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Abstract: In the field of object detection, the adversarial attack method based on generative adver-
sarial network efficiently generates adversarial examples, thereby significantly reducing time costs.
However, this approach overlooks the imperceptibility of perturbations in adversarial examples, re-
sulting in poor visual performance and insufficient invisibility of the generated adversarial examples.
To further enhance the imperceptibility of perturbations in adversarial examples, a method utilizing
median filtering is proposed to address these generated perturbations. Experimental evaluations
were conducted on the Pascal VOC dataset. The results demonstrate that, compared to the original
image, there is an increase of at least 17.2% in the structural similarity index (SSIM) for generated
adversarial examples. Additionally, the peak signal-to-noise ratio (PSNR) increases by at least 27.5%,
while learned perceptual image patch similarity (LPIPS) decreases by at least 84.6%. These find-
ings indicate that the perturbations in generated adversarial examples are more difficult to detect,
with significantly improved imperceptibility and closer resemblance to the original image without
compromising their high aggressiveness.

Keywords: generative adversarial network; adversarial examples; imperceptibility; median filtering

1. Introduction

Since the emergence of deep learning, it has undergone rapid development and
demonstrated significant potential for application in various fields, including large lan-
guage models for natural language processing [1–3] and computer vision. In particular,
remarkable achievements have been made in tasks such as image classification [4], object
detection [5], and semantic segmentation [6]. Deep neural networks (DNNs) are the foun-
dation of deep learning and have become an integral part of these fields. However, the
inherent fragility of deep learning means that DNN may produce wrong recognition results
with high confidence when facing adversarial examples [7]. Adversarial examples are
images formed by adding small perturbations generated in a specific way to the original
image [8]. Although such perturbations are small, they are enough to bias the judgment of
DNN, thus posing a serious challenge to the security of DNN.

As one of the classic core tasks in the field of computer vision, object detection has a de-
cisive impact on the performance of many computer vision tasks and their applications [9].
Compared with the early object detection technology based on hand-designed features,
object detection technology based on deep learning has made more significant progress in
efficiency and accuracy [10]. However, because it is based on DNN, it is also inevitable that
the vulnerability of DNN to adversarial examples is inherited, which poses a direct threat to
the security of the object detection field. In particular, object detection technology based on
deep learning has been widely used in all fields of society, especially in key security fields
such as automatic driving [11–13], security monitoring [14] and face recognition [15,16].
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The safety of object detection technology is directly related to the reliability of the system
and social stability, as well as the safety of people’s lives.

The study of adversarial examples for object detection can not only reveal the potential
weaknesses of object detection algorithms, but is also of great significance in promoting the
development of safer and more robust object detection technology. In this research field,
most existing adversarial attack research focuses on white-box attacks. According to the gen-
eration method of adversarial perturbation, these can be divided into attack methods based
on optimization iteration and attack methods based on a generative adversarial network
(GAN) [17]. The former method is characterized by its slow speed, inefficiency, requirement
for multiple iterations, and high resource consumption in generating adversarial examples.
On the other hand, the latter method significantly reduces the time required to generate
adversarial examples by training a generator network to produce adversarial perturbations.
However, due to limitations in the structure performance and optimization method of
the generator, controlling the amplitude and area of generated adversarial perturbations
becomes challenging, resulting in numerous redundant perturbations. Consequently, these
generated adversarial examples exhibit low imperceptibility with poor visibility that can
be easily detected by human observation [18]. Therefore, enhancing the imperceptibility of
adversarial perturbations becomes crucial for making them more covert and difficult to
perceive by humans. In this paper, we propose a median-filtering-based method to smooth
out the generator-generated adversarial perturbations and improve their imperceptibility
through noise filtering. This method enhances the visual effect of adversarial examples
by making them resemble original images more closely while minimizing detectability.
It not only explores a novel approach to enhance the generation process of adversarial
examples through filtering techniques but also introduces fresh insights for adversarial
defense, fostering the continuous advancement of defensive technologies against diverse
forms of adversarial attacks.

