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Abstract: For visible and Synthetic Aperture Radar (SAR) image fusion, this paper proposes a visible
and SAR image fusion algorithm based on a Transformer and a Convolutional Neural Network
(CNN). Firstly, in this paper, the Restormer Block is used to extract cross-modal shallow features.
Then, we introduce an improved Transformer–CNN Feature Extractor (TCFE) with a two-branch
residual structure. This includes a Transformer branch that introduces the Lite Transformer (LT) and
DropKey for extracting global features and a CNN branch that introduces the Convolutional Block
Attention Module (CBAM) for extracting local features. Finally, the fused image is output based on
global features extracted by the Transformer branch and local features extracted by the CNN branch.
The experiments show that the algorithm proposed in this paper can effectively achieve the extraction
and fusion of global and local features of visible and SAR images, so that high-quality visible and
SAR fusion images can be obtained.

Keywords: dual branch; feature extraction; image fusion; SAR images; visible images

1. Introduction

In recent years, with the continuous development of remote sensing technology, SAR
imaging, as an important imaging technology, has become a popular research field. SAR is
a microwave remote sensing system with the characteristics of all-weather, all-day, certain
penetration, etc., and can provide SAR images with rich structural information. However,
SAR images are seriously contaminated by noise, resulting in low signal-to-noise ratios, and
SAR image interpretation is more difficult. In comparison, traditional visible-light sensors
receive rich, high-resolution, multi-spectral information from ground objects, but visible-
light sensor imaging is easily affected by weather and other factors. On the other hand,
although visible-light imaging technology covers a wide range of wavelengths from 400 to
700 nm, its principle of operation relies on the passive reception of spectral information
reflected from features and, therefore, has limitations in filtering or highlighting spectral
information in specific wavelength bands. In contrast, SAR is capable of actively emitting
electromagnetic waves of a specific wavelength band and receiving their reflected signals,
thereby accurately capturing and extracting information reflected from electromagnetic
waves of a specific wavelength band, which endows SAR with greater flexibility and
accuracy in specific tasks. Therefore, the organic fusion of visible-light and SAR images
with complementary advantages can significantly enrich the useful information of images,
which is of great significance in military reconnaissance, agricultural planning, target
extraction, and other image processing work.

Currently, mainstream visible and SAR image fusion methods can be broadly cate-
gorized into two types, including traditional image fusion methods and deep learning-
based image fusion methods. Traditional image fusion algorithms mainly include Laplace
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Pyramid (LP) [1–3], Shear Wave (SW) [4–6], Discrete Wavelet Transform (DWT) [7–9], Non-
Subsampled Shearlet Transform (NSST) [10–12], Sparse Representation (SR) [13–16], and
other methods. However, traditional methods use complex transformations and manual
rules, thus limiting the real-time performance of the algorithms and the integration of
semantic information, which restricts their application in advanced visual tasks.

Deep learning-based image fusion methods include frameworks such as the auto-
encoder (AE) [17,18], Convolutional Neural Networks [19,20], and Generative Adversarial
Networks (GANs) [21–23]. These frameworks can automatically and efficiently learn fea-
ture information from visible and SAR images, resulting in highly accurate fusion results.

In image fusion methods based on deep learning, the auto-encoder is a commonly
used fusion model. Its structure mainly consists of three parts: encoder, fusion decision, and
decoder. The encoder is primarily used to encode the source images into low-dimensional
representations in the latent space, capturing the key features of the images. The decoder
reconstructs the original images by receiving the latent representations generated by the
encoder. During the training process, an appropriate loss function is designed so that the
decoder can reconstruct the input images as accurately as possible. After training, the
encoder can encode data from different modalities into low-dimensional representations in
the latent space, which are then fused according to the designed fusion method. The fused
encoding is inputted into the decoder for reconstruction. Image fusion methods based on
auto-encoders do not require manual design for feature extraction. They can effectively
learn key information from the image and achieve fusion in an end-to-end framework,
greatly simplifying the fusion process.

Among the many AE fusion frameworks, the auto-encoder approach based on CNN
feature extraction and reconstruction has been proven to be one of the most effective meth-
ods. The three algorithmic processes shown in Figure 1 are currently the most commonly
used methods for this approach. The processes shown in Figure 1a,b are based on a shared
encoder algorithm process, while the one in Figure 1c is based on a private encoder method.
However, these methods currently have some problems and shortcomings. Firstly, CNNs
are convolution-based neural networks with inductive biases and translation invariance
characteristics, which, while improving the efficiency of graphic feature computations,
cause a loss of the receptive field, leading to weak global feature mining capabilities and
difficulty in extracting global information to obtain high-quality fused images [24]; sec-
ondly, forward propagation in the fusion network may lead to the loss of some important
feature information; and lastly, the method based on shared encoders in the figure cannot
differentiate features from different modalities, while the method based on private encoders
overlooks shared features.
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Unlike CNNs, the Vision Transformer (ViT) [25] model architecture, which has recently
become popular in the field of computer vision, utilizes mechanisms such as self-attention,
multi-head attention, and positional encoding. This enables the model to effectively capture
global dependencies within the input sequence, thereby providing outstanding global
feature extraction capabilities. However, network models based on ViT are relatively
complex and require substantial computation to achieve better performance.

To address these issues, this paper proposes a more rational fusion network architec-
ture to solve the shortcomings and challenges in feature extraction and fusion. The fusion
algorithm framework designed in this paper is illustrated in Figure 2.
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First, addressing the lack of global feature extraction capability in CNNs, this paper
introduces a dual-branch feature extraction network based on a Transformer and a CNN to
separately extract and fuse global high-frequency features and local low-frequency features
from visible and SAR images.

Second, addressing the potential loss of important feature information during the
fusion process, this paper makes relevant improvements to the Transformer and CNN
feature extraction models, enhancing the network’s ability to capture important feature
information. On one hand, based on the Transformer network structure, we introduce
the LT [26] block to balance fusion image quality and reduce computational costs and the
DropKey [27] mechanism in the network’s attention layer to adaptively adjust attention
weights, making the model focus on more useful information. On the other hand, based on
the CNN network model, we have added the CBAM module, which enhances the network
model’s focus on important areas by introducing channel attention and spatial attention
mechanisms, thereby reducing the loss of important information.

