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Abstract: The underground cable conduit system, a vital component of urban power transmission
and distribution infrastructure, faces challenges in maintenance and residue detection. Traditional
detection methods, such as Closed-Circuit Television (CCTV), rely heavily on the expertise and prior
experience of professional inspectors, leading to time-consuming and subjective results acquisition.
To address these issues and automate defect detection in underground cable conduits, this paper
proposes a defect recognition algorithm based on an enhanced YOLOvV8 model. Firstly, we replace
the Spatial Pyramid Pooling (SPPF) module in the original model with the Atrous Spatial Pyramid
Pooling (ASPP) module to capture multi-scale defect features effectively. Secondly, to enhance
feature representation and reduce noise interference, we integrate the Convolutional Block Attention
Module (CBAM) into the detection head. Finally, we enhance the YOLOv8 backbone network by
replacing the C2f module with the base module of ShuffleNet V2, reducing the number of model
parameters and optimizing the model efficiency. Experimental results demonstrate the efficacy of the
proposed algorithm in recognizing pipe misalignment and residual foreign objects. The precision
and mean average precision (mAP) reach 96.2% and 97.6%, respectively, representing improvements
over the original YOLOv8 model. This study significantly improves the capability of capturing and
characterizing defect characteristics, thereby enhancing the maintenance efficiency and accuracy of
underground cable conduit systems.

Keywords: underground cable conduit; defect identification; target detection; YOLOvS8

1. Introduction

High-voltage cable conduit installation has seen widespread adoption in cable routes
due to its benefits of easy construction, cost-effectiveness, and minimal impact on subse-
quent maintenance [1,2].

However, underground cable conduits often encounter issues such as misalignment
and the accumulation of gravel and other foreign materials during construction. The
process of dragging cables during installation poses a risk to the integrity of the cable
insulation layer, potentially leading to underground accidents during grid operation. To
address these challenges, pipeline robots have been developed and deployed for defect
detection within the conduits. Currently, the prevailing method for defect detection in-
volves personnel manually inspecting pipeline interiors by capturing images with these
robots. Consequently, the automation level of defect identification remains inadequate.
There is an urgent need to develop an efficient and reliable pipeline defect identification
algorithm. Given that cable conduits are typically narrow, the hardware used for inspection
is limited in capacity. Therefore, it is crucial to optimize the algorithm model to reduce its
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complexity while maintaining high accuracy, ensuring it can be deployed effectively within
the hardware constraints.

In earlier research, some scholars employed traditional machine learning techniques,
such as those based on morphological, geometric, and surface texture features, to detect and
diagnose defects [3-5]. With the advancement of science and technology, machine learning
has profoundly influenced the fields of experimental solid mechanics and industrial surface
defect detection, driving the progress of related technologies [6,7]. However, in recent
years, rapid advancements in computer vision and artificial intelligence have led to the
emergence of deep learning-based image recognition methods, which have proven to be
potent tools for surface defect detection and improving detection processes [8].

For instance, Kumar et al. [9] utilized convolutional neural networks (CNNs) for defect
recognition in underground drainage pipes, achieving an average testing precision of 86.2%.
Qi Li et al. [10] employed a CNN with variously sized convolutional kernels and pooling
layers to classify and recognize a two-dimensional matrix converted from a time series,
achieving a precision of 98.67%.

Among the plethora of target detection algorithms, the YOLO series of single-stage
detection models has shown promising results in defect detection [11-13]. Lv et al. [14]
reduced the model size of YOLOV? by replacing conventional convolutional blocks with
lightweight modules and added attention mechanisms and SPD convolutional modules,
demonstrating high performance in strip steel surface defect detection tasks. Xu et al. [15]
enhanced YOLOV5 by integrating attention mechanisms, loss functions, and activation
functions to improve small target detection, achieving a recognition precision of 92.2% for
welding defects inside pipelines, which is 9% higher than the original model. Additionally,
Yin et al. [16] proposed the VIASP defect identification algorithm based on the YOLOV3
algorithm, which can extract key information from the video to achieve automatic defect
marking and output an evaluation report.

