP index
compared to the baseline methods ResNet50 and ResNetXT101. This outcome robustly confirms the
effectiveness and superiority of our process in addressing the challenge of fish object detection in
underwater environments.

Keywords: underwater fish image; object detection; degraded prior knowledge; convolutional neural
network; image enhancement

1. Introduction

In recent years, underwater environments have become increasingly important areas
of study due to their ecological significance, commercial potential, and strategic importance.
Among the various tasks associated with underwater exploration, the detection and track-
ing of marine organisms, mainly fish, have garnered significant attention. Understanding
fish species’ distribution, behavior, and abundance is essential for various applications
such as aquatic ecology research, fisheries management, environmental monitoring, and
underwater robotics. However, detecting fish objects in underwater environments poses
significant challenges compared to similar tasks in terrestrial or aerial settings. The under-
water domain introduces unique complexities, including poor visibility, light attenuation,
turbidity, and distortion caused by waves and water currents [1]. These factors severely
degrade the quality of sensory data collected by underwater imaging systems, making it
difficult to detect and classify fish objects [2] accurately.

Traditional approaches to underwater fish detection often rely on manually engineered
features and shallow learning algorithms, which need help to cope with underwater im-
agery’s inherent variability and complexity. Moreover, these methods typically assume that
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the input data are of high quality, ignoring the pervasive effects of degradation and noise
commonly encountered in real-world underwater scenarios. Recent research has focused
on leveraging advanced deep-learning techniques to address these challenges and improve
underwater fish detection performance. Deep neural networks have shown remarkable
capabilities in learning complex patterns and representations directly from raw data, en-
abling them to adapt to underwater imagery’s degraded and noisy nature. One approach
involves the development of complex depth detectors [3], wherein researchers endeavor to
create intricate, deep architectures to enhance image quality or extract features beneficial for
underwater object detection (UOD) tasks. An intuitive strategy involves cascading an un-
derwater image enhancement (UIE) network with a general depth detector [4,5]. However,
despite producing visually appealing outputs, the UIE module’s results do not consistently
translate to high accuracy for the depth detector. Another strategy entails amassing a
large corpus of training examples [6]. Nonetheless, such efforts are hindered by poor
detection performance due to environmental degradation obscuring many crucial scene
features. Additionally, some studies leverage Generative Adversarial Networks (GANs) [7]
to synthesize underwater images from natural counterparts. While these comprehensive
methods augment the training sample size and introduce guidance from natural images,
their efficacy for real-world UOD remains questionable, given the substantial disparities
between underwater and natural objects/scenes.

While the role of visual restoration in enhancing traditional features is established [8],
the relationship between image quality and convolutional representation remains elusive.
Take underwater scenes as an example (depicted in Figure 1): they exhibit various degra-
dation issues and diverse styles. By employing two restoration techniques, Learnable
Full-frequency Transformer Dual Generative Adversarial Network (LFT-DGAN) [9], and
Divide-and-Conquer network (DC-net) [10], higher-quality images can be generated. Each
column represents the same scene but with varying detection outcomes using the cascaded
RCNN detector, suggesting a potential link between underwater image restoration and
object detection. It prompts the question: how does visual restoration contribute to object
detection in underwater environments? To address this inquiry, this paper initially delves
into the interplay between visually restored image quality and detection efficacy, shedding
light on the domain’s influence on object detection and constructing a dataset favorable for
object detection by utilizing image quality assessment metrics. Subsequently, it introduces
an underwater fish object detection method leveraging prior knowledge of degradation.
Specifically, the algorithm comprises two core components: a prompt-based degradation
feature learning module and a two-stage training regimen. The prompt-based degradation
feature learning module is built upon the amplitude-frequency feature relationship among
images, facilitating comprehensive learning and transfer of image feature representations
conducive to object detection. The two-stage training regimen enhances the detector’s
suitability for underwater fish detection tasks by adapting the training protocol. Finally, the
construction of the UFD2022 multi-category underwater fish dataset validates the proposed
method’s efficacy. Overall, the main contributions of this study are as follows:

• It investigated the relationship between visually restored image quality and detection
performance, highlighting the impact of a domain on object detection efficacy. It
also constructed a dataset favorable for object detection by utilizing image quality
assessment metrics.

• It introduces a novel underwater fish object detection method that utilizes prior
knowledge of degradation, consisting of a prompt-based degradation feature learning
module and a two-stage training scheme.

• A multi-scene Underwater Fish Image Dataset (UFD2022) was compiled, comprising
2800 images. This dataset offers a more comprehensive and rich resource for related
research endeavors.
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Figure 1. Visualization of object detection with different enhancement algorithms. The numerical
marks in the specific figures correspond to the numerical marks in Table 1 and indicate different types
of fish.

Table 1. UFD2022 dataset fish categories and sample attributes.

Fish Type Fish Name Train Number Test Number

1 Crucian 1204 848
2 Carp 2603 429
3 Pseudorasbora parva 1240 357
4 Hemiculter leucisculus 1588 145
5 Silver bighead carp 466 374

2. Related Work

Underwater image target detection presents more intricate characteristics than ground
images, mainly when gathering uncontrolled fish data. It encounters many challenges,
such as weather fluctuations, variations in lighting (including day and night), and changes
in water quality. These factors significantly elevate the complexity of crafting underwater
target detection models. The evolution of fish target detection models is intricately tied
to conventional image target detection technologies, transitioning gradually from manual
feature extraction and traditional machine learning methods towards the realm of deep
learning [11]. In the domain of fish detection, the extraction of image features assumes
paramount importance. Numerous researchers have introduced algorithms like SIFT, SURF,
and ORB based on crucial point information and HOG, LBP, and HAAR algorithms based
on surface information for fish image target feature extraction. While these methods excel
in detecting fish based on appearance attributes such as size, shape, and color in station-
ary scenes with minimal fish movement, they heavily rely on extensive prior knowledge.
However, relying solely on color and texture features for distinguishing fish from the back-
ground poses challenges, particularly in camouflage scenarios, where fish and background
pixels may exhibit textural ambiguity and color similarities. Furthermore, utilizing color
information or other features becomes difficult in uncontrolled underwater environments
with light attenuation. In contrast, while focusing on fish boundaries, shape features of-
ten overlook the internal information within the shape, potentially simplifying the fish
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detection process. In response to these challenges, researchers have proposed innovative
methodologies. For instance, M. Ravanbakhsh et al. [12] devised a shape-based level set
framework for automated fish detection, effectively tackling issues such as background
interference, contrast boundary disparities, and occlusion in underwater imagery. Addi-
tionally, M.C. Chuang et al. [13] introduced deformable multi-core technology to address
camera movement concerns. While these methods demonstrate commendable performance
in specific contexts, their efficacy may vary with changing environmental conditions.