2. Related Works
2.1. Object Detection

The object detection algorithms based on deep learning can be categorized into one-
stage and two-stage algorithms, depending on whether there is a stage for generating
region proposals. Two-stage algorithms are represented by R-CNN [19], Fast R-CNN [20],
and Faster R-CNN [21]. Figure 1 presents the basic structure of Faster R-CNN. These
algorithms include two steps of generating and filtering region proposals, and classifying
the region proposals and bounding box regression, which has high accuracy but requires
more computing resources. One-stage algorithms are represented by YOLO series [22–24]
and SSD [25], which directly predict the category and location of targets through anchor
boxes, enabling a fast detection speed but slightly lower accuracy. However, previous
algorithms relying on anchor boxes have limitations. Consequently, anchor-free algorithms
represented by CenterNet [26] and FCOS [27] have emerged to significantly improve
detection efficiency.
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2.2. Adversarial Attack Methods for Object Detection
2.2.1. Attack Methods Based on Optimization Iteration

At present, most of the adversarial attacks for object detection are based on opti-
mization iterations, which optimize the adversarial examples by designing an appropriate
loss function and using gradient propagation backwards. This process does not require
the additional training of other networks, and the method used to generate adversarial
examples is relatively simple.

In 2017, the dense adversary generation (DAG), proposed by Xie et al. [28], proved for
the first time that adversarial examples can also be applied to object detection tasks that
seriously affect the security and robustness of the object detector. DAG mainly attacks the
correctly predicted region proposals. For each region proposal, an error label different than
the true class label is randomly assigned, and the iterative attack is carried out continuously,
so that the predicted label of the object gradually deviates from the correct label, and the
iteration moves toward the direction of low class confidence, until all region proposals
are incorrectly predicted or when the set number of iterations is reached. However, DAG
consumes a lot of resources and can only be attacked against two-stage object detectors.
Robust adversarial perturbation (RAP) [29] is also an attack method for the two-stage
object detector, but it reduces the confidence of the region proposal by attacking the RPN
network so that the object detector classifies the object in the image as the background, thus
failing to identify the object. In addition, the region proposals that can still be predicted
correctly are interfered with, so that the positioning is wrong. In order to enhance the
generalization of the generated adversarial examples, a set of iterative TOG [30] attack
methods was proposed that can be applied to both one-stage and two-stage object detectors.
These methods are not designed specifically for the unique structure of each object detector,
but rather from the perspective of multi-task object detection, encompassing attacks on
object classification errors, object disappearance, and more. Various attack techniques can
generate adversarial examples for different object detectors. However, it should be noted
that the iterative generation speed of adversarial examples is relatively slow, efficiency is
comparatively low, and resource consumption is high.

2.2.2. Attack Methods Based on Generative Adversarial Network

The attack method based on optimization iteration is characterized by slow speed,
relatively low efficiency, and significant resource consumption in generating adversarial
examples. To address these limitations, a real-time adversarial example generation method
based on the generative adversarial network (GAN) was proposed. The specific process is
illustrated in Figure 2. The essence of the GAN-based attack method lies in learning the
distribution of adversarial noise and utilizing the generator to directly generate such noise.
Once the generator is trained stably, the distribution of the generated adversarial examples
can be aligned more closely with that of the original image, thereby enabling the acquisition
of higher-quality adversarial examples [31]. Additionally, due to solely requiring forward
propagation for generating corresponding noise from an image, the generation speed is
enhanced, and efficiency is improved.
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The unified and efficient adversary (UEA) proposed by Wei et al. [32] introduces an
attack method capable of targeting both one-stage and two-stage object detection algorithms.
To train the generator in generating adversarial examples, a composite loss function is
devised, combining GAN loss with high-level classification loss, low-level feature loss,
and multi-scale attention feature loss. In terms of the time to generate a single adversarial
example, the generation speed of UEA is 930 times that of DAG, and it has good transfer.
Fast attack (FA), proposed by Li et al. [33], is also based on GAN, combining GAN loss
with classification and position loss to rapidly generate adversarial examples. Furthermore,
Deng et al. combined style transfer with GAN to design an attack algorithm that enhances
the aggressiveness and transferability of adversarial examples through the application of
style transfer techniques [34].