Compared to other target detection algorithms, YOLOvS8 showcases exceptional detec-
tion performance and robust generalization capabilities. These attributes render it highly
suitable for tackling intricate defect detection scenarios encountered in underground cable
conduits. Several scholars have enhanced the performance of YOLOVS across various tasks
by modifying modules and refining the structure [17-19].

In this study, we propose a defect recognition algorithm tailored for real-world under-
ground cable conduit scenarios based on an improved YOLOv8 model. This paper further
enhances the backbone network and detection head components from the original model.
The constructed cable conduit dataset is utilized for both training and testing purposes.
Experimental results demonstrate the model’s effectiveness in detecting misalignment
and foreign object defects in cable conduits. The main improvements are summarized
as follows:

(1) Underground cable conduits exhibit large-scale differences in defects. To address
this, we employ the Atrous Spatial Pyramid Pooling (ASPP) module to replace the
original Spatial Pyramid Pooling (SPPF) module. This strengthens the model’s ability
to extract features across different scales, thereby improving its capability of detecting
multi-scale targets.

(2) Given the low-light conditions during video acquisition in underground cable con-
duits and the high noise levels in collected data due to the narrow and unstable
environment, we incorporate the Convolutional Block Attention Module (CBAM)
mechanism. This mechanism mitigates noise interference, enabling the model to focus
more on key pipeline defect areas, thereby enhancing feature extraction and learning
capabilities.

(3) To mitigate the increase in model parameters resulting from the aforementioned
enhancements and facilitate easier deployment, we replace the C2f module in the
backbone network with the basic module of ShuffleNet V2. This reduction in model
parameters does not significantly impact detection precision, making the model easier
to deploy.
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2. Related Work
2.1. YOLOu8 Algorithm

As part of the YOLO series [20], the YOLOVS target detection network enhances
accuracy, efficiency, and robustness compared to its predecessors. The YOLOvS8 network
architecture comprises four components: the Input layer (Input), the Backbone network
(Backbone), the feature fusion layer (Neck), and the Detection layer (Head) [21].

The Input layer preprocesses the image, ensuring it matches the input layer dimen-
sions of the model by adjusting it to a fixed size. The Backbone network is tasked with
extracting semantic and spatial information features from the input image, forwarding
these features to the subsequent detection head for target detection. The feature fusion
layer incorporates the C2f module, the upsample layer, and the Concat module, which
fuses feature maps of different scales to form a better feature representation to improve the
performance of the model. In the Detection layer, the Decoupled Head structure (Decou-
Head) separates classification and detection tasks, employing distinct loss functions tailored
to each task. Additionally, Anchor-Free techniques are utilized in the sample matching
process, eliminating the need for anchor boxes to determine positive and negative samples
more efficiently, thus enhancing model detection speed.

2.2. Improve YOLOv8 Network Model Construction

In order to effectively extract features from defects of varying scales within the complex
underground cable piping system, this paper employs a hollow-space convolutional pooled
pyramid. This approach expands the receptive field to capture multi-scale features more
comprehensively, leveraging global information to enhance model accuracy with only a
marginal increase in computational overhead.

Additionally, the CBAM attention mechanism is integrated into the detection head to
enhance feature extraction from both channel and spatial dimensions, mitigating external
noise interference and improving model generalization.

To enable real-time and accurate identification of cable conduit obstacles for timely
cleanup by relevant authorities, it is imperative to reduce model complexity and compu-
tational overhead during runtime. The YOLOv8 model’s introduction of the C2f mod-
ule, along with the incorporation of ASPP and CBAM attention mechanisms, inevitably
increases computational demands. Thus, this paper proposes enhancing the YOLOvS8
backbone network by adopting base modules from the ShuffleNet V2 [22] architecture to
reduce model parameters and expedite recognition.