The studies [14] above showcase numerous underwater fish image detection meth-
ods, primarily emphasizing the extraction of traditional low-level features. These features
often involve small details in the images, such as critical points, colors, textures, shapes,
and regions of interest. Additionally, they require a significant amount of manual fea-
ture engineering, which introduces additional uncertainties. In practical applications, the
effectiveness of methods based on these traditional features often must catch up to expec-
tations. On the other hand, deep learning involves the representation of data at multiple
levels, from a low level to a high level, with higher-level features built upon lower-level
ones, carrying rich semantic information that can be utilized for object detection in im-
ages. In 2016, qin et al. [15] proposed an object detection framework for underwater fish
detection. By training the model on publicly available datasets with authentic images, the
network model achieved a 15% and 10% improvement in detection accuracy compared to
SVM and Softmax, respectively, making automatic detection more precise. However, the
CNN architecture used in this model was resource-intensive, particularly with its sliding
window detection approach. In 2020, Salman et al. [16] built upon RCNN, utilizing fish
motion information and raw images to generate candidate regions. This method achieved
at least a 16% improvement in accuracy over Gaussian mixture models on the FCS dataset.
Due to the time and computational resources required for CNN training and limitations in
sample size and processing speed of pre-trained models, conventional CNN-based methods
have spurred the development of approaches like GANs, SSD, YOLO, etc., in the general
image domain to address their shortcomings. Some scholars have integrated these methods
with underwater-specific image features to create new solutions. In 2018, Zhao et al. [17]
proposed a practical and effective semi-supervised learning model based on an improved
deep convolutional generative adversarial network for live fish detection in aquaculture.
It addressed the issue of CNN-based object detection algorithms heavily relying on training
samples and their annotation quality. In 2020, Fan et al. [18] addressed problems such as
underwater image blurring, scale and color variations, color shifts, and texture distortions
by proposing an underwater detection framework with feature enhancement and anchor
constraints. Extensive experiments on the UWD dataset demonstrated the proposed frame-
work’s excellent performance in accuracy and robustness. While single-network structures
have shown promising results, some scholars are considering parallel processing using
multiple-network architectures. For example, in 2022, Kristian, M. et al. [19] proposed
a two-step deep learning approach to detecting and classifying temperate fish without
pre-training. The first step involved using YOLO object detection to detect each fish in
the image. The second step utilized a convolutional neural network with a Squeeze-and-
Excitation (SE) structure to classify the fish species in the images. Transfer learning was
employed to overcome the limited training samples of temperate fish and improve clas-
sification accuracy. In 2021, Y. Wageeh et al. [20] utilized a combination of algorithms to
detect fish quantity and trajectories. They first enhanced underwater turbid images using
the multiscale Retinex algorithm, followed by the YOLO model for training. Finally, they
combined YOLO with optical flow algorithms to track the movement of fish in each frame
of the video, thus obtaining fish trajectories.

Fish frequently utilize different habitats for activities such as foraging and shelter,
and the differences between habitats may mean that a deep learning model trained on one
habitat may be unreliable in another [21,22]. For instance, the complexity of the structure
may affect the model’s performance, as background clutter and foreground camouflage
may affect accuracy. To maximize the effectiveness and accuracy of monitoring and analysis,
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deep learning models must be able to adapt to changes in image backgrounds (e.g., across
habitats). This issue can be addressed from two perspectives. The first approach is the
most straightforward, involving data augmentation and object detection in two-stage
processing. While image augmentation methods can help centralize cross-domain data
processing, they may not necessarily improve object detection accuracy. There has been
extensive research into how degraded images affect object detection accuracy. For example,
in 2018, Pei et al. [23] investigated whether dehazing algorithms could improve image
classification results and found that there was not always a strict positive correlation
between classification accuracy and visual quality; sometimes, it could even decrease image
classification performance. In 2021, Pei et al. [24] studied the effects of image degradation
and restoration on classification algorithms based on CNN networks and found that it
might be because many important low-level features are not well utilized in the first
few layers. However, their study was limited to image classification based on the CNN
framework and did not consider emerging technologies such as Transformer structures
and other advanced image processing methods. Additionally, the division of degraded
images was based solely on personal experience or generated data parameters, needing a
more scientific basis. Scholars have proposed relevant algorithms based on this research.
In 2021, Kazuki, E. et al. [25] proposed a convolutional network that utilizes restoration
networks and ensemble learning methods to classify degraded images. This network
automatically infers ensemble weights by estimating the degradation level of degraded
images and restoring image features, allowing for the accurate classification of degraded
images at different degradation levels. In 2019, Prasun, R. et al. [26] explored the effects
of degraded images on CNNs and capsule networks and obtained results similar to those
described earlier. To address the issues of increased training time and incomplete degraded
image introduction associated with training networks on mixed degraded samples, they
proposed a new network step to improve the robustness of CNN architectures to some
degradation scenarios and introduced a new capsule network structure. The literature
described above shows that enhancement and high-level image processing have different
optimization goals; enhanced images may lack some structural information, affecting
high-level image processing. It may also be because data augmentation and high-level
processing are treated as two independent processes cascaded in separate frameworks.
In 2020, Chen et al. [8] utilized deep learning techniques and physical prior knowledge for
underwater image enhancement. By learning features from underwater images using deep
learning networks and combining them with physical prior knowledge, they achieved better
reconstruction and enhancement of images. The research results showed that utilizing
deep learning and prior knowledge for underwater image enhancement can significantly
improve the perception effect of object detection. The other approach involves improving
model structures. In 2020, Ellen M. et al. [27] demonstrated the ability of deep learning
algorithms to transcend habitats across spatial scales, showing that deep learning models
can accurately and consistently extract helpful information from video clips and perform
across habitat types when trained on various habitat type clips. In 2021, Zhao et al. [28]
proposed a novel composite fish detection framework to solve fish detection and positioning
problems in complex underwater environments. They redesigned the composite backbone
network to reduce the interference of underwater environments on object features. They
introduced an enhanced path aggregation network to address the problem of insufficient
utilization of semantic information.

In summary, based on the low-entropy characteristic of underwater images and the diverse
features of fish species, designing corresponding modules to improve conventional image
object detection algorithms and thus develop new underwater fish detection techniques will
become one of the critical directions for future development. Utilizing a two-stage processing
approach involving data augmentation and target detection and optimizing objectives through
an end-to-end model, a new end-to-end model tightly integrates image enhancement features
with target detection, achieving more precise underwater fish detection. This method better
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adapts to the complexity of underwater environments and the diversity of fish targets, bringing
breakthroughs and advancements to underwater target detection.

3. Materials and Methods
3.1. Fish Image Collection

Evaluating detection algorithm performance is crucial to advancing the automatic moni-
toring of underwater fish targets. Although there are public underwater image datasets such
as Fish4-Knowledge and WildFish, they are mainly collected based on marine environments,
which differs from freshwater fish’s research background. To meet this practical need, this
study carefully constructed a multi-scene underwater fish image dataset called UFD2022,
which contains 2800 images. In Table 1, we detail the names, instance images, and training
and test sample sizes of various types of fish in the UFD2022 dataset. All images in this
dataset are from professional underwater equipment and online video resources. As shown
in Figure 2, these underwater equipment were equipped with a front-mounted Sony CCD
1200-line industrial-grade camera to ensure high-quality underwater shooting effects. In ad-
dition, the equipment also integrates multiple fish-attracting, white, and infrared lights to
optimize shooting conditions. When the equipment captures underwater fish information,
it is displayed in real time on the 7 inch display screen at the back end through a transmission
line, and the data are stored in the memory card synchronously for subsequent data analysis
and processing. When constructing the UFD2022 dataset, we paid particular attention to fish
samples’ diversity and image quality. To this end, we excluded images that lacked fish or were
severely impeded by fish to ensure the accuracy and reliability of the dataset. In addition, we
invited several experts in the field of fish research to participate in the guidance and used the
LabelMe 4.5.6 software to annotate the fish in the pictures accurately. We used rectangular
boxes to annotate the fish to ensure the accuracy and consistency of the annotations. In ad-
dition, we also analyzed the distribution relationship between the UFD2022 dataset and the
conventional COCO and VOC datasets in Appendix A.1.

(a) (b)

Figure 2. Underwater fish image collection equipment. (a) Equipment appearance, (b) underwater
fish image.