However, limited by the structure performance and optimization method of the
generator network, compared with the original image, the adversarial examples generated
by the GAN method have obvious noise, and the visual effect of the adversarial examples
is still not ideal. The adversarial examples generated by the three methods are shown in
Figure 3. It can be seen that the imperceptibility of the perturbation of adversarial examples
is very low, which affects subjective visual perception, and they are easily distinguished by
the naked eye.
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3. Method
3.1. Improvements Based on Median Filtering
3.1.1. Median Filtering

The adversarial examples generated based on the generative adversarial network do
not limit the amplitude and area of the perturbation well; therefore, the perturbation is
too large and there is obvious red noise. Red noise is the pixel in the image with dramatic
intensity changes, which belongs to high-frequency noise. This makes adversarial examples
easily recognizable by human eyes. In order to further improve the imperceptibility of
adversarial example perturbations, this paper introduced median filtering to process the
adversarial perturbations generated by the generator. The attack effect of low-frequency
perturbations on the model has been demonstrated to surpass that of high-frequency
perturbations in certain studies [35]. By filtering out high-frequency information from
adversarial examples, their attack capability can still be maintained while enhancing their
robustness [36].

The median filter is a widely used image-processing technique that belongs to the
category of nonlinear filters. It achieves image smoothing by calculating the median value
within a sliding window centered at each pixel position. By effectively eliminating high-
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frequency noise, such as isolated bright and dark points, this method preserves edge
information while minimizing significant blurring. For a given position (x, y) in the image,
the intensity of the pixel after median filtering can be expressed as follows:

I(x, y) = median(I(x′, y′)), (1)

The coordinates (x′, y′) represent the pixel locations in the domain, and median refers to
selecting the output pixel value as the median number after sorting all pixels in the filter
by size. By applying median filtering, high-frequency components of the image can be
eliminated while concentrating perturbations on low-frequency components. This reduces
sensitivity of human visual perception to image changes, thereby enhancing subjective visual
effects of adversarial examples and improving imperceptibility of adversarial perturbations.

3.1.2. Network Framework

The specific network framework depicted in Figure 4 enhances the imperceptibility of
GAN-based generated adversarial perturbations through the utilization of median filtering.
The overall structure can be categorized into three components: generating adversarial
perturbations and subjecting them to median filtering, producing adversarial examples by
combining a weight mask and optimizing the generated adversarial examples.
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The first part involves generating the adversarial perturbation. GAN primarily consists
of two components: the generator (G) and discriminator (D). Initially, GAN learns the
mapping from the original image x to generate the adversarial perturbation, which is then
produced by the generator G as G(x). The high-frequency noise is filtered out, resulting in a
new adversarial perturbation denoted as G′(x). In the second part, an adversarial example
is generated, and a weight mask is obtained through feature extraction network. This
mask is multiplied with G′(x) to constrain both the range and amplitude of the adversarial
perturbation. Subsequently, it is added to the original image to form an adversarial example
x′. In the third part, these generated adversarial examples are input into both discriminator
D and the object detection model for optimization. The role of discriminator D lies in
ensuring that these generated adversarial examples resemble their corresponding original
images as closely as possible by calculating the GAN loss. Additionally, perturbation loss
is computed using the L2 distance between each adversarial example and its respective
original image to further control the size of the generated perturbations. Simultaneously,
the quality of these generated adversarial examples improves while they are fed into the
object detector to obtain the object detection results. Misclassification loss occurs when
comparing these results with real labels associated with the original images; this aids
in the improved training of adversarial examples for deceiving object detection models.
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Feature loss measures the discrepancy between the generated adversarial examples and
their corresponding original images so that the detection results deviate from the true
values, thereby enhancing aggressiveness of the adversarial example.

3.2. Loss Functions

In the improved method of perturbation imperceptibility of adversarial examples
based on median filtering, the generation of adversarial examples is controlled by the
following four loss functions, which are defined as follows:

Lloss = LGAN + aLmisclass + bLperturb + cL f eature, (2)

where, a, b and c are the weight coefficients of each loss function.
In GAN, the training of the generator is guided by measuring the probability that the

images generated by the generator are judged as real images by the discriminator, so that
the generator can be continuously improved to generate more realistic images, and the
discriminator is also prompted to improve the recognition ability of the generated images.
GAN loss is defined as follows:

LGAN(G, D) = Ex[logD(x)] + Ex[log(1 − D(G(x)))], (3)

where x is the input image, G is the generator, and D is the discriminator.
In order to be able to attack both object detectors, the loss function proposed by the

DAG method is added to achieve a better misclassification effect by assigning an error label
to each generated region proposal, which is defined as follows:

Lmisclass(G) = Ex

[
∑N

n=1[ fln(X, tn)− fl′n(X, tn)]
]
, (4)

where X is the extracted feature map, tn is the n-th region proposal obtained from RPN, ln
is the true label corresponding to tn, and l′n is the random error label fln (X, tn) represents
the classification score vector on the n-th region proposal.