Third, regarding visible and SAR images, we believe that the large-scale environmental
features such as background and contour of different modal data have high similarity,
showing high correlation in global features, whereas for different modal textures and
details, they show some differences and independence, demonstrating low correlation in
local features. Therefore, we promote the feature extraction capability and effectiveness
of different modal data by increasing the correlation of global features and reducing the
correlation of local features in visible and SAR images.

In summary, the main contributions of this paper are as follows:

(1) We propose a dual-branch Transformer–CNN framework to extract and fuse global
and local features of visible and SAR images, addressing the issue of insufficient
feature extraction in traditional auto-encoder-based image fusion methods.
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(2) On a macroscopic level, on the one hand, we have made innovative improvements to
the dual-branch structure. Instead of traditionally concatenating global and local fea-
tures of different modal data and then sending them to the decoder for reconstruction,
we first concatenate the global features and then send the fused global features along
with the local features of visible and SAR images to the decoder for reconstruction of
the original images. On the other hand, we have introduced a residual structure to
the model to enhance network performance and expressive capability, strengthening
the extraction of complex features.

(3) On a microscopic level, we have made some improvements to the dual-branch fea-
ture extraction network model, specifically including the introduction of the LT and
DropKey mechanisms in the Transformer feature extraction network and the addition
of the CBAM module in the CNN feature extraction network to reduce the potential
loss of important feature information during the forward propagation of the fusion
network and enhance the robustness of the model.

(4) For the two-stage training process, we designed specific loss functions to suit different
training tasks, achieving good results.

The specific chapters and arrangements of this paper are as follows: Section 2 intro-
duces the related work on visible and SAR image fusion methods; Section 3 describes, in
detail, the visible and SAR image fusion method and the related structure used in this
paper; Section 4 introduces the related experimental work and presents the experimental
results and analysis; finally, this paper concludes in Section 5.

2. Related Work

In this section, we mainly introduce some related work on image fusion methods.

2.1. CNN

Image fusion methods based on CNN mainly leverage the powerful feature extraction
capabilities of CNN networks, retaining rich detail information in the fused images. In
2017, Liu et al. [28] introduced CNN networks into the field of image fusion. They trained
the network using blurred background and foreground images to obtain binarized weight
maps. During the testing phase, the source images were combined with the weight maps
to produce fused multifocus images. Subsequently, many researchers introduced CNN
network models into traditional methods, infusing rich semantic information into the fused
images. For example, Li et al. [29] used the VGG19 network to further process the detail
parts obtained through multi-scale decomposition, thus preserving rich texture information
in the fused images. Liu et al. [30] used a downsampling sequence of convolutional weight
maps as the fusion ratio map of two-branch downsampling sequences, avoiding manually
designed fusion strategies. These methods all share a common issue: they do not fully
consider the different information among different modal images.

2.2. Attention Mechanism

The attention mechanism is a commonly used module in image processing that is
used to focus on the important features of the image and inhibit unnecessary regional
responses. In 2014, the Google Mind team used the attention mechanism in the RNN
model for image classification, which resulted in its research and use by many scholars.
In general, the attention mechanism can be divided into soft attention, hard attention,
and the self-attention that is used in the field of Natural Language Processing (NLP).
Among them, the soft attention mechanism can currently be subdivided into channel
attention, spatial attention, and its combination module [31]. Woo et al. [32] proposed
CBAM through the channel dimension and spatial dimension in a combinatorial analysis
study and confirmed that the performance of the network is enhanced by the accurate
attention mechanism and the suppression of noisy information. CBAM is a combination
of the channel attention module (CAM) and the spatial attention module (SAM) used for
enhancing the performance of the feedforward convolutional attention module to enhance
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the performance of CNNs. It can be integrated into any network model of CNN architecture
with negligible computational cost and is a neural network that enables end-to-end training.
Currently, CBAM has been applied to a variety of common Convolutional Neural Networks
for enhancing network performance, such as ResNet [33], VGG [34], DenseNet [35], etc.

The CAM mainly models the importance of features, and its structure is shown in
Figure 3. Its main process consists in using both the maximum pooling and mean pooling
algorithms, then going through several MLP layers to obtain the transformed results, and
finally applying them to the two channels separately to obtain the channel’s attention
results using the sigmoid function.
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The SAM models the importance of spatial locations, and its structure is shown in
Figure 4. Its main process consists in first downscaling the channel itself to obtain the
maximum pooling and mean pooling results, respectively, and then stitching them into a
feature map, which is then learned using a convolutional layer.
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2.3. Transformer and Its Variants

Transformer is a classic NLP model proposed by Vaswani et al. [36] in 2017 that
relies entirely on self-attention to compute its inputs and outputs. The Vision Transformer
(ViT) was introduced by Dosovitskiy [25] for computer vision applications. Compared
to CNN, ViT and its variants have achieved many advanced results in image processing.
For example, Wang et al. [37] proposed PVT, which integrates Transformer into CNN
and trains on dense partitions of images to produce high-resolution outputs, overcoming
the drawbacks of Transformer for dense prediction tasks. Wu et al. [26] proposed an
efficient mobile NLP architecture, LT, which features long- and short-range attention to
significantly reduce computational costs. Zamir et al. introduced the Restormer [38]
structure, incorporating Multi-head Dconv Transfer Attention (MDTA) modules and gated-
Dconv feed-forward network (GDFN) for multi-scale local/global representation learning
in high-resolution images.

LT is a novel lightweight Transformer network with two enhanced self-attention
mechanisms to improve the performance of edge deployment. For low-level features,
Convolutional Self-Attention (CSA) is introduced. Unlike previous approaches that fused
convolution and self-attention, CSA introduces local self-attention into the convolution
within a kernel of size 3 × 3 to enrich the low-level features in the first stage of LT. For high-
level features, Recursive Atrous Self-Attention (RASA) is proposed to compute similarity
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mappings using multi-scale contexts, and a recursive mechanism is employed to increase
the representational power of additional marginal parameter costs.