3.2. Proposed Method

In this section, we elaborate on the proposed method in-depth. First, we propose a
data partitioning scheme using quality evaluation metrics. We observed significant distri-
bution differences between severe image degradation caused by underwater environments
and standard datasets beneficial to target detection. We carefully designed a suggestive
degradation feature learning module to overcome this challenge of learning the mapping
relationship between friendly data and severely degraded data regions. Next, we propose
a two-stage training scheme to optimize the object detection network further. As shown in
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Figure 3, combined with the detailed steps of Algorithm 1, the core of this framework lies
in two key designs: the hint-based degradation feature learning module and the two-stage
training strategy. The hint-based degradation feature learning module can capture and
learn critical features in the image degradation process, thereby helping the network better
adapt to the particularities of underwater images. The two-stage training scheme gradu-
ally guides the network to adjust to the degradation characteristics of underwater photos.
It improves the accuracy and robustness of target detection by first pre-training on high-
quality datasets and then fine-tuning on degraded datasets. In addition, to further verify
the effectiveness of the image degradation feature transfer method, we also explored the
application of low-quality image feature transfer in target detection tasks. Experimental
results show that through reasonable feature transfer strategies, we can effectively utilize
useful information in low-quality images to improve target detection performance. Please
refer to Appendix A.3 for specific experimental results and a detailed analysis.

Figure 3. A framework for underwater image object detection based on prior knowledge.

3.2.1. Underwater Image Data Partitioning Scheme

Unlike methods requiring high-quality images or features, our objective is to explore
the prior knowledge learnable from pictures in the original underwater dataset that is
conducive to object detectors. This prior knowledge guides the detector to eliminate un-
friendly features, avoid unstable steps caused by environmental degradation, and reconcile
inconsistencies between detection and visual quality. We conducted a series of statistical
experiments on the UFD2022 underwater dataset, effectively dividing the dataset into
datasets that are beneficial to target detection and datasets that are harmful to target detec-
tion. Notably, the mapping relationship between these two datasets embodies the prior
knowledge we seek. It enables the use of high-quality image data as instructive guidance
for mitigating degradation interference. The description of the entire exploration process is
outlined below.

For the UFD2022 training dataset, we explored the impact of different domain images
(obtained by different enhancement methods) on the target detection network, and we
found an interesting phenomenon: the data domain quality significantly affects the target
detection performance. For example, the results in Section 4.3.1 show that under the frame-
work of image domain hybrid learning, lower-quality domains contribute less to the overall
performance, resulting in insufficient learning from such samples. Consequently, it becomes
imperative to implement effective strategies for appropriately partitioning the original
dataset, thereby mitigating the adverse effects of low-quality data on model training.
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Algorithm 1 Underwater object detection network based on learning prior knowledge of
degraded features.

(1) Data partitioning scheme:

Require: underwater image dataset D ∈ RB×C×H×W , Object Detection Model M.

Ensure: Suitable for object detection image dataset x ∈ RB×C×H×W , Harmful to object detection

datasets xh ∈ RB×C×H×W .

Exploring the impact of different domain quality images on object detection performance.

Use UIQM and MUSIQ to divide the dataset D into degradation levels and obtain different

subsets D1, D2, D3, D4.

for Di ∈ D1, D2, D3, D4 do

Run the object detection model M on Di.

Evaluate and record the performance of the model on Di.

end for

Analyze the performance evaluation results and divide the datasets that are beneficial and harmful

to target detection.

(2) Unsupervised training:

Require: Suitable for object detection image dataset x ∈ RB×C×H×W , underwater image dataset

D ∈ RB×C×H×W

Ensure: DFLM module parameters θ

for i = 1 to B do

Randomly select B images from the valuable dataset for object detection, calculate the magnitude

of the Fast Fourier Transform, and calculate channel-level statistics (mean and variance).

Calculate the mean and variance of the amplitude values of the underwater image data D.

The mean and variance of the amplitude values of the two images are exchanged, and the

enhanced image is calculated using the AdaIN method.

Calculate the loss function of the enhanced image and D, and update the gradient.

end for

(3) Fine-tuning training:

Require: Underwater image dataset, DFLM module parameters θ

Ensure: Detection output

for i = 1 to B do

The input image is first processed by a priori degradation knowledge module with fixed param-

eters θ.

The processed results are processed by the back-end object detection module.

Update gradients for object detection.

end for

return Detection output

Next, we used image quality evaluation indicators to build a data partitioning model.
Specifically, we used the normalized UIQM and MUSIQ indicators (see Appendix A.2 for
an analysis of selected UIQM and MUSIQ) to establish coordinates for each image, forming
a spatial coordinate system based on the center to evaluate image quality more accurately.
We divided the image dataset into four levels based on this coordinate system. Images
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in the third quadrant are classified as level IV, indicating that these images are the most
severely degraded. Given the strong monotonicity of the MUSIQ indicator, we assigned
it a higher weight, so images in the fourth quadrant were classified as level III. Images in
the first quadrant were rated as level II, while images in the second quadrant were rated
as level I, indicating that the images were the least degraded. In this way, we successfully
classified the image data according to quality.

Finally, we constructed a specific evaluation framework that quantifies the prediction
of target detection models for each degradation degree dataset (as shown in Algorithm 2)
and further divides the original underwater image dataset into a target detection data
subset and data that are detrimental to the target detection datasets.In detail, we first
removed data subsets with different degradation levels from the source degraded dataset
to construct a series of carefully designed training datasets. Then, based on these diverse
training sets, we trained multiple models and carefully fine-tuned them to optimize their
performance on object detection tasks. We then used a precise mathematical formula (see
Formula (1)) to measure the contribution of data with different levels of degradation to
object detection performance. This approach allows us to accurately identify those datasets
with specific levels of degradation that have a significant positive or negative impact on
overall object detector performance.

In f l[m → t] = ΓS[ f (t; S)|m ∈ S]− ΓS[ f (t; S)|m /∈ S] (1)

where f (t; S) is the output of an object detection model trained on a subset S of the source
dataset. Positive influence values indicate that including the source degradation level m
helps the model correctly predict the object example t. On the other hand, a negative impact
value indicates that source degradation level actually hurts the model’s performance on
object example t.

Algorithm 2 Estimating the impact of dataset degradation on object detection performance.

Require: Source training dataset S = Um
m=1Dm (degradation level m), object dataset

T = (t1, t2, . . . , tn), training algorithm A (Cascade RCNN), and the number of m models

Data Partition: Divide source data into equal number of subsets S1, S2, . . . , Sm ∈ S

for each i ∈ [1, m] do

Training model fi is obtained by training algorithm A on dataset Si.

end for

for each m ∈ [1, m] do

for each j ∈ [1, n] do

In f l[Dm → tj] = ΓS[ f (tj; S)|Dm ∈ S]− ΓS[ f (tj; S)|Dm /∈ S]

end for

end for

return In f l[Dm → tj], j, m

3.2.2. Prompt-Based Degradation Feature Learning Module (DFLM)

The Fourier amplitude spectrum information contains rich characteristic details.
Through simple exchange operations, the frequency domain information of the image
can be fully utilized to retain its details and structural features, improve its quality and
usability, and suppress noise [29–31]. While considerable research has explored related
concepts, investigations into high-level visual tasks still need to be conducted. Therefore,
this section describe relevant experiments conducted to address this gap. Two underwater
images exhibiting distinct conditions (i.e., low quality and high quality) were initially pro-
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vided. These images underwent an amplitude component exchange while retaining their
original phase components, creating new data. Subsequently, object objects were detected
using the object detection algorithm. As depicted in Figure 4, this experiment illustrates
that amplitude components influence image quality and impact high-level tasks such as
object detection. Consequently, it is inferred that enhancing the amplitude components in
Fourier space can potentially improve the detection accuracy of low-quality images.