At the same time, L2 distance is used to measure the difference between the original
image and the adversarial example to limit the amplitude of the perturbation, which is
defined as follows:

Lperturb(G) = Ex[∥x − G(x)∥2], (5)

In order to increase the transferability of adversarial examples, multi-scale attention
feature loss is introduced [32], and adversarial examples that are offensive to the object
detector can be generated by attacking the feature extraction network, which is defined as
follows:

L f eature(G) = Ex

[
∑M

m=1∥Wm ◦ (Xm − Ym)∥2

]
, (6)

where Xm represents the feature map extracted by the m-th layer network of the object
detector, Ym is a random predefined feature map fixed during training, Wm is the atten-
tion weight calculated based on the region proposals of the RPN, and “◦” represents the
Hadamard product between the two matrices. This feature loss makes the perturbation
more focused on the object, which can obtain better transferability.

4. Experiments
4.1. Experimental Setup
4.1.1. Datasets

In this paper, two commonly used object detection datasets, Pascal VOC and MS
COCO, were selected to verify the improvement effect of median filtering on the perturba-
tion imperceptibility of the generated adversarial examples. Pascal VOC contains 4 broad
classes called vehicles, household, animals, and person, for a total of 20 common object cat-
egories. The MS COCO dataset contains more than 300,000 images, providing 80 different
classes of objects to be detected, covering a variety of common objects in real-world scenes.



Electronics 2024, 13, 2458 7 of 14

It contains more objects per image and more small objects, and these are more complex
to identify.

4.1.2. Object Model

The object model is the model that uses adversarial examples to attack, which can also
be called the victim model. In white-box attacks, the model used to generate adversarial
examples is usually the same as the object model. We chose the representative two-stage
algorithm Faster R-CNN for the experiments and used VGG19 as the backbone network of
Faster R-CNN to extract image features. This classic network architecture has achieved good
performance in multiple image classification and object detection tasks. More specifically,
the experiments mainly train Faster R-CNN on the Pascal VOC2007 training set and test
it on the Pascal VOC2007 test set. The mAP (mean Average Precision) after training can
reach 69.21%.

4.1.3. Experiment Details

The experiment employed the PyTorch1.2.0 deep learning framework and utilized
the NVIDIA Tesla V100S 32G graphics card. However, only 16G of video memory was
allocated for computation through the application of virtualization technology during
usage. The generator and discriminator in the generative adversarial network employed in
this experiment are based on the AdvGAN [37] network architecture. The optimizer utilized
was Adam (Adaptive Moment Estimation). The initial learning rates for the generator and
discriminator were set to 0.0001 and 0.0002, respectively, with each round consisting of
20 iterations. Additionally, considering variations in image sizes, a batch size of 1 was set.

4.2. Metrics
4.2.1. Visual Quality Evaluation Metrics

In order to evaluate the improvement effect of adversarial example perturbation
imperceptibility, three metrics including structural similarity index (SSIM), peak signal-to-
noise ratio (PSNR) and learned perceptual image patch similarity (LPIPS) were used as the
standard to evaluate the visual quality of the image.

(1) SSIM

SSIM can determine the degree of visual similarity between two images, taking into
account the brightness, contrast and structural information of the images. The closer the
SSIM value of two images is to 1, the higher the similarity between them is. Conversely, the
closer they are to 0, the less similar they are;

(2) PSNR

PSNR is a sensitivity evaluation based on the error between pixels, and the larger
the value is, the smaller the distortion is. However, because it does not take into account
the human visual sensitivity to different characteristics, the evaluation results may be
inconsistent with the subjective perception of humans;

(3) LPIPS [38]

LPIPS considers that two images may be perceived as different by the human eye
even if they are very close at the pixel level; therefore, it uses a deep learning model to
extract image features and then calculates the distance between these features to evaluate
the perceptual similarity between images. Compared with PSNR and SSIM, LPIPS not only
focuses on the similarity of image content, but also pays more attention to the factors of
human eye perception, which makes it better reflect the subjective feelings of humans when
observing images. The smaller the value of LPIPS, the smaller the perceptual difference
between the images and the greater the similarity between images.
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4.2.2. Attack Evaluation Metrics