Subsequent subsections in this section will delve into the working principles and
technical intricacies of each module. The structure of the improved model network is
illustrated in Figure 1.

2.2.1. Atrous Spatial Pyramid Pooling

The Atrous Spatial Pyramid Pooling (ASPP) module, originally designed for image
semantic segmentation tasks, is employed in this paper to enhance the target detection
capabilities by replacing the Spatial Pyramid Pooling (SPP) module in YOLOvVS. Unlike
traditional pooling operations, ASPP increases the receptive field without downsample,
thereby effectively improving the model’s ability to detect and recognize targets.

ASPP conducts multi-scale convolutional operations on input feature maps using con-
volution kernels with varying dilation rates, merging information from different scales. This
approach enhances the network’s capacity to perceive targets and comprehend semantics,
thereby improving the model’s ability to detect targets across various scales.

The decision to replace the SPP module with ASPP in YOLOVS is primarily motivated
by ASPP’s advantage in capturing multi-scale information, which aligns well with the
complex scenarios encountered in underground cable conduit defects. This adaptability
ensures improved accuracy and robustness in detecting targets of different scales.

The ASPP module, illustrated in Figure 2, initiates by applying multi-scale atrous
convolution to the input feature map. By defining different dilation rates “R”, it facilitates
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free multi-scale feature extraction, enabling the model to concurrently consider both small-
and large-scale characteristics. Subsequently, a global pooling operation is executed on the
input feature map to capture its global information. Following the acquisition of features
at each scale, a concatenation (Concat) operation is performed on them along the channel
dimension to generate a more comprehensive feature representation. To diminish feature
dimensionality and reduce computational load, a pointwise convolution is employed to
conduct dimensionality reduction on the merged features, ultimately yielding the final
feature map.

Figure 1. The model architecture after improvement in this paper.

Input
I
A A \ i y y
Convlx1 Conv3x3 Conv3x3 Conv3x3 AvgPool
’ R= R=12 R=18 !
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1
Upsample
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Y
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Figure 2. Detailed overview of the ASPP (Atrous Spatial Pyramid Pooling) architecture.



Electronics 2024, 13, 2427

50f 16

2.2.2. Convolutional Block Attention Module

CBAM (Convolutional Block Attention Module) is a convolutional neural network
attention mechanism that integrates both channel attention and spatial attention. This
module dynamically learns channel and spatial information within input feature maps to
enhance network performance. Compared to other attention mechanisms, CBAM often
yields superior results. The realization flow of CBAM is illustrated in Figure 3.

Channel
Attention
Module

Spatial
Attentio
Module

Input Feature Refined Feature

Figure 3. Schematic diagram of CBAM attention mechanism.

The CBAM process can be delineated into two primary steps, as shown in Figure 3.
Firstly, in the channel attention module, the input feature map undergoes global average
pooling along the channel dimension. Subsequently, it passes through two fully connected
layers to discern the correlation and significance between channels individually. Secondly,
in the spatial attention module, the input feature map undergoes max-pooling along the
channel dimension. This is followed by processing through two convolutional layers to as-
certain the importance of different spatial positions within the feature map. Ultimately, the
attention weights derived from both the channel attention module and the spatial attention
module are applied to the input feature map separately. The final feature representation is
then obtained through fusion via element-wise multiplication.

The channel attention module can be expressed as

M.(F) = 6(MLP(AvgPool(F))+ MLO(MaxPool(F))) 1)
= (W1 (Wo(Fiog)) + W1 (Wo(Frax)))

where o represents the activation function, F is the feature map, Wy and W; represent
two convolution operations, and Fj,, and F;,, represent average pooling and maximum
pooling, respectively.

The spatial attention module can be written as

M;(F) = 8(F”*7([AvgPool (F); MaxPool (F)])) )
S(F77([Faogs Fnax]))

vg’ * max

where F/*7 represents the convolution operation with a convolution kernel size of 7 x 7.