Figure 4. Example of amplitude information exchange between two images.

A prompt-based feature transfer learning module was developed to address the issue
of significant background interference caused by directly swapping the phase between
high- and low-quality images, which is detrimental to the task of object detection. This
module aims to model a learnable function that captures the differences in knowledge
between the two datasets. Building upon the concept above and the AdaIN method [32],
the prompt-based module endeavors to transform the feature distribution from one dataset,
which is unfavorable for object detection, to that of another dataset, which is favorable
for object detection. Here, the prompt encapsulates knowledge extracted from the dataset
conducive to object detection, facilitating the transfer of relevant feature information. The
workflow of the Degradation Feature Prior Knowledge Module is illustrated in Figure 5.

Given a mini-batch of input underwater image features {xi}B
i=1 ∈ RC×H×W, the

phase value {Pu(xi)}B
i=1 and amplitude {Au(xi)}B

i=1 of these features are obtained using
Equations (3) and (4). Similarly, mini-batch image features {yi}B

i=1 are randomly selected
from the dataset that facilitates object detection. The corresponding image amplitude values
{Ah(xi)}

B
i=1 are obtained through the Fourier transform equation. The specific formula is

as follows:

F(xi)(u, v, c) =
1√
HW

H−1

∑
h=0

W−1

∑
w=0

xi(h, w, c)e−j2π( h
H u+ w

W v) (2)

A(xi) = abs(F(xi)(u, v, c)) (3)

P(xi) = angle(F(xi)(u, v, c)) (4)

Among them, H, W, and C represent the height, width, and number of image feature
channels, respectively. Here, h and w denote the spatial domain coordinates, while u and
v represent the Fourier space coordinates. The abs function denotes the absolute value,
and angle represents the corresponding angle function. The inverse Fourier transform is
defined as F−1.
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Figure 5. Prompt-based degradation feature learning Module.

Next, for the amplitude values of the object detection dataset, channel-level statistics
(mean and standard deviation) are calculated as follows:

µ(Ah
i ) =

1√
HW

H

∑
u=1

H

∑
v=1

Ah
i (h, w, c) (5)

δ(Ah
i ) =

1√
HW

H

∑
u=1

H

∑
v=1

[Ah
i (h, w, c)− µ(Ah

i )]
2 (6)

Assuming that the distribution of each statistic follows a Gaussian distribution, the
standard deviation of the statistic is calculated as follows:

∑µ(Ah
i ) =

1
B

B

∑
i=1

[µ(Ah
i )− E[µ(Ah

i )]]
2 (7)

∑δ(Ah
i ) =

1
B

B

∑
i=1

[δ(Ah
i )− E[δ(Ah

i )]]
2 (8)

Thus, a Gaussian distribution of the probability statistics of the amplitude spectrum of
the friendly object detection dataset is established, from which a new mean µ and standard
deviation δ are randomly drawn:

µ(Ah
i ) = µ(Ah

i ) + ξµ ∑
µ

(Ah
i ), ξµ ∼ N(0, α) (9)

δ(Ah
i ) = δ(Ah

i ) + ξδ ∑
δ

(Ah
i ), ξδ ∼ N(0, α) (10)

where α ∈ (0, 1] represents the intensity of the disturbance.
Finally, the phase spectrum of the underwater image is reconstructed:

Au
i = µ(Ah

i )(
Au

i − µ(Au
i )

δ(Au
i )

) + δ(Ah
i ) (11)

output = F−1(Au
i , Pu

i ) (12)
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3.2.3. Two-Stage Training Scheme

Unsupervised transfer training phase. As depicted in Figure 3, we utilized a pre-
trained network (trained on the UDFD2022 dataset) to extract low-level and mid-level
features from both underwater images and detector-friendly underwater images. Here,
the terms “low-level features” and “mid-level features” refer to the outputs of the shallow
and mid-level stages of the network, respectively. For instance, in ResNet50/101, “stage
0” denotes the shallow stage, while “stage 1” represents the mid-level stage. During the
unsupervised training phase, we aim to transfer the features from underwater images to
those of a detector-friendly detector. We employ the DFLM module to learn the transfer of
severely degraded features to achieve this. Throughout the training process, we keep the
shallow and middle layer stages of the feature extraction network fixed while continuously
updating the DFLM module. To ensure the conversion of underwater features into detector-
beneficial features, we apply the SGD function [33] and the MSE function to relax the
constraints on the features. The MSE function primarily aims to preserve the primary
underwater feature information of the processed image. In contrast, the SGD loss function
is focused on transferring the underwater image feature distribution of the friendly detector
to that of the underwater image feature distribution. The overall loss function can be
defined as follows:

LOSS =min
f EY∼PY(∥Y − f (Y)∥β) + λd(PX , PX) (13)

The fine-tuning phase. As illustrated in Figure 3, we incorporate the trained degrada-
tion transfer module into the existing feature extraction network, specifically between the
shallow and mid-level stages. Subsequently, we fine-tune the subsequent detection compo-
nents, including the high-level stages of the feature extraction network, RPN, Neck, and
Head, using expected detection losses. The detection losses can be referenced as follows:

Ldet = Lbbox + Lcls (14)

Among these, Lbbox represents the bounding box regression loss, and Lcls denotes the
classification loss. The second stage involves fine-tuning the advanced stages of the feature
extraction network of the object detector, including RPN, Neck, and Head, on the training
set of the underwater dataset. Following the second stage, our proposed method can be
evaluated on underwater datasets.

4. Results and Discussion
4.1. Experimental Settings

All experiments were conducted on a Dell Precision T3630 workstation equipped with
an NVIDIA RTX 2080Ti GPU with 24GB of memory. The software environment consisted
of Ubuntu 18.04.5 and Python 3.8. The code was developed using the MMdetection toolbox.
During the network training process, we employed the SGD optimizer with a momentum of
0.9. The models were trained for 12 epochs with a learning rate of 0.0025. Starting from the
9th epoch, the learning rate was reduced by one-tenth sequentially. Unless otherwise stated,
the parameters for each comparative experimental algorithm were set to default values.

The research presented in this article is of significant importance as it primarily focuses
on the UFD2022 dataset. This dataset was meticulously partitioned into training and
test sets at an 8:2 ratio, ensuring the fairness and validity of our research. We utilized
commonly adopted evaluation metrics in object detection to assess model performance,
namely, average precision (AP) and mean average precision (mAP). Average precision (AP)
is defined as the area under the Precision–Recall (P-R) curve, calculated as follows:

AP =
∫ 1

0
P(R)d(R) (15)
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Mean average precision (mAP) represents the average of AP values across multiple cate-
gories and is defined as follows:

mAP =
1

classes

classes

∑
0

∫ 1

0
P(R)d(R) (16)

Note: AP50 and AP75 in the text represent the average accuracy under different Intersection
over Union (IoU) thresholds.

4.2. Experimental Result
4.2.1. Research on the Relationship between Image Enhancement and Object Detection

To explore various data domains, let us consider the UFD2022 dataset as homogeneous
data, disregarding domain discrepancies among the data. Based on this dataset, three
distinct data domains were generated: Domain-O: This comprises the original dataset
containing the training set (train-O) and the test set (test-O). Domain-L: Here, all original
data samples undergo enhancement and processing through the LFT-DGAN algorithm,
resulting in the creation of the training set (train-L) and the test set (test-L) for training
purposes. Domain-D: Similar to Domain-L, all original data samples are subjected to
enhancement and processing, this time through the DC-Net algorithm, to generate the
training set (train-D) and the test set (test-D) for training.Mixed Domain: In this domain,
with a fixed total number of samples, an equal number of data samples is randomly selected
from the Domain-O, Domain-L, and Domain-D datasets and combined to form the training
set (train-all) and the test set (test-all) for training purposes.