In the image recovery task, although the existing Transformer model can overcome the
problems of the limited sensory field of CNN and its non-adaptability to the input content,
its computational complexity grows quadratically with the spatial resolution, and thus it
cannot be applied in the recovery task of high-resolution images. In contrast, Restormer, as
an efficient Transformer network for image restoration, is applicable to the task of restoring
and reconstructing large images by introducing an MDTA module and a new GDFN that
models global connectivity.

The main improvements to ViT mainly focus on two aspects: on the one hand, enhanc-
ing or replacing the original network’s ReLU structures due to insufficient non-linearity,
as exemplified in LT; on the other hand, introducing the DropOut mechanism during the
training process of Transformer networks to prevent overfitting, thereby helping the model
extract more useful feature information. This paper introduces the DropKey mechanism
based on the LT network to improve the network.

2.4. Regularization Method

In machine learning, when the model is continuously optimized, image blocks with a
larger share of attention in the current iteration will tend to be assigned larger attention
weights during the next iteration, thus predisposing them to overfitting problems. In
order to solve such problems, many machine learning algorithms use related strategies to
reduce the test error, which are collectively known as regularization. Currently, the main
strategies used in deep learning are Parameter Norm Penalties, Early Stopping, DropOut,
etc. In 2012, Alex proposed DropOut, which is based on the principle of improving the
performance of neural networks by preventing the co-action of feature detectors to alleviate
the neural network overfitting problem. And in that year’s image recognition competition,
Alex et al. used the DropOut algorithm in the AlexNet network to prevent the overfitting
problem and eventually won the competition. As shown in Figure 5b, DropOut involves
randomly discarding the attention weights after Softmax normalization, but this breaks
the probability distribution of the attention weights and fails to penalize the weight peaks,
resulting in the model still overfitting to locally specific information. In this paper, we use a
novel regularization method, DropKey [27], shown in Figure 5c, which implicitly assigns an
adaptive operator to each attention block to constrain the attention distribution by randomly
dropping some of the key vectors (thus making it smoother) and also encouraging the
model to pay more attention to the useful information of the other image blocks, which can
help to capture globally robust features.
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Q, K, and V, shown in Figure 5, are the three key components inside the self-attention
mechanism in the Transformer network, denoted as query vectors, key vectors, and value
vectors, respectively, which are all obtained from the input matrices by linear transfor-
mation, as shown in Figure 5a. In the self-attention mechanism, a weight distribution is
obtained by calculating the similarity between the query vector and all the key vectors
based on the query vector, which is used to weight and sum the associated value vectors.
Firstly, the inner product (MatMul) of matrices Q and the vectors of each row of K is
calculated, and in order to prevent the inner product from being too large, it is divided
by the square root of dk (Scale), where dk is the dimension of the K matrix; secondly, the
result of the above inner product is normalized using Softmax; finally, the Softmax matrix
is obtained and then multiplied with the V matrix to obtain the final output.

3. Framework and Methodology

In this section, we introduce the method and framework we proposed; we have also
designed the corresponding loss functions for this method. The algorithm framework of
this paper is shown in Figure 6. Below, we will introduce it from four aspects: encoder,
fusion strategy, decoder, and loss function.
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3.1. Encoder

The encoder part is mainly used for feature extraction of input images, which consists
of three parts: shallow feature extraction, global feature extraction, and local feature
extraction. The specific details are as follows:

Shallow Feature Extraction. Initially, the Restormer Block extracts shallow features
from the input visible and SAR images and then continues to extract their global/local
features based on the extracted shallow features. The Restormer Block has been proven
to extract shallow features of images without increasing computational power, facilitating
multi-scale global/local representation learning suitable for image reconstruction tasks.

Global Feature Extraction. Based on the shallow features extracted by the Restormer
Block, we use the LT model to extract the global features of the input images. The LT model,
by adopting long- and short-range attention, focuses more on the global information of
images and reduces model parameters through a flattened feedforward network structure,
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significantly reducing computational costs while maintaining the same performance. At
the same time, we introduce the DropKey mechanism in the attention layer, randomly
dropping some key values to reduce the model’s over-reliance on certain neurons, helping
to capture more robust global features.

Local Feature Extraction. Local feature extraction aims to extract detailed features such
as texture information and corner features from image data. The CNN feature extraction
network is currently one of the most effective methods for extracting image detail features.
To capture more detailed feature information and reduce the loss of important information
during the fusion process, we introduced the CBAM module at the front end of the CNN
feature extraction network. This module adaptively adjusts the importance of different
channel pieces of information and assesses the relevance of different spatial positions to
enhance the network’s focus on important areas.

3.2. Fusion Strategy

First, a fusion layer is constructed, whose main structure is similar to the feature
extraction structure of the encoder. Therefore, we similarly adopt a Transformer network
with the LT module and DropKey mechanism, as well as a CNN network with the CBAM
module as the fusion strategy. For the first training stage, our approach is to first fuse and
concatenate the global features extracted from the visible and SAR images, then send these
concatenated features along with the local features of the visible and SAR to the decoder to
reconstruct the original images. The purpose of this is to train an encoder that can extract
global features of visible and SAR with higher relevance. For the second training stage, our
approach is to input the visible and SAR images into the trained encoder, then fuse and
concatenate the extracted global and local features, and send these concatenated features to
the decoder for decoding to reconstruct the fused image.

3.3. Decoder

The decoders in the first and second training stages are structurally identical, both
using Restormer Blocks as their basic unit, but they differ in function. The decoder in
the first training stage mainly receives the global/local features from the visible and SAR
images and ultimately reconstructs the original images, while the decoder in the second
training stage receives the globally and locally concatenated features of the visible and SAR
images and is capable of reconstructing the fused image.

3.4. Loss Function

Inspired by reference [39], this paper designs a two-stage training process. As in-
troduced above, the tasks and functions realized in the first and second stages are not
completely the same; therefore, we have designed specific loss functions for the training
processes of both stages.

3.4.1. Training Stage 1

In training stage 1, the total loss function trained is calculated as follows:

Ltotal_1 = α1LMI + α2LSSIM + α3Ldecomp (1)

where α1, α2, and α3 refer to the adjustment coefficients, which are 3, 10, and 1, respectively.
LMI , LSSIM, and Ldecomp respectively refer to the mutual information loss, structural simi-
larity loss, and feature decomposition loss of visible and SAR images, which are defined
as follows:

• Mutual information loss

The specific expression for the MI loss function is as follows:

LMI(x, y) = H(x) + H(y)− H(x, y) (2)
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where x and y represent the original image and the reconstructed image, respectively. H(x)
and H(y) represent the information entropy of the original image and the reconstructed
image, respectively, and H(x, y) represents the joint information entropy of the source
image and the reconstructed image.