Ultimately, the outputs of the channel attention module and the spatial attention
module are multiplied to yield a weighted feature map, as depicted in Equation (3). This
operation enables the network to prioritize essential channels and regions more effectively,
enhancing its focus on critical aspects of the data.

F'=M/(F)®F 3)
F// — MS(P/) ®FI

where F' and F” represent the output feature maps after channel attention and spatial
attention, respectively, and ® represents element-wise multiplication.

This paper introduces the CBAM attention mechanism into the detection head to
enhance the model’s capability to discern and localize defects within underground cable
conduits. By incorporating this mechanism, the model can concentrate more effectively on
the defect area, thereby enhancing sensitivity in detecting small defects. Additionally, it
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helps to suppress background noise and decrease the false detection rate, leading to reliable
and stable defect recognition in the intricate underground cable conduit environment.

2.2.3. ShuffleNet

To achieve model lightweighting, this paper replaces the C2f module in the YOLOVS8
backbone network with the base module from ShuffleNet V2. ShuffleNet V2 is a spe-
cialized convolutional neural network architecture crafted for efficient computation and
compression of model parameters. Its fundamental concept revolves around reducing
computational complexity and model size by leveraging depth-separable convolution and
channel blending techniques.

Depth-separable convolution decomposes the convolution operation into two sequen-
tial steps: depth convolution and pointwise convolution. This decomposition significantly
reduces the number of parameters and computational costs involved. Conversely, channel
blending enhances the model’s expressive power and performance by grouping input
channels and recombining them after convolution within the group. This process facilitates
cross-channel information exchange and feature reorganization, contributing to improved
model performance.

These design principles enable the model to maintain high accuracy while exhibiting
a smaller model size and faster inference speed. This characteristic makes ShuffleNet V2
suitable for resource-constrained environments and mobile deployments.

The basic module of ShuffleNet V2, illustrated in Figure 4a, comprises two branches.
In the left branch, a 3 x 3 depth convolution operation is performed, followed by a
1 x 1 point convolution operation on the input feature map. Conversely, the right branch
conducts a depth convolution operation, along with two 1 x 1 point convolution operations.
Subsequently, a concatenation (Concat) operation is conducted with the left branch in the
channel dimension, followed by group convolution with channel shuffling.

Channels
- >
Conv wput [
l Convl
(_jon_v Feature | | | |
Oy o
k=1,5=1 Conyal —————— 1 |_ _Shuffle
Concat Output | | | |
v
Channel
Shuffle
(a) (b)

Figure 4. The ShuffleNet V2 and channel shuffle schematic diagram. (a) Basic module; (b) chan-
nel shuffle.

The feature matrix, subsequent to the group convolution of the input feature map,
undergoes further disruption and division. The resultant feature map obtained through
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channel shuffling effectively integrates information across different channels, as illustrated
in Figure 4b.

3. Experimentation and Analysis
3.1. Data Collection

The cable conduit dataset utilized in this study originates from a test site constructed
specifically for this purpose. The cable discharge pipes are fabricated from fiberglass
material, featuring three distinct inner diameter specifications: 175 mm, 225 mm, and
250 mm. This variety aligns with real-world engineering application scenarios. Various
misalignment conditions, foreign body positions, and light intensities were simulated
during the placement process, ensuring that the ratio of misalignment images to foreign
body images remained balanced. In total, 510 images were collected for the dataset.

3.2. Dataset Construction

Considering the limited quantity of original data collected and aiming to bolster the
robustness of the enhancement algorithm, image enhancement techniques are applied to
the original dataset.