The mAP is an important measure of object detection performance and is the mean of
the average precision of all classes. It is specifically expressed as follows:

mAP =
∑n

k=1 APk

n
, (7)

where n is the number of classes and APk is the average precision of the k-th class. Therefore,
we use the degree of mAP decline after the attack to evaluate the aggressiveness of the
generated adversarial examples, that is, the attack success rate (ASR), which is defined
as follows:

ASR = 1 − mAPadv
mAPclean

(8)

where, mAPclean is the detected mAP value when the original image is input, and mAPadv
is the detected mAP value after using the adversarial example attack. ASR values range
between 0 and 1, with higher values indicating more powerful attacks.

4.3. Experiment and Result Analysis
4.3.1. Visual Perception Experiment

(1) Subjective Visual Effect
As shown in Figure 5, the first row shows the subjective visual effects of adversarial ex-

amples processed by median filter kernels of different sizes (the filter kernel sizes are 3, 5, 7,
9, and 11, respectively). It can be seen that the imperceptibility of adversarial perturbations
has been greatly improved. In order to observe and compare the details of the perturbation
more closely, the second row shows a local magnification of the corresponding image. It
can be clearly seen from the figure that, with the continuous increase of the filter kernel
size, the subjective visual effect of the adversarial example becomes better and better, and
the imperceptibility of the adversarial perturbation is gradually improved. Only with the
naked eye, the difference between the adversarial example and the original image cannot be
distinguished, and the image quality of the adversarial example is significantly improved.
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(2) Objective Evaluation Metrics
In order to further verify the improvement effect of adversarial perturbation impercep-

tibility, SSIM, PSNR and LPIPS values of the original image and the adversarial example
processed by different median filtering kernels were calculated, respectively. The results
are shown in Table 1. It can be seen from the table that with the continuous increase in the
median filter kernel size, the SSIM can reach more than 0.99, which is basically the same as
the structure of the original image. The PSNR is also higher and higher, indicating that the
image quality is becoming better and better. The value of the LPIPS is closer and closer to 0,
which means that the adversarial examples are more similar to the original image. All these
metrics show that the adversarial examples processed by median filtering and the original
image are more and more similar, and the imperceptibility of adversarial perturbations has
been significantly improved.
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Table 1. Results of visual quality evaluation metrics for adversarial examples processed with different
median filter kernels, where K represents the filter kernel size.

SSIM PSNR LPIPS

Adversarial example 0.827 29.002 0.363
K = 3 0.969 36.966 0.056
K = 5 0.982 39.748 0.024
K = 7 0.987 41.457 0.014
K = 9 0.990 42.601 0.010

K = 11 0.991 43.407 0.008

4.3.2. Comparison Experiments of Different Filters

The experiment also compared the effect of adversarial examples processed by mean
filtering, Gaussian filtering and bilateral filtering. The mean filter is a linear filter whose
output pixel value is the average of the pixels in its surrounding neighborhood. The
Gaussian filter is also a linear smoothing filter, which mainly uses a Gaussian function
to obtain a weighted average of the image to achieve the purpose of removing noise and
retaining image details. The bilateral filter is a nonlinear filter based on spatial domain and
gray domain. It takes into account the spatial distance and the similarity between pixel
values and preserves the edge information of the image while removing the noise.

The results of the adversarial examples for two images are presented in Figure 6 after
undergoing four different filtering processes with a filter kernel size of 3. To enhance
visibility of the changes in the adversarial perturbation, local content of the adversarial
examples is displayed in the image. Additionally, Table 2 lists the corresponding visual
evaluation metrics for these adversarial examples. It is evident from the graph that median
filtering renders the adversarial perturbation as more concealed and improves the visual
quality of the adversarial example, whereas perceptible perturbations still persist in the
other three filtering processes.
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Figure 6. Adversarial examples obtained from two images after four different filtering processes.

Table 2. Results of visual quality evaluation metrics for adversarial examples obtained from two
images after four different filtering processes.