• Structural similarity loss

The specific expression for the SSIM loss function is as follows:

LSSIM = 1 − SSIM(I f , IVIS) + β(1 − SSIM(I f , ISAR)) (3)

where β represents the adjustment coefficient of 0.5. SSIM( , ) is the structural similarity
index, and its specific expression is as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where x and y represent the original image and the reconstructed image, respectively; µx
and µy represent the means of the original and reconstructed images; σ2

x and σ2
y represent

the variances of the original and reconstructed images; σxy represents the covariance of the
original and reconstructed images; C1 = (k1L)2, C2 = (k2L)2 is a constant used to maintain
stability; and L is the dynamic range of image pixel values, with k1 = 0.01, k2 = 0.03.

• Feature decomposition loss

Ldecomp is a loss function of our own design that aims to better distinguish between
the extracted global feature information and the local feature information. It is defined
as follows:

Ldecomp =
CC( f D

SAR, f D
VIS)

CC( f B
SAR, f B

VIS)
(5)

where CC( , ) refers to the correlation coefficient operator; f D
SAR and f D

VIS respectively refer
to the detailed local features extracted from SAR images and visible images; and f B

SAR
and f B

VIS respectively refer to the global features extracted from SAR images and visible
images. Equation (5) is designed based on the viewpoint we proposed earlier because, in
our view, visible and SAR images should be highly correlated in terms of global feature
information. In order to preserve the same global information for both types of images,
the larger CC( f B

SAR, f B
VIS), the better. In terms of local detail feature information, there are

certain differences between the two types of images. In order to extract richer details, the
smaller CC( f D

SAR, f D
VIS), the better. Therefore, this article proposes the above loss function.

3.4.2. Training Stage 2

In training stage 2, the total loss function of the training is calculated as follows:

Ltotal_2 = α4Lint + α5Lgrad + α6LMI + α7LSSIM + α8Ldecomp (6)

where α4, α5, α6, α7, and α8 are adjustment coefficients, which are 1, 1, 3, 10, and 1, re-
spectively. On the basis of the first training stage loss function, two terms, Lint and Lgrad,
have been added, where Lint is the intensity loss of the image, which constrains the fused
image to maintain a similar intensity distribution to the source image; and Lgrad is the
gradient loss of the image, forcing the fused image to contain rich texture details. The
specific definition formula is as follows:

Lint =
1

H × W
∥I f − max(ISAR, IVIS)∥1 (7)

Lgrad =
1

H × W
∥∇I f − max(∇ISAR,∇IVIS)∥1 (8)
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where I and ∇I respectively refer to the operators of the image intensity and gradient
magnitude, while H and W respectively refer to the height and width of the image.

4. Experimental Setup and Result Analysis

In this section, we first introduce the dataset used in this experiment, then detail some
parameter configurations and the implementation process of the experiment, compare it
with existing visible and SAR image fusion methods, and finally, conduct an ablation study
to prove the advancement and reference value of our proposed image fusion method.

4.1. Dataset Introduction

The dataset used in this experiment is OGSOD-1.0 [40], a publicly available dataset
downloaded from the Internet. The SAR images in OGSOD-1.0 are collected from the
Chinese Gaofen-3 satellite in the C-band, Vertical–Vertical (VV), and Vertical–Horizontal
(VH) polarization modes. These SAR images are provided by the 38th Research Institute
of China Electronics Technology Group Corporation (CETGC), and their resolution is 3 m.
The optical images are provided by Google Earth, and their resolution is 10 m. In addition,
to increase the diversity of the training set, the original authors obtained permission from
Michael Schmitt to extend the dataset by selecting an additional 3000 sample pairs from the
SEN1-2 [41] dataset. Therefore, OGSOD-1.0 consists of a training set of 14,665 optical and
SAR image pairs and a test set of 3666 SAR-only images, containing a total of more than
48,000 instance annotations. For this experiment, we selected 1048 pairs from the dataset as
the training set and 100 pairs as the test set.

4.2. Evaluation Metrics

To verify the fusion performance of the algorithm proposed in this paper, the experi-
ment quantitatively evaluates the fusion results from four aspects and a total of 12 common
metrics: information-based, structure similarity-based, image feature-based, and human
visual perception-based. The information-based image fusion metrics include entropy (EN),
mutual information (MI), and peak signal-to-noise ratio (PSNR); the structure similarity-
based metrics include Structural Similarity Index Measure (SSIM) and Mean Squared Error
(MSE); the image feature-based metrics include Average Gradient (AG), Edge Intensity
(EI), Standard Deviation (SD), Spatial Frequency (SF), and edge information-based index
(Qabf); and the visual perception-based metrics include Sum of Correlated Differences
(SCDs) and Visual Information Fidelity (VIF). They are categorized in Table 1. Except for
the MSE, where a smaller value indicates higher image quality, higher values in all other
metrics indicate better image quality after fusion.

Table 1. Classification of quantitative evaluation metrics used in the experiment [42].

Theory Evaluation Metrics

Information Theory EN, MI, PSNR
Structural Similarity SSIM, MSE

Image Feature AG, EI, SD, SF, Qabf
Visual Perception SCD, VIF

4.3. Experimental Setup

All algorithm implementations were trained and tested on a high-performance work-
station equipped with an Nvidia Tesla A100 GPU with 80 GB of memory and an AMD
Ryzen Threadripper PRO 5995WX 64-Core CPU. The deep learning framework is PyTorch,
using CUDA version 11.7. During the training phase, the input image size was set to
256 × 256, with a total of 140 training epochs, where the first and second phases were
40 and 100 epochs, respectively. The batch size was set to 16, with an initial learning rate of
10−4, reduced by 50% every 20 epochs.
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4.4. Comparison with SOTA Methods

To verify the effectiveness of the proposed image fusion method, the experiment
compared the fusion results with advanced general image fusion methods, including
DenseFuse [43], RFN-Nest [44], SeAFusion [45], SwinFusion [46], and YDTR [47].