The data augmentation process includes several techniques applied with specific
probabilities: vertical and horizontal flipping occurs with a 50% probability; brightness
adjustment randomly varies between 80% and 120% with a 70% probability; random
grid rearrangement divides the image into 3 x 3 grids and rearranges them with a 30%
probability; color jittering adjusts contrast and saturation between 80% and 120% with
a 20% probability; and piecewise affine transformation distorts the image with a 10%
probability, mimicking real-world image distortions encountered in practice, and the cable
conduit dataset is expanded to encompass 1145 images. The techniques employed in the
data enhancement process are uniformly applied to all images, ensuring no particular
bias towards any specific type of defect image. Consequently, the proportion of foreign
matter and misalignment defects remains approximately equal in the enhanced dataset.
The efficacy of these data enhancement techniques is illustrated in Figure 5.

Oricinal Fi Vertical Segmented
rfiginal rigure Flip Affine Transform
-
_ Horizontal Randomized Grid Random
Color Jitter Flip Rearrangement Masking

Figure 5. Data augmentation.

The enhanced dataset is annotated using the Labellmg image annotation software.
For each annotated image, a corresponding text file is generated, containing information
about the types of targets present in the image along with their bounding box positions
and sizes. A total of 1912 valid object labels are obtained through annotation, comprising
724 contaminant labels and 1188 misalignment labels.
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The labeled images are then randomly divided into training and validation sets at a
ratio of 9:1 for model training and validation purposes. Additionally, a separate test set
comprising 80 unlabeled images is collected. Together, these datasets constitute the cable
discharge pipe defect recognition dataset, as outlined in Table 1.

Table 1. Cable conduit defect identification data set.

Contains Tags

Dataset Number of Images
Contaminants Misalignment
Training set 1030 650 1072
Validation set 115 74 116
Test set 80 - -

3.3. Experimental Deployment Environment

The model utilized in this paper is built upon the PyTorch deep learning framework.
The hardware and software environments for conducting the experiments are as follows:
Windows 10 operating system, 13th Gen Intel(R) Core(TM) i5-13600KF @3.5GHz CPU, RTX
4070 12G GPU, PyTorch version 2.1.2, and CUDA version 11.8.

3.4. Evaluation Metrics

To quantitatively assess the model’s performance in this paper, three common target
detection evaluation metrics, precision, recall, and mean average precision (mAP), are
employed.

As illustrated in Figure 6, true positive (TP) represents the number of samples pre-
dicted to be positive cases that are indeed positive cases; false positive (FP) denotes the
number of samples predicted to be positive cases that are, in reality, negative cases; true
negative (TN) signifies the number of samples predicted to be negative cases that are
indeed negative cases; and false negative (FN) indicates the number of samples predicted
as negative cases that are, in fact, positive cases.

True label

True False
.g True False
< || Positive | Positive
= |2 (TP) (FP)
S
g 2| True False
A §0 Negative | Negative
z| (TN) (FN)

Figure 6. Evaluation index confusion matrix.

Precision, denoted as the ratio of correct predictions to all positive detections, including
false positives (FPs) and true positives (TPs), serves as a measure of the model’s precision
in the detection task, as depicted in Equation (4).
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TP
TP+ FP
Recall, defined as the ratio of correct predictions to all samples, quantifies the model’s
capability to identify all actual defect samples, reflecting its ability to detect real defects
accurately. A higher recall rate signifies greater search comprehensiveness of the model.
The calculation is as follows:

(4)

Precision =

TP
TP+ FN
The mAP is calculated by the precision and recall rate, as shown in Equations (6) and

@).

Recall = 5)

1

AP = [ P(r)dr (6)
/
L AP(i)
mAP :’:1T 7)

Among them, P(r) is the precision, and # is the number of target types.