As illustrated in Figure 1, Domain-O exhibits pronounced color distortion, blurriness,
and low contrast, whereas the degraded visual samples in Domain-L and Domain-D are
effectively restored. Image quality is assessed through various evaluation metrics, with
the hierarchy being Domain-O < Domain-L < Domain-D. Specific data results can be
found in Appendix A.1. This section delves into a comprehensive examination of Cascade
RCNN, Faster RCNN, RetinaNet, Sparse RCNN, and Swin methods within the detection
framework. These methods are trained on four distinct training datasets: train-O, train-L,
train-D, and train-all. The objective is to explore the influence of various architectural
networks and domain datasets on model accuracy.

(1) In-domain dataset analysis

Quantitative numerical analysis: Training and evaluating Cascade RCNN detectors
with different backbones (Resnet50, Resnet101 (depth-expanded), Resnetx101 (width-
expanded)) and different detection methods. Specific results are shown in Table 2. Across
domain-O, -L, and -D, as the image restoration intensity increases, object detection accuracy
decreases. For instance, in the Cascade RCNN-R50 method, the object detection accuracy in
domain-D < domain-L < domain-O. Similar trends are observed in the other two different
backbone object detection methods. As the complexity of the backbone network increases,
the object detection accuracy also improves accordingly. Using the Resnetx101 backbone
network generally yields the best results because a larger receptive field facilitates the
collection of more image feature information. In addition to exploring object detection
methods with different backbone networks, exploration is also conducted on different
detection methods. Different object detectors achieve the highest mAP in domain-O and
the lowest mAP in domain-D.
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Table 2. Fish object detection results based on different methods.

Method Train Test mAP 1 2 3 4 5

Cascade RCNN-R50
Train-O Test-O 58.1 58.9 63.5 49.0 54.9 65.8
Train-L Test-L 58.0 58.6 63.3 47.7 53.3 67.1
Train-D Test-D 56.4 58.5 62.6 47.3 51.6 62.3

Cascade RCNN-R101
Train-O Test-O 60.4 60.4 66.2 51.2 55.8 68.2
Train-L Test-L 60.0 60.4 65.1 52.5 56.7 69.1
Train-D Test-D 59.6 59.7 64.9 50.0 54.8 68.4

Cascade RCNN-X101
Train-O Test-O 61.0 60.0 66.3 51.3 58.1 69.4
Train-L Test-L 60.8 60.2 65.5 51.2 57.0 70.1
Train-D Test-D 59.5 59.6 65.0 49.2 56.4 67.4

Faster RCNN-R50
Train-O Test-O 55.4 56.4 60.5 46.6 52.0 61.4
Train-L Test-L 54.6 55.5 59.9 45.4 50.6 61.7
Train-D Test-D 54.4 55.6 60.4 44.5 50.7 60.9

RetinaNet
Train-O Test-O 46.2 51.0 53.0 33.1 42.4 51.5
Train-L Test-L 45.4 50.7 53.0 30.1 41.7 51.2
Train-D Test-D 44.1 50.5 52.4 31.0 40.6 46.1

Sparse RCNN-R50
Train-O Test-O 43.8 45.3 47.6 33.7 39.7 52.5
Train-L Test-L 42.9 44.4 48.7 30.5 39.5 51.6
Train-D Test-D 39.6 42.8 47.5 27.4 37.2 42.9

Swin
Train-O Test-O 54.2 56.3 59.8 41.8 48.2 64.8
Train-L Test-L 50.8 52.7 58.3 38.3 45.9 59.1
Train-D Test-D 46.9 51.3 53.1 33.2 42.4 54.4

Convolutional visualization: Compared to low-quality domains, high-quality image
samples contain pronounced object representations, making it easier for humans to detect
objects in high-quality domain images. This study investigates object saliency in CNN-
based detectors. Figure 6 illustrates the multi-scale features of Cascade RCNN, serving
as inputs to the detection head and the final convolutional features utilized for detection.
Despite domain diversity, the variations in object saliency across multi-scale feature maps
are relatively minor. Consequently, the influence of domain quality on convolutional
representations is considered negligible concerning object saliency.
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Figure 6. Visualization of convolutional features at different feature scales for detectors based on
resnet50 backbone network.

Precision–Recall Analysis: Experimentation was conducted using two representative
methods: the two-stage Cascade RCNN-R50 and the single-stage RetinaNet. Different
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object precision–recall curves were visualized, as shown in Figure 7, demonstrating the
superiority of the two-stage object detection method over the single-stage one, which aligns
with conventional wisdom. The following conclusions can be drawn from the two-stage
object detection results: (1) the high-precision portion comprises detections with high
confidence, with highly overlapping curves across different domains. For instance, for the
“1” class objects detected by Cascade RCNN-R50, the curves for domains-O, -L, and -D are
almost indistinguishable when the recall is less than 0.8. It suggests that domain differences
can be mostly disregarded when detecting highly confident objects. (2) The low-precision
portion exhibits separated curves. Specifically, the domain-D < domain-L < domain-O
curve indicates that false positives increase with the improvement of domain quality when
detecting challenging objects (low-confidence detection results). For example, when the
recall for detecting “4” class objects exceeds 0.8, the recall efficiency gradually decreases
with increasing image restoration intensity, particularly pronounced in the single-stage
method. In addition to the above patterns observed in the two-stage process, the following
conclusions were drawn from the single-stage object detection results: (1) different domain
data significantly impact the single-stage method, with distinct separations observed in
the precision–recall curves for different data domains. (2) The experimental results are
consistent with the characteristics of two-stage object detection, where the precision of
single-stage object detection is lower than that of two-stage object detection. Moreover,
single-stage object detection is significantly influenced by the detection features of the
object. For instance, the processed precision is relatively high since there are more samples
of the “1” class fish in the data. In contrast, the “4” class fish objects are relatively minor,
resulting in more significant fluctuations in detection precision.

Based on the analysis above, the training and evaluation of the object detector rely on
the same data domain, highlighting two main points: (1) the quality of the data domain
profoundly influences the performance of object detection. (2) To address low recall rates,
image enhancement may yield little improvements in in-domain detection performance.
It is worth noting that a low recall efficiency corresponds to a low precision under the same
recall rate.

Figure 7. Precision–recall curves for different detectors.

(2) Cross-domain dataset analysis

Cross-Domain Evaluation: Domain-O and Domain-L are used to assess domain shift.
Object detectors were trained on train-O and evaluated on test-L, and vice versa. The
cross-domain results were computed by subtracting the corresponding in-domain results
to highlight the experimental results. Specifically, as shown in Table 3, for the Test-L
dataset, the mAP metrics of Cascade RCNN-R50 and RetinaNet models trained on Train-O
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decreased by 4.2% and 2.7%, respectively, compared to models trained on Train-L. Similarly,
for the Test-O dataset, the map metrics of Cascade RCNN-R50 and RetinaNet models
trained on Train-L decreased by 6.1% and 5.9%, respectively, compared to models trained
on Train-O. Different degrees of decrease in mAP metrics across different categories indicate
varied cross-domain performance degradation. Furthermore, models trained on Train-O
achieve higher metrics on the Test-L dataset than those trained on Train-L, suggesting better
cross-domain generalization capability for lower-quality domains.

Table 3. Cross-domain test evaluation results. “↓” and “↑” indicate that the performance index of the
cross-domain model is lower and higher, respectively, than that of the intra-domain model.