4.4.1. Qualitative Comparison

To better evaluate the fusion performance of various algorithms, this experiment
selected three pairs of visible-light and SAR images with rich texture details from the test
set for comparative display. The original pairs of visible-light and SAR images are shown in
Figure 7. From the figure, it can be seen that visible-light images have a better visual effect
and clearly express local features such as buildings. However, their contour information
is difficult to distinguish from the background. Conversely, SAR images express contour
information more fully. Therefore, the fused image should include both local information,
such as buildings, and global information, such as terrain contours.
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Figure 7. Three pairs of visible and SAR original images.

Figure 8 shows a visual comparison of the fused images obtained by our proposed
visible and SAR image fusion method and the five methods mentioned above, with red
boxes highlighting some detailed comparisons of the fused images from each method. From
the comparison results, it can be seen that our proposed method captures more abundant
texture details and clearer contour information in the fused images compared to the other
five methods, and the fused images obtained by our method make the target objects more
prominent and easier to distinguish from the background, helping us better understand
various scenes.

Upon examination of the fused images, it becomes evident that they all exhibit a
monochromatic appearance devoid of color. This is a notable departure from the conven-
tional characteristics of visible and SAR fusion images, which will be elucidated below.
In the execution of our algorithm, we first compress the RGB bands of the visible image
into a single channel during the data processing stage, which results in the loss of color
information. This is performed to ensure that the visible input and the SAR input have the
same number of channels, which facilitates the overall execution of the algorithm.
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4.4.2. Quantitative Comparison

To verify the superiority of the proposed algorithm more objectively, Table 2 shows a
quantitative index comparison between our method and the other five methods, where the
bolded data are the best values for each index. From the experimental data in Table 2, it
can be seen that the SSIM metrics obtained by some methods are greater than 1, which is
not in line with common sense. This is because we have made a small change to the SSIM
metrics when calculating them (the calculation expression is shown in Equation (9)). It can



Electronics 2024, 13, 2365 13 of 18

be seen that the SSIM metrics in this paper are obtained by calculating the SSIM metrics
from the fused images with the visible and SAR images, respectively, and then summing
them, which is why the size of the metrics may be greater than 1. In addition, similar to
this practice, MI, MSE, CC, PSNR, SCD, VIFF, Qabf, and other metrics are calculated.

MSSIM = SSIM(I f , IVIS) + SSIM(I f , ISAR) (9)

Table 2. Comparison of evaluation metrics for different fusion methods.

DenseFuse SeAFusion RFN-Nest SwinFusion YDTR Ours

EN 7.02 7.42 7.06 7.23 7.09 7.54
MI 1.71 1.64 1.51 1.75 1.78 2.42

PSNR 15.47 12.99 14.50 12.92 14.63 14.09
SSIM 1.04 1.01 0.80 1.06 1.05 1.10
MSE 1974.79 3614.99 2532.79 3656.79 2451.7 2820.47
AG 10.15 15.40 6.92 15.21 11.96 17.15
EI 41.50 48.25 37.81 48.37 42.74 50.19
SD 36.54 48.64 39.58 49.50 39.06 52.88
SF 24.28 33.43 14.31 34.88 30.17 40.08

Qabf 0.32 0.44 0.22 0.41 0.39 0.56
SCD 1.21 1.35 1.20 1.49 1.16 1.57
VIF 0.37 0.35 0.31 0.36 0.39 0.58

In order to show the comparison effect more intuitively, we normalized the data in
Table 2 and plotted them as a radar chart, as shown in Figure 9. Since this is just a simple
representation of the advantages and disadvantages of the metrics obtained by different
methods, the normalization process we have adopted is to take the maximum value of the
metrics in each category to be 1, while the metrics obtained by the other methods in this
category are taken to be the ratio of their actual metrics to the maximum actual metrics
in that category. However, the MSE metrics are special in that the smaller the metrics,
the better the quality of the fused image generated. In order to facilitate the intuitive
understanding of the human eye, we do the opposite of normalizing the metrics of the
MSE. We set the minimum metric to 1, while the metrics obtained by other methods take
the value of the ratio of the minimum actual metric to its actual metric.
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It can be seen that our proposed method performs well in all metrics except for 2 (PSNR
and MSE) and is the best in the other 10 metrics, demonstrating that our method performs
better in visible and SAR image fusion tasks. Specifically, our method performs best on the
EN and MI metrics, indicating that it can fully mine and transfer the information from the
source images to the fused images; it also performs best on the SSIM index, showing that
it can retain the detailed information of the source images, being most similar to them; it
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performs best on the AG, EI, SD, SF, and Qabf metrics, indicating that the fused images
obtained by our method are of higher quality and clarity; and it performs best on the SCD
and VIF metrics, demonstrating that the fused images obtained by our method have better
visual effects.

4.5. Ablation Studies

In this section, we validate the rationality of different modules through a set of ablation
experiments. Specifically, we conducted ablation studies on the dual-branch structure,
residual structure, DropKey mechanism, CBAM module, and two-stage training used in
our experiments. The details are as follows:

(1) Dual-branch structure: In this paper, we design a CNN-based and a Transformer-
based dual-branch structure, and in order to prove the effectiveness of the dual-
branch structure, we design ablation experiments as follows: (a) We use only the
Transformer branch to complete the feature extraction, i.e., the CNN branch is replaced
by the Transformer branch. (b) We use only the CNN branch to complete the feature
extraction, i.e., the Transformer branch is replaced by the CNN branch.

(2) Residual structure: A comparative experiment is conducted by comparing scenarios
with and without the introduction of the residual structure.

(3) DropKey: For the Transformer branch, a comparative experiment is conducted be-
tween using the DropKey mechanism and not using it.

(4) CBAM: For the CNN branch, an experiment is conducted comparing the use of the
CBAM module against not using it.

(5) Two-stage training: This experiment introduced two-stage training to enhance fusion
performance. In the ablation study, a one-stage training method directly trains the
encoder, fusion layer, and decoder. The number of training rounds is consistent with
the total number of rounds in the two-stage training, both at 140 rounds.