3.5. Model Training and Prediction

Once the platform construction and organization of the cable discharge pipe defect
dataset were completed, formal model training commenced. Considering the computa-
tional platform’s capabilities, the training iteration was set to 200 times. Following training,
the model’s performance was evaluated by processing and predicting the test set. Through-
out the training process, the loss value exhibited a consistent decrease with increasing
iterations. Convergence was determined when the validation loss value ceased to decrease,
as depicted in Figure 7. The performance of the model is more comprehensively evaluated
through the P-R curve and confusion matrix, as shown in Figures 8 and 9. The Precision—
Recall (P-R) diagram is used to illustrate and assess the trade-off between the precision and
recall of the model at various thresholds, effectively reflecting the model’s performance
across different confidence levels. The confusion matrix provides a detailed evaluation of
the model’s classification performance by analyzing specific misclassifications using four
indicators: true positive, true negative, false positive, and false negative.

0.4 —Train Loss

—Val Loss

Loss

0.1 :
0 20 40 60 80 100 120 140 160 180 200

epochs

Figure 7. Loss value change curve during training process.
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Precision-Recall Curve
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Figure 8. P-R curve of the improved YOLOVS.
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Figure 9. Confusion matrix of the improved YOLOVS.

The loss value curve depicted in Figure 7 illustrates a rapid decline in the model’s
loss value within the initial 40 epochs, followed by stabilization after 190 epochs. This
smooth decrease in the overall loss value curve indicates the model’s strong convergence
performance. As shown in Figures 8 and 9, the improved model demonstrates excellent
performance in detecting misalignments and contaminants in cable conduits.

Furthermore, Figure 10 visualizes the prediction results of different models on various
test sets. Marked sections in the figure indicate defect category, defect location, and
prediction confidence. Defect locations are outlined with boxes of varying colors, followed
by their categorization and corresponding confidence levels. These results highlight the
improved model’s superior overall prediction efficacy.

3.6. Ablation Experiment Analysis

In this study, enhancements are made to both the backbone network and the detection
head component of the original model. To validate the effectiveness of these improvements,
ablation experiments are conducted on the three enhancement schemes proposed in this
paper. The experimental results detailing the impact of different enhancement strategies on
the model’s performance are presented in Table 2.
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misglignment 0.8/

misalignment 0.91

misalignment 0.92

misalignment 0.86

misalignment 0.92

misalignment 0.965%

misalignment 0.96

Figure 10. Detection visualization results on the cable conduit dataset: (a) Faster R-CNN; (b) YOLOV5;
(c) YOLOVS; (d) Improved YOLOVS.
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Table 2. Comparative results of ablation experiments.

Average Mean Average .
Model Precisiong(AP) Precision (M1§P) Model Size/MB
YOLOvVS8 0.931 0.943 6.37
YOLOvVS8 + ASPP 0.946 0.954 7.21
YOLOVS + ShuffleNet 0.930 0.941 4.89
YOLOv8 + CBAM 0.942 0.947 6.41
Improved YOLOvV8 0.962 0.976 5.87

As shown in Table 2, the incorporation of the ASPP in the YOLOvV8 model leads to
an increase in mean average precision by 1.1%, 1.3%, and 0.7% compared to the original
model, YOLOv8-Shuffle, and YOLOv8-CBAM, respectively. This enhancement underscores
the efficacy of the hollow-space convolutional pooling pyramid in augmenting the model’s
feature extraction capacity for multi-scale targets, thereby improving defect detection
performance. Furthermore, the integration of the CBAM attention mechanism into the
detection head enhances the model’s ability to discern defects within the pipeline by
effectively suppressing noise and irrelevant environmental information. Simultaneously,
the adoption of lightweighting techniques in the backbone network, specifically replacing
C2f with the Shuffle V2 base module, resulted in a significant reduction in model size,
indicating the practicality of such modifications and facilitating easier deployment of the
model. By implementing these three improvements concurrently, the model’s performance
surpasses that of the original model across all metrics, achieving the highest mean average
precision of 97.6%.

These experimental findings underscore the effectiveness of the enhanced under-
ground cable conduit defect detection algorithm, offering substantial advancements in
detection capabilities. This provides robust support for the realization of more accurate
and efficient cable conduit inspections.