Method Train Test mAP 1 2 3 4 5

Cascade RCNN-R101
Train-O Test-L 55.8 53.5 61.8 45.7 54.3 63.8

4.2 ↓ 6.9 ↓ 3.3 ↓ 6.8 ↓ 2.4 ↓ 5.3 ↓

Train-L Test-O 54.3 54.4 55.5 45.8 54.8 61.0
6.1 ↓ 6 ↓ 9.6 ↓ 5.4 ↓ 1.0 ↓ 7.2 ↓

RetinaNet
Train-O Test-L 42.7 40.4 52.1 31.8 40.0 50.2

2.7 ↓ 10.3 ↓ 0.9 ↓ 1.7 ↑ 1.7 ↓ 1 ↓

Train-L Test-O 40.3 51.6 43.3 32.5 40.0 45.5
5.9 ↓ 0.6 ↑ 9.7 ↓ 0.6 ↓ 2.4 ↓ 6 ↓

Cross-Domain Training: To explore the detection performance of domain-mixed learn-
ing, object detectors were trained on the Train-all dataset and evaluated on the Test-O,
Test-L, and Test-D datasets. As shown in Table 4, for the same training set, the testing
accuracy in different domains decreased to a certain extent, with more considerable dis-
parities in the testing object detection accuracy observed in higher-quality images. That is,
when using Train-all to train models, the high-quality data (Train-D), to some extent, lose
their effectiveness. Therefore, cross-domain training is not suitable for improving detection
performance. Additionally, data domains of different qualities contribute differently to
the learning process. Mixing low-quality samples with high-quality ones hinders effective
learning of the low-quality samples.

Table 4. Cross-domain training evaluation results. “↓” and “↑” indicate that the performance index
of the cross-domain model is lower and higher, respectively, than that of the intra-domain model.

Method Train Test mAP 1 2 3 4 5

Cascade RCNN-R101 Train-all

Test-O 58 57.7 64.1 50.7 55.5 62.1
2.4 ↓ 2.7 ↓ 2.1 ↓ 0.5 ↓ 0.3 ↓ 6.1 ↓

Test-L 57.7 57.7 63.6 44.6 54.5 68
2.3 ↓ 2.7 ↓ 1.5 ↓ 7.9 ↓ 2.2 ↓ 1.1 ↓

Test-D 52.1 58.4 63 47.2 53.7 38.1
7.5 ↓ 1.3 ↓ 1.9 ↓ 2.8 ↓ 1.1 ↓ 30.3 ↓

RetinaNet Train-all

Test-O 44.8 49.7 52.5 33.4 42.2 46.5
1.4 ↓ 1.3 ↓ 0.5 ↓ 0.3 ↑ 0.2 ↓ 5 ↓

Test-L 43.6 49.5 53 29 39.8 46.4
1.8 ↓ 1.2 ↓ 0 1.1 ↓ 1.9 ↓ 4.8 ↓

Test-D 40 49.5 52.3 30.8 38.6 28.7
4.1 ↓ 1 ↓ 0.1 ↓ 0.2 ↓ 2 ↓ 17.4 ↓

In this section of the study, Cascade RCNN-R101 and RetinaNet detectors were trained
and evaluated on different data domains. It primarily reveals three key observations:
(1) domain shift leads to decreased accuracy. (2) Cross-domain inference shows that
learning from low-quality domains facilitates better generalization to high-quality domains.
(3) In domain-mixed learning, the contribution of low-quality domains is relatively minor,
which hinders effective learning of low-quality samples.
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4.2.2. Research Results of High-Quality Underwater Image Dataset

Relevant experiments were conducted on an underwater fish image dataset to assess
how training Cascade RCNN with image datasets augmented using UIQM and MUSIQ
performs under various learnable parameters. The model was trained for the original
training dataset Ftrain by partitioning it based on different parameters and excluding
data from high-quality underwater images. Specifically, the new training dataset can be
described as follows:

{F f
i }i=1 = Ftrain ⊖ {F(Fh

mi ,F
h
ui)
}i=1, i = 1, 2, 3, 4 (17)

where ⊖ denotes the removal of a portion of the dataset, and F(Fh
mi ,F

h
ui)

signifies the division
of the dataset based on learnable parameters (MUSIQ and UIQM). We are focusing on data
falling within the third quadrant. Each learnable parameter is sorted from small to large
according to the image dataset metric and divided at 1/8, 1/4, 3/8, and 1/2 of the dataset
quantity. The MUSIQ axis is represented by Fh

m1, Fh
m2, Fh

m3, and Fh
m4 while the UIQM axis is

represented by Fh
u1, Fh

u2, Fh
u3, and Fh

u4.
The specific experimental results are illustrated in Figure 8. The following observations

can be made: (1) the further away from the center of the dataset, the more the lower quality
data tend to affect object detection accuracy adversely. For instance, object detection
accuracy in the upper right corner surpasses that of the model trained on the source dataset
by 1%. Removing detrimental object detection data can effectively enhance the accuracy
of the object detection model. (2) When fixing the learnable parameters of MUSIQ and
UIQM separately, as indicated by the two directions of the arrow, the variability range of
MUSIQ is greater than that of UIQM. It implies that the object detection accuracy model
relies more heavily on MUSIQ parameters. It also confirms that MUSIQ is better suited
for evaluating the extent of image degradation. Following this experimental guideline,
the dataset is partitioned with fixed parameters (Fh

mi, Fh
ui), where data falling within the

third quadrant are deemed as harmful object detection data, and the remaining data are
considered as friendly object detection data.

Figure 8. Experimental results of learnable parameters UIQM and MUSIQ.

4.2.3. Comparative Results with State-of-the-Art Methods

This paper utilizes the UFD2022 dataset to validate the efficacy of the proposed
method and compare it with baseline image object detection techniques. It encompasses
diverse deep learning-based object detection methods employing various architectures,
including CNN, Transformer, Diffusion, and UIE + UOD. In the UIE + UOD architecture
detector, cutting-edge image enhancement methods such as PUIE [34], CWR [35], DC-
Net, and LFTDGAN are chosen for preprocessing. The preprocessed images are then fed
into the detector (Cascade RCNN [36] and Faster RCNN [37]) for subsequent training
and testing phases. For CNN-based architecture detectors, both single-stage models (e.g.,
FCOS [38] and YOLO series [39]) and two-stage models (e.g., Faster RCNN and Dynamic
RCNN [40]) are selected for training and testing purposes. Regarding Transformer-based
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architecture detectors, the latest research models from representative series like Swin [41]
and PVT [42,43], along with DINO [44] and DDQ [45], are used for training and testing.
Finally, for detectors based on the Diffusion architecture, the DiffusionDet [46] model is
the selection for the training and testing phases. We also added the FERNet detector [18]
designed specifically for underwater object detection methods.

Table 5 shows in detail the evaluation results of different architectural methods in
the object detection task. Our method significantly outperformed existing state-of-the-
art algorithms on various key metrics. Specifically, compared with the baseline detector,
our method significantly improved the mapped metric of Cascade RCNN (ResNet50) by
2.4%, while the AP50 and AP75 metrics also increased by 0.9% and 2.6%, respectively.
Compared with Cascade RCNN (ResNetXT101), our method achieved a 2.5% improvement
in mAP, and the improvements in AP50 and AP75 reached 3.8% and 2%, respectively.
However, it is worth noting that the UIE + UOD type detector did not perform as well
as we expected. It is mainly attributed to the inconsistency in their respective goals, with
UIE aiming to optimize image quality and UOD focusing on improving detection accuracy.
Currently, CNN-based detectors dominate the object detection field, but our method
shows clear advantages. Although YOLOV7 performed well on multiple metrics, it still
lagged behind our ResNetXT101 model by 1.5%, 1.3%, and 1.5% in mAP, AP50, and AP75,
respectively. In addition, the Transformer class detector, as an emerging detector type, also
failed to surpass our proposed method. For example, our ResNetXT101 model achieved
63.5% in mAP, 1.9% higher than the best-performing DDQ model in its class. Although
diffusion-based detectors are the latest object detection technology that introduces diffusion
models, they could still not compete with our proposed method regarding actual detection
effects. Despite performance improvements, the network designed for underwater object
detection still lagged behind our ResNetXT101 model by 4.3% in mAP. It fully proves the
advancement and effectiveness of our proposed method in the field of object detection.