Based on the above ablation experimental setup, we obtained the experimental results
and recorded them as shown in Table 3. From the comparative results, it is evident that in
certain group comparisons, the methodology we employed exhibited a slight deterioration
in several metrics. However, the overall enhancement across the majority of metrics
substantiates the rational design of our proposed structure. Furthermore, it is noteworthy
that the metrics derived from the dual-branch experiments significantly and consistently
surpassed those obtained solely from the CNN branch. As for the results obtained by using
only the Transformer branch, we can see that in the five indexes based on image features,
the method using only the Transformer branch is even superior in four of them, which
indicates that the Transformer branch we added has a strong feature extraction capability.
However, in terms of overall performance, the dual-branch structure we use has a greater
advantage in the other eight indicators, which indicates that the dual-branch structure
adopted in this study is reasonable and effective. Additionally, in the ablation experiments
involving DropKey and CBAM, our approach demonstrated notable improvements in the
PSNR, MSE, and SSIM metrics. These results suggest that our method preserves more
original image information and exhibits superior performance in representing details and
textural features.

Additionally, Figure 10 intuitively displays the comparative results of the ablation
experiments, highlighting certain aspects within red boxes to showcase detailed contrasts
in the fusion images obtained by each group. An analysis of these comparisons reveals
that the fusion images produced by our proposed method exhibit superior fusion quality.
Specifically, the fusion images generated solely using the CNN branch contain more noise,
which could hinder further image processing; certain texture details are lost in the fused
image obtained without using residual structures; and the images resulting from only
one-stage training also show some loss in textural detail, with weaker contrast between
structures such as buildings and their backgrounds compared to our method. Furthermore,
it is clearly visible that the fusion images obtained without employing DropKey and CBAM
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lack detailed textures and appear more blurred, demonstrating the significant role of
DropKey and CBAM utilized in our study.

Table 3. Results of ablation experiments.

Information Theory Structural
Similarity Image Features Visual

Perception

EN MI PSNR SSIM MSE AG EI SD SF Qabf SCD VIF

(1) Dual-branch structure

Transformer branch 7.52 1.73 13.47 1.01 3142.91 19.72 50.89 53.39 47.69 0.48 1.33 0.38
CNN branch 7.36 1.02 11.40 0.41 4898.22 7.45 34.36 42.53 23.62 0.15 0.07 0.15

Ours 7.54 2.42 14.09 1.10 2820.47 17.15 50.19 52.88 40.08 0.56 1.57 0.58

(2) Residual structure

Nonresidual 7.52 2.41 13.14 0.98 3471.32 17.37 49.31 52.04 40.64 0.55 1.15 0.56
Ours 7.54 2.42 14.09 1.10 2820.47 17.15 50.19 52.88 40.08 0.56 1.57 0.58

(3) DropKey

No Dropkey 7.51 1.67 13.64 0.94 3049.84 17.11 47.86 49.74 42.08 0.45 1.07 0.34
Ours 7.54 2.42 14.09 1.10 2820.47 17.15 50.19 52.88 40.08 0.56 1.57 0.58

(4) CBAM

No CBAM 7.45 2.95 12.75 0.99 3886.71 16.23 49.47 51.02 37.53 0.55 0.97 0.75
Ours 7.54 2.42 14.09 1.10 2820.47 17.15 50.19 52.88 40.08 0.56 1.57 0.58

(5) Two-stage training

One stage 7.53 2.22 13.23 1.01 3425.46 18.50 50.76 52.41 43.25 0.55 1.19 0.52
Ours 7.54 2.42 14.09 1.10 2820.47 17.15 50.19 52.88 40.08 0.56 1.57 0.58
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Figure 10. Display of ablation experiment results. Red boxes highlight some detailed comparisons of
the fused images from each group.

In summary, the results of the ablation experiments show that our designed method is
effective and rational.

5. Conclusions

This article proposes a visible and SAR image fusion method based on a dual-branch
residual structure combining Transformer and CNN networks. It introduces the LT and
DropKey mechanisms into the feature extraction network based on Transformer and
incorporates the CBAM module into the feature extraction network based on CNN to better
extract global and local features from both modalities. In addition, we have made certain
improvements to the entire fusion network architecture by first fusing and concatenating
the global features of the two modalities and then inputting the concatenated features
separately with the local features of each modality into the decoder for reconstruction.
To this end, we have also designed a specific loss function to adapt to this task. Finally,
through comparative experiments with five other methods and ablation experiments, we
have demonstrated the effectiveness and feasibility of our proposed method.

Author Contributions: L.H.: Writing the original draft, Methodology, Investigation, Software;
S.S.: Supervision, Validation; Z.Z. (Zhen Zuo): Methodology, Writing—review and editing; J.W.:
Methodology, Project administration; S.H.: Methodology, Visualization, Conceptualization, Software;
Z.Z. (Zongqing Zhao): Software, Conceptualization; X.T.: Resources, Data curation; S.Y.: Software,
Resources. All authors have read and agreed to the published version of the manuscript.



Electronics 2024, 13, 2365 17 of 18

Funding: This research was funded by the National Natural Science Youth Foundation of China
grant number 62201598.

Data Availability Statement: The dataset OGSOD-1.0 [40] used in this study is openly available
at the following links: https://github.com/mmic-lcl/Datasets-and-benchmark-code, (accessed on
5 May 2024).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Zhang, H.; Shen, H.F.; Yuan, Q.Q.; Guan, X.B. Multispectral and SAR Image Fusion Based on Laplacian Pyramid and Sparse

Representation. Remote Sens. 2022, 14, 870. [CrossRef]
2. He, Y.Q.; Zhang, Y.T.; Chen, P.H.; Wang, J. Complex number domain SAR image fusion based on Laplacian pyramid. In

Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021.
3. Zhang, T.W.; Zhang, X.L. Squeeze-and-Excitation Laplacian Pyramid Network With Dual-Polarization Feature Fusion for Ship

Classification in SAR Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4019905. [CrossRef]
4. Dai, J.Y.; Lv, Q.; Li, Y.; Wang, W.; Tian, Y.; Guo, J.Z. Controllable Angle Shear Wavefront Reconstruction Based on Image Fusion

Method for Shear Wave Elasticity Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022, 69, 187–198. [CrossRef] [PubMed]
5. Jia, H.Y. Research on Image Fusion Algorithm Based on Nonsubsampled Shear Wave Transform and Principal Component

Analysis. J. Phys. Conf. Ser. 2022, 2146, 012025. [CrossRef]
6. Zhao, M.J.; Peng, Y.P. A Multi-module Medical Image Fusion Method Based on Non-subsampled Shear Wave Transformation

and Convolutional Neural Network. Sens. Imaging 2021, 22, 9. [CrossRef]
7. Singh, S.; Singh, H.; Gehlot, A.; Kaur, J.; Gagandeep. IR and visible image fusion using DWT and bilateral filter. Microsyst. Technol.