3.7. Comparisons of Different Attention Mechanism Modules

In order to explore which attention mechanism can provide the best detection perfor-
mance in this study, we used YOLOVS as the benchmark network and inserted SE, CA, and
CBAM attention mechanism modules in the same location for comparison. The detection
results of each module on the cable conduit defect dataset are presented in Table 3. The
comparison results indicate that the detection network incorporating the CBAM module
exhibits the highest performance in identifying cable conduit defects, achieving an AP
value of 94.2%. The network using the CA module shows moderate overall performance
in defect detection, though it increases the number of model parameters. The network
utilizing the SE module displays minimal improvement in detection performance com-
pared to the original YOLOvVS. This clearly demonstrates that integrating the attention
mechanism module into the YOLOv8 network is an effective solution for defect detection.
This is because SE focuses solely on the channel dimension’s attention and lacks spatial di-
mension feature information. The CA attention mechanism calculates the attention weight
across the entire feature map, resulting in significant computational overhead. In contrast,
the CBAM attention mechanism enhances the model’s ability to capture crucial features
by simultaneously modeling channel and spatial attention. This approach maintains the
integrity of the feature map’s positional and spatial information while effectively capturing
the positional information of defect features. Consequently, CBAM enables the model to
accurately identify defects such as dislocations and foreign objects in the cable conduit,
thereby enhancing overall performance.
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Table 3. Comparison of detection effects of different attention mechanism modules.

Average Mean Average .
Model Precision (AP) Precision (MAP) Model Size/MB
YOLOvVS8 0.931 0.943 6.37
YOLOVS + SE 0.934 0.944 6.49
YOLOvVS8 + CA 0.936 0.945 7.02
YOLOv8 + CBAM 0.942 0.947 6.41

3.8. Comparison of Detection Capabilities of Different Models

To further validate the superiority of our model, this paper trained and compared
the cable conduit defect dataset using the traditional convolutional neural network (Fast
R-CNN) algorithm, the YOLOV5 algorithm, and the original YOLOVS algorithm. The
comparative evaluation primarily includes average precision (AP), mean average precision
(mAP), and model inference speed (FPS), as presented in Table 4.

Table 4. Different detection model results.

Average Mean Average
Model Precision (AP) Precision (MAP) FPS
Faster R-CNN 0.823 0.833 143.6
YOLOv5 0.935 0.942 160.5
YOLOv8 0.951 0.965 165.5
Improved YOLOvV8 0.962 0.976 167.5

Analysis of the results reveals that our improved model surpasses the original models
of Faster R-CNN, YOLOvV5, and YOLOvVS in both AP and mAP metrics while also exhibit-
ing higher FPS, enabling efficient completion of the recognition task. In conclusion, our
enhanced model proves to be highly effective and outperforms the other three algorithm
recognition models in identifying defects in cable conduits.

4. Conclusions

Timely detection of recently installed cable conduits is crucial to prevent misalignment
and the accumulation of foreign matter, which can lead to cable breakage and subsequent
safety hazards.

Traditional detection methods reliant on manual image inspection are inefficient and
prone to subjective interpretation; hence, this paper proposes an enhanced algorithm
utilizing YOLOVS for identifying defects in underground cable conduits. The algorithm
integrates three key improvements: the ASPP convolution pyramid, the CBAM attention
mechanism, and the Shuffle-Net lightweight module to train the model for automated
defect detection in urban cable infrastructure. Experimental results demonstrate the efficacy
of the proposed model, achieving a mean average precision of 97.6% on the dataset utilized.

The model’s ability to perform real-time video detection facilitates its practical appli-
cation in real-world scenarios, offering efficient and precise identification and localization
of pipeline defects without relying on manual labor. Nonetheless, the limited scope of the
dataset used in this study highlights the need for future research to expand and enhance
both the quality and quantity of data, thereby improving the model’s generalizability.
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