Table 5. Accuracy comparison experiment on UFD2022 dataset.

Methods Backbone mAP AP50 AP75

Baseline:
ResNet50 0.581 0.886 0.671

ResNetXT101 0.61 0.903 0.708
UIE + UOD:

DC-Net + Cascade RCNN ResNet50 0.564 0.886 0.659
LFTDGAN + Cascade RCNN ResNet50 0.58 0.884 0.662

PUIE + Faster RCNN ResNet50 0.558 0.889 0.631
CWR + Faster RCNN ResNet50 0.537 0.872 0.603

CNN:
FCOS ResNet50 0.418 0.72 0.452

YOLOF ResNet50 0.465 0.824 0.475
YOLOX DarkNet53 0.602 0.917 0.694

YOLOV7 CSPDarkNet 0.62 0.928 0.713
Dynamic RCNN ResNet50 0.559 0.868 0.647

Faster RCNN ResNet50 0.56 0.889 0.638
Transformer:

Swin Swin-T-P4 0.542 0.876 0.617
PVTv1 PVT-Medium 0.562 0.897 0.621
PVTv2 PVTv2-B4 0.607 0.922 0.7
DINO Swin-L 0.585 0.878 0.67
DDQ DETR 0.616 0.914 0.716

Diffusion:
DiffusionDet ResNet50 0.6 0.895 0.697
Underwater:

FERNet — 0.592 0.915 0.712
Ours:

ResNet50 0.605 0.914 0.697
ResNetXT101 0.635 0.941 0.728
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Figure 9 illustrates several methods’ detection results, further substantiating our pro-
posed approach’s efficacy across diverse environments. We showcase the baseline method
Cascade RCNN (ResNet50, ResNetXT101) alongside the most representative methods from
each category, such as LFTDGAN+Cascade RCNN in the UIE+UOD class, YOLOV7 in
the CNN class, DDQ in the Transformer class, DiffusionDet in the Diffusion class, and
our proposed method. For images with color distortion (first row), our proposed method
and most others successfully executed the detection task. However, in scenarios with low
visibility (second and third rows) and fog effects (fourth row), most methods struggled to
complete the detection, resulting in false positives and missed detections. In contrast, our
proposed method accurately performed the detection task. Notably, methods like DDQ
and Cascade RCNN (ResNet50) exhibited errors and missed detections. These qualita-
tive findings underscore the robust performance of our proposed method across diverse
environmental conditions.

Figure 9. Some qualitative examples on the UFD2022 dataset. Examples from top to bottom are color
distortion, low contrast, and fog effects. The numerical marks in the specific figures correspond to
the numerical marks in Table 1 and indicate different types of fish.

To further demonstrate the effectiveness of our proposed method, we visualize the
backbone feature maps of some methods in Figure 10. Our method excels at distinguishing
between object and background features, indicating its effectiveness.

LFTDGAN + 

Cascade RCNN

Cascade 

RCNN(ResN50)

Cascade 

RCNN(ResNXT101)
DDQYOLOV7 DiffusionDet Ours(ResN50) Ours(ResNXT101)Input

Figure 10. Feature map visualization results of different methods on the UFD2022 dataset. Examples
from top to bottom are color distortion, low contrast, and fog effects.
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4.3. Ablation Experiment
4.3.1. Performance of Prompt-Based Degradation Feature Learning Module

The degradation prior knowledge learning module aims to transfer highly degraded
regions in underwater images. To evaluate the transferability of the DFLM’s feature
distribution, we visualize the feature distributions of three subsets: images processed by
DFLM, the original image set, and a set of low-quality underwater photos. Each group of
images contains 30 randomly selected images for visualization. As shown in Figure 11, the
distribution of the original image set is closer to that of high-quality underwater image
datasets, indicating that the degradation prior knowledge successfully learned the previous
understanding of underwater images.

Figure 11. Visualization results of TSNE performance of degraded prior knowledge module. Here,
“1” represents a dataset that is not conducive to object detection, “2” represents a dataset that is
conducive to object detection, and “3” represents DFLM processed data.

4.3.2. Structure of Prompt-Based Degradation Feature Learning Module

An ablation study was performed to analyze the effectiveness of different parameter
settings in the degraded prior knowledge learning module. The specific settings are
as follows:

• Pha-Amp: Directly exchange image amplitude and frequency features.
• Pos0: Place the DFLM module before stage0 of resnet50.
• Pos1: Place the DFLM module after stage1 of resnet50.
• Pos2: Place the DFLM module after stage2 of resnet50.

The results of the ablation experiment are presented in Table 6. The proposed method
outperforms the Pha-Amp method by 9.3% in the mAP index, 6% in the AP50 index, and
12.1% in the AP75 index. The proposed degradation module exhibits its most effective func-
tionality during the intermediate stage, resulting in the highest accuracy index achieved.

Table 6. Ablation experiment’s accuracy on UFD2022 dataset.

Method Pha-Amp Pos0 Pos1 Pos2 Ours (ResNet50)

mAP 0.512 0.591 0.596 0.589 0.605
AP50 0.854 0.892 0.904 0.891 0.914
AP75 0.576 0.676 0.684 0.664 0.697
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4.3.3. The Impact of Training Strategies

In this subsection, we describe ablation experiments conducted to analyze the effec-
tiveness of various training strategies in the proposed method. Table 7 presents the results,
showcasing the performance improvements achieved with the incremental addition of
each step.

• CU: Baseline experiments were conducted by training Cascade RCNN (ResNet50) on
the UFD2022 training dataset.

• CU + FOD: We trained Cascade RCNN on a subset of the UFD2022 dataset that is a
high-quality dataset for friendly object detection (FOD).

• CU + TF: The DFLM module does not perform advance training and was directly
added to the backbone to train Cascade RCNN on a subset of data in the UFD2022
dataset that is conducive to object detection.

• No FT: Without fine-tuning subsequent components of the detector, Cascade RCNN
was trained on a subset of the UFD2022 dataset that is beneficial to object detection.

As depicted in Table 7, the CU + FOD, CU + TF, and No FT training strategies demon-
strate varying degrees of improvement compared to the baseline CU. The proposed method
attained optimal results, suggesting that degradation feature transfer plays a crucial role.
Moreover, fine-tuning further enhances perception capabilities, underscoring its signifi-
cance in the training process.

Table 7. Ablation experimental accuracy on UFD2022 dataset.