2023, 29, 457–467. [CrossRef]
8. Amritkar, M.A.; Mahajan, K.J. Comparative Approach of DCT and DWT for SAR Image Fusion. Int. J. Adv. Electron. Comput. Sci.

2016, 3, 107–111.
9. Cheng, C.; Zhang, K.; Jiang, W.; Huang, Y. A SAR-optical image fusion method based on DT-CWT(Article). J. Inf. Comput. Sci.

2014, 11, 6067–6076. [CrossRef]
10. Zhang, K.; Huang, Y.D.; Zhao, C. Remote sensing image fusion via RPCA and adaptive PCNN in NSST domain. Int. J. Wavelets

Multiresolut. Inf. Process. 2018, 16, 1850037. [CrossRef]
11. Liu, K.X.; Li, Y.F. SAR and multispectral image fusion algorithm based on sparse representation and NSST. In Proceedings of the

2nd International Conference on Green Energy and Sustainable Development (GESD 2019), Shanghai, China, 18–20 October 2019.
12. Shen, F.Y.; Wang, Y.F.; Liu, C. Change Detection in SAR Images Based on Improved Non-subsampled Shearlet Transform and

Multi-scale Feature Fusion CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1. [CrossRef]
13. An, F.P.; Ma, X.M.; Bai, L. Image fusion algorithm based on unsupervised deep learning-optimized sparse representation. Biomed.

Signal Process. Control. 2022, 71, 103140. [CrossRef]
14. Ma, X.L.; Hu, S.H.; Yang, D.S. SAR Image De-noising Based on Residual Image Fusion and Sparse Representation. KSII Trans.

Internet Inf. Syst. 2019, 13, 3620–3637.
15. Bai, L.; Yao, S.L.; Gao, K.; Huang, Y.J.; Tang, R.J.; Yan, H.; Max, Q.-H.M.; Ren, H.L. Joint Sparse Representations and Coupled

Dictionary Learning in Multi-Source Heterogeneous Image Pseudo-color Fusion. IEEE Sens. J. 2023, 23, 1. [CrossRef]
16. Wang, J.W.; Qu, H.J.; Zhang, Z.H.; Xie, M. New insights into multi-focus image fusion: A fusion method based on multi-dictionary

linear sparse representation and region fusion model. Inf. Fusion 2024, 105, 102230. [CrossRef]
17. Wang, H.Z.; Shu, C.; Li, X.F.; Fu, Y.; Fu, Z.Z.; Yin, X.F. Two-Stream Edge-Aware Network for Infrared and Visible Image Fusion

With Multi-Level Wavelet Decomposition. IEEE Access 2024, 12, 22190–22204. [CrossRef]
18. Zhang, T.T.; Du, H.Q.; Xie, M. W-shaped network: A lightweight network for real-time infrared and visible image fusion. J.

Electron. Imaging 2023, 32, 63005. [CrossRef]
19. Luo, J.H.; Zhou, F.; Yang, J.; Xing, M.D. DAFCNN: A Dual-Channel Feature Extraction and Attention Feature Fusion Convolution

Neural Network for SAR Image and MS Image Fusion. Remote Sens. 2023, 15, 3091. [CrossRef]
20. Deng, B.; Lv, H. Research on Image Fusion Method of SAR and Visible Image Based on CNN. In Proceedings of the 2022 IEEE 4th

International Conference on Civil Aviation Safety and Information Technology (ICCASIT), Dali, China, 12–14 October 2022.
21. Kong, Y.Y.; Hong, F.; Leung, H.; Peng, X.Y. A Fusion Method of Optical Image and SAR Image Based on Dense-UGAN and

Gram–Schmidt Transformation. Remote Sens. 2021, 13, 4274. [CrossRef]
22. Li, D.H.; Liu, J.; Liu, F.; Zhang, W.H.; Zhang, A.D.; Gao, W.F.; Shi, J. A Dual-fusion Semantic Segmentation Framework with GAN

For SAR Images. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala
Lumpur, Malaysia, 17–22 July 2022.

23. Ma, C.H.; Gao, H.C. A GAN based method for SAR and optical images fusion. In Proceedings of the Seventh Asia Pacific
Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing
(APCOM and YSAOM 2021), Shanghai, China, 28–31 October 2022.

https://github.com/mmic-lcl/Datasets-and-benchmark-code
https://doi.org/10.3390/rs14040870
https://doi.org/10.1109/LGRS.2021.3119875
https://doi.org/10.1109/TUFFC.2021.3118380
https://www.ncbi.nlm.nih.gov/pubmed/34623264
https://doi.org/10.1088/1742-6596/2146/1/012025
https://doi.org/10.1007/s11220-021-00330-w
https://doi.org/10.1007/s00542-022-05315-7
https://doi.org/10.12733/jics20104945
https://doi.org/10.1142/S0219691318500376
https://doi.org/10.1109/JSTARS.2021.3126839
https://doi.org/10.1016/j.bspc.2021.103140
https://doi.org/10.1109/JSEN.2023.3325364
https://doi.org/10.1016/j.inffus.2024.102230
https://doi.org/10.1109/ACCESS.2024.3364050
https://doi.org/10.1117/1.JEI.32.6.063005
https://doi.org/10.3390/rs15123091
https://doi.org/10.3390/rs13214274


Electronics 2024, 13, 2365 18 of 18

24. Liang, J.Y.; Cao, J.Z.; Sun, G.L.; Zhang, K.; Van Gool, L.; Timofte, R. SwinIR: Image Restoration Using Swin Transformer. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada,
11–17 October 2021.

25. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.

26. Wu, Z.; Liu, Z.; Lin, J.; Lin, Y.; Han, S. Lite Transformer with Long-Short Range Attention. arXiv 2020, arXiv:2004.11886. [CrossRef]
27. Li, B.; Hu, Y.H.; Nie, X.C.; Han, C.Y.; Jiang, X.J.; Guo, T.D.; Liu, L.Q. DropKey for Vision Transformer. In Proceedings of the 2023

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–20 June 2023.
28. Liu, Y.; Chen, X.; Peng, H.; Wang, Z.F. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017, 36,

191–207. [CrossRef]
29. Li, H.; Wu, X.J.; Kittler, J. Infrared and Visible Image Fusion using a Deep Learning Framework. In Proceedings of the 24th

International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018.
30. Liu, Y.; Chen, X.; Cheng, J.; Peng, H.; Wang, Z.F. Infrared and visible image fusion with convolutional neural networks. Int. J.

Wavelets Multiresolut. Inf. Process. 2018, 16, 1. [CrossRef]
31. Di, J.; Ren, L.; Liu, J.Z.; Guo, W.Q.; Zhang, H.K.; Liu, Q.D.; Lian, J. FDNet: An end-to-end fusion decomposition network for

infrared and visible images. PLoS ONE 2023, 18, e0290231. [CrossRef]
32. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European

Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018.
33. Bai, Z.X.; Zhu, R.G.; He, D.Y.; Wang, S.C.; Huang, Z.T. Adulteration Detection of Pork in Mutton Using Smart Phone with the

CBAM-Invert-ResNet and Multiple Parts Feature Fusion. Foods 2023, 12, 3594. [CrossRef] [PubMed]
34. Wang, S.H.; Fernandes, S.; Zhu, Z.Q.; Zhang, Y.D. AVNC: Attention-based VGG-style network for COVID-19 diagnosis by CBAM.

IEEE Sens. J. 2021, 22, 1. [CrossRef] [PubMed]
35. Jia, J.H.; Qin, L.L.; Lei, R.F. Im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention

Mechanisms for Identifying 5-methylcytosine Sites in Human RNA. Front. Biosci. 2023, 28, 346. [CrossRef] [PubMed]
36. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is all You Need.

arXiv 2017, arXiv:1706.03762. [CrossRef]
37. Wang, W.H.; Xie, E.Z.; Li, X.; Fan, D.P.; Song, K.T.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile

Backbone for Dense Prediction without Convolutions. In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021.

38. Zamir, S.W.; Arora, A.; Khan, S.; Hayat, M.; Khan, F.S.; Yang, M.H. Restormer: Efficient Transformer for High-Resolution Image
Restoration. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New
Orleans, LA, USA, 18–24 June 2022.

39. Zhao, Z.X.; Bai, H.W.; Zhang, J.S.; Zhang, Y.L.; Xu, S.; Lin, Z.D.; Timofte, R.; Van Gool, L. CDDFuse: Correlation-Driven
Dual-Branch Feature Decomposition for Multi-Modality Image Fusion. In Proceedings of the 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023.

40. Wang, C.; Ruan, R.; Zhao, Z.C.; Li, C.L.; Tang, J. Category-oriented Localization Distillation for SAR Object Detection and A
Unified Benchmark. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1. [CrossRef]

41. Schmitt, M.; Hughes, L.H.; Zhu, X.X. The SEN1–2 dataset for deep learning in SAR-optical data fusion. arXiv 2018,
arXiv:1807.01569. [CrossRef]

42. Zhang, X.; Ye, P.; Xiao, G. VIFB: A Visible and Infrared Image Fusion Benchmark. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; Shanghai Jiao Tong University, School
of Aeronautics and Astronautics: Shanghai, China, 2020.

43. Li, H.; Wu, X.J. DenseFuse: A Fusion Approach to Infrared and Visible Images. IEEE Trans. Image Process. 2019, 28, 2614–2623.
[CrossRef] [PubMed]

44. Li, H.; Wu, X.J.; Kittler, J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images. Inf. Fusion 2021, 73,
72–86. [CrossRef]

45. Tang, L.F.; Yuan, J.T.; Ma, J.Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible
image fusion network. Inf. Fusion 2022, 82, 28–42. [CrossRef]

46. Wang, Z.S.; Chen, Y.L.; Shao, W.Y.; Li, H.; Zhang, L. SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and
Visible Images. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [CrossRef]

47. Tang, W.; He, F.Z.; Liu, Y. YDTR: Infrared and Visible Image Fusion via Y-Shape Dynamic Transformer. IEEE Trans. Multimed.
2023, 25, 5413–5428. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.2004.11886
https://doi.org/10.1016/j.inffus.2016.12.001
https://doi.org/10.1142/S0219691318500182
https://doi.org/10.1371/journal.pone.0290231
https://doi.org/10.3390/foods12193594
https://www.ncbi.nlm.nih.gov/pubmed/37835247
https://doi.org/10.1109/JSEN.2021.3062442
https://www.ncbi.nlm.nih.gov/pubmed/36346097
https://doi.org/10.31083/j.fbl2812346
https://www.ncbi.nlm.nih.gov/pubmed/38179749
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/TGRS.2023.3291356
https://doi.org/10.5194/isprs-annals-IV-1-141-2018
https://doi.org/10.1109/TIP.2018.2887342
https://www.ncbi.nlm.nih.gov/pubmed/30575534
https://doi.org/10.1016/j.inffus.2021.02.023
https://doi.org/10.1016/j.inffus.2021.12.004
https://doi.org/10.1109/TIM.2022.3191664
https://doi.org/10.1109/TMM.2022.3192661

	Introduction 
	Related Work 
	CNN 
	Attention Mechanism 
	Transformer and Its Variants 
	Regularization Method 

	Framework and Methodology 
	Encoder 
	Fusion Strategy 
	Decoder 
	Loss Function 
	Training Stage 1 
	Training Stage 2 


	Experimental Setup and Result Analysis 
	Dataset Introduction 
	Evaluation Metrics 
	Experimental Setup 
	Comparison with SOTA Methods 
	Qualitative Comparison 
	Quantitative Comparison 

	Ablation Studies 

	Conclusions 
	References