Training Strategies mAP AP50 AP75

CU 0.581 0.897 0.657
CU + FOD 0.591 0.903 0.681
CU + TF 0.596 0.912 0.689
No FT 0.585 0.907 0.675

Ours(ResNet50) 0.605 0.914 0.697

5. Conclusions

In this paper, we present a novel fish target detection network leveraging prior knowl-
edge of image degradation to mitigate the feature mismatch between underwater image
degradation and target detection. Firstly, we investigated the correlation between visually
restored image quality and detection efficiency, elucidating the impact of this relationship
on target detection. We constructed a dataset conducive to target detection using image
quality evaluation metrics. Secondly, we propose a simple yet effective prompt-based degra-
dation feature learning module (DFLM) to learn features conducive to target detection. The
DFLM can be learned unsupervised and utilized as a randomly inserted module. Moreover,
we introduce a novel two-stage training scheme that enhances the detector’s adaptability
to underwater fish detection tasks by dynamically adjusting the training scheme. Finally,
we curated a multi-scene underwater fish dataset (UFD2022), laying a robust foundation
for underwater fish target detection endeavors. On the UFD2022 dataset, our proposed
method demonstrated a 2.4% and 2.5% improvement in the mean average precision (mAP)
metric over the baseline ResNet50 and ResNetXT101, respectively. Similarly, our proposed
method, ResNetXT101, achieved a 1.5% enhancement over the state-of-the-art method
YOLOV7. Ablation studies further validated the efficacy of each component in our model
for high-density counting tasks.
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Appendix A

Appendix A.1. UFD2022 Dataset Analysis

Due to the presence of underwater fish images from various scenes within the UFD2022
dataset, this factor significantly influences the accuracy of fish object algorithms. To further
analyze the disparities between the UFD2022 dataset and two commonly used general-
purpose object detection datasets, PASCAL VOC [47] and MS COCO [48], an equivalent
number of samples were randomly sampled from the two general datasets. Utilizing
clustering TSNE algorithms, the dataset was visually clustered for comparison, as depicted
in Figure A1. It can be observed that the overall distribution of samples in the UFD2022
dataset is relatively dispersed, whereas the clustering of samples in the general-purpose
object detection datasets is more concentrated. This indicates that the UFD2022 dataset
encompasses a larger cross-domain variety of images from different underwater scenes.

Figure A1. TSNE visualization of the UFD2022 dataset; “1” represents the PASCAL VOC dataset,
“2” represents the MS COCO dataset, and “3” represents the UFD2022 dataset.

Appendix A.2. Data Analysis in Different Domains

It is difficult to quantitatively distinguish image quality from the visual enhancement
effect of underwater images. Therefore, a quantitative evaluation of underwater images is
carried out through different image quality evaluation indicators. The Underwater Color Image
Quality Evaluation Metric (UCIQE) quantifies image quality through hue, saturation, and
contrast; Underwater Image Quality Metric (UIQM) is a comprehensive quality representation
of underwater images; MUSIQ [49] is a Transformer-based multi-scale image quality assessment
model; Brisque [50] evaluates image quality by calculating image naturalness; entropy is the
information entropy of the image; NIQE is based on the statistical characteristics of natural
images for modeling and comparison. The evaluation indicators of different domains are
shown in Table A1. The evaluation indicators of different domains show the relative order of
underwater image quality, where Domain-O < Domain-L < Domain-D.

Table A1. Results of different evaluation indicators. The optimal results are marked in red.

Method UIQM UCIQE MUSIQ Entropy Brisque NIQE

Domain-O 0.6074 4.2723 45.0560 7.3642 38.8077 6.1737
Domain-L 0.7297 5.0423 45.6851 7.6452 37.1034 5.8911
Domain-D 0.8136 4.5908 45.9735 7.6370 33.0612 5.0216
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The aforementioned evaluation indicators primarily focus on the overall scope of the
dataset and may not effectively highlight the domain range, distribution, and other character-
istics of local datasets. To address this limitation, it is recommended to visualize the dataset
distribution by using two different indicators as the x and y axes. However, it should be noted
that some metrics may not accurately reflect the quality of recovered underwater images, as
discussed in the literature [51]. Therefore, establishing reliable degradation levels solely based
on these indicators might be questionable. To identify the two best non-reference image quality
assessment (NR-IQA) methods for underwater images, an analysis of six NR-IQA indicators is
conducted. The analysis involves a degraded underwater image x and a pair of clean images y,
which are linearly combined according to the mixing theory to generate a set of images with
varying qualities. The specific formula for this process can be expressed as follows:

S = {αix + (1 − αi)y}10
i=1 s.t. αi = 0.1 × i, i = 1, 2, . . . , 10 (A1)

If the score of an NR-IQA method on the underwater fish dataset decreases with
an increase in αi, it signifies the reliability of that evaluation method. Adhering to this
criterion, experiments were performed on the underwater fish dataset using six different
NR-IQA methods, and the results are illustrated in Figure A2. Notably, MUSIQ and UIQM
indicators exhibited the highest conformity to the monotonicity requirement. Hence, the
UIQM and MUSIQ indicators were selected for visualizing the distribution of the dataset.
By leveraging the UIQM and MUSIQ indicators, a more comprehensive assessment of
underwater image quality can be achieved. This enables the identification of suitable image
enhancement techniques or algorithms to enhance the visual quality of underwater images.
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Figure A2. Results of different NR-IQA metrics on the UFD2022 dataset.

We chose the UIQM and MUSIQ indicators (normalized) to compose the coordinates
for each image and visualized the results, as shown in Figure A3. To provide a better
description, a spatial coordinate system was established with the center position, leading
to the following observations: (1) despite the superior visual and quantitative evaluation
results achieved by the Domain-D and Domain-L data, they exhibit a more uniform and
widespread distribution compared to the Domain-O data. (2) The effectiveness of image
enhancement correlates with the capability to transform lower-quality images into higher-
quality ones. For instance, in the bottom-left quadrant of Figure A3, where Domain-O
contains lower-quality images, algorithmic processing leads to quality improvements, with
Domain-D demonstrating superior processing performance. (3) It is worth noting that image
enhancement algorithms may sometimes yield lower quantitative scores for some initially
high-quality images, despite an overall improvement in quality. For example, while most
of the original Domain-O data reside in the second quadrant, after enhancement, some data
points disperse into other lower-quality quadrants (such as Domain-D and Domain-L images).
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Figure A3. Visualization of local dataset metrics.

Appendix A.3. Research on Distribution of Prior Knowledge of Degradation of Underwater Images

Based on the illustration in Figure A4, we conducted a study on the effects of transferring
feature distributions from severely degraded datasets to other domains on the accuracy of
object detection in underwater images. We utilized various image enhancement methods to
improve low-quality images (i.e., performing feature distribution transfer) and assessed fish
object detection accuracy using Cascade RCNN. Drawing from the analysis of data domain
distribution transfer, we arrived at the following two key conclusions: (1) low-quality datasets
hinder the improvement of accuracy in underwater image object detection. This indicates
that low-quality data may lead to a decline in the performance of object detection algorithms,
thereby impacting overall detection accuracy. (2) Transferring the feature distribution from
low-quality datasets to high-quality datasets can maximize object detection accuracy. This
suggests that by effectively transferring features from low-quality samples to high-quality ones,
the performance of object detection algorithms can be significantly enhanced, consequently
improving the accuracy of object detection in underwater images. Hence, it can be inferred
that the contributions of low-quality and high-quality samples to object detection accuracy
differ. Therefore, effective methods need to be explored to learn from and process low-quality
samples, aiming to enhance the performance of object detection algorithms and consequently
improve object detection accuracy in underwater images.
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Figure A4. Object detection results of transformed distribution on UFD2022 degraded dataset. (a) The
UFD2022 image dataset is divided into a high-quality dataset for friendly object detection (FOD)
and a low-quality dataset for harmful object detection (HOD). (b) The low-quality dataset that is not
conducive to object detection is removed. The distribution characteristics of low-quality datasets that
are not conducive to object detection are transferred to the object detection results of high-quality
datasets that are conducive to object detection. The score is represented by the difference between the
object detection accuracy of the model trained on the processed data and the object test accuracy of
the model trained on the original data.
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