Median Mean Gaussian Bilateral

Pic. 1
SSIM 0.972 0.941 0.925 0.912
PSNR 38.117 36.053 35.043 34.370
LPIPS 0.075 0.139 0.178 0.198

Pic. 2
SSIM 0.977 0.949 0.938 0.930
PSNR 35.902 34.042 33.174 32.633
LPIPS 0.047 0.117 0.156 0.173

The visual quality evaluation metric results of the adversarial examples processed by
the four filters are presented in Figure 7 as the filter kernel size continues to increase. It
is evident from the figure that median filtering yields the highest PSNR and SSIM, along
with the lowest LPIPS, indicating that it renders the corresponding adversarial example as
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more similar to the original image in terms of brightness, contrast, structure, and human
visual effect. Furthermore, to further validate median filtering’s superior effectiveness
in enhancing the imperceptibility of adversarial perturbations, these four filters were
combined pairwise for reprocessing generated adversarial perturbations at a filter kernel
size of 3. The outcomes are displayed in Table 3. Notably, combining median filtering with
other filters demonstrates better performance according to the data presented in this table.
These findings substantiate that adversarial examples processed by median filtering retain
more structural information from images and exhibit a closer resemblance to their original
counterparts visually. Conversely, employing other filters may result in greater loss of
image details. Consequently, considering subjective visual effects of adversarial examples
alongside metrics such as SSIM, PSNR and LPIPS leads us to conclude that median filtering
is more suitable for improving the imperceptibility of adversarial perturbations.
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Table 3. Comparison of results for adversarial examples processed by different combinations of filters.

SSIM PSNR LPIPS

Median + Mean 0.980 38.284 0.029
Median + Gaussian 0.979 38.068 0.034
Median + Bilateral 0.978 37.940 0.037
Mean + Gaussian 0.966 36.842 0.075
Mean + Bilateral 0.964 36.612 0.080

Gaussian + Bilateral 0.958 36.027 0.096

The ASR values of the adversarial examples processed by different median filtering
kernels are listed in Table 4. With the progressive increase in filtering kernels, there is a
decrease in ASR. However, it still maintains a high attack success rate. Furthermore, the
experiment also reveals that, for similar objective quality evaluation metrics, a single me-
dian filtering process can sustain a higher attack success rate. Additionally, the experiment
compared the AP values of the object detector for the original image, adversarial example,
and adversarial example processed with a median filter using a kernel size of 3. The results
are shown in Figure 8. It can be seen that, after applying median filter processing to the
original adversarial example, significant improvements are achieved in AP values for the
bird, cat, dog and horse classes. Consequently, the overall mAP value is improved, and the
ASR value is decreased.

In fact, the adversarial examples processed by filter kernels of different sizes all have
the problem that the AP values of these four categories change greatly before and after
filtering, which is due to the different robustness and sensitivity of the object detector to
different categories of objects. The object detector used in the experiment is more sensitive
to changes in the details of these categories. After a filtering operation to remove some
noise, the features of these categories became easier to recognize, resulting in a large
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increase in AP value. It is less sensitive to other categories, so the effect of the filtering
operation is relatively small. The AP values resulting in other categories did not change as
much as these four classes. In addition, the median filtering operation not only effectively
eliminates high-frequency noise, but also mitigates a certain amount of low-frequency
noise. The reduction in low-frequency noise has an impact on the potency of adversarial
examples, leading to a decrease in attack success rates. However, overall, adversarial
examples processed by median filtering still maintain a high attack success rate and exhibit
satisfactory visual clarity.

Table 4. Results for ASR with different median filtering kernels.

ASR

Adversarial example 0.885
K = 3 0.780
K = 5 0.764
K = 7 0.761
K = 9 0.760
K = 11 0.753
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4.3.3. Comparative Experiments on COCO Dataset

The COCO dataset was retrained to generate the object detector, and the perturbation
was also processed using the median filter. The same experiment was carried out as before,
and the results are shown in Figure 9. It can be seen that, whether it is SSIM, PSNR, or
LPIPS, the results are better on Pascal VOC dataset than on COCO dataset.

First, the image complexity differs between the two datasets. The COCO dataset
encompasses a greater number of objects and more intricate scenes compared to the VOC
dataset. Second, disparities exist in the trained models. The model trained on VOC exhibits
a higher propensity for acquiring effective features due to its relatively simplistic nature,
making it easier to handle perturbations. Conversely, the model trained on COCO may
necessitate increased complexity or robustness to achieve an equivalent level of deception
owing to the presence of more intricate data. Consequently, adversarial perturbations may
not be as readily attenuated through median filtering as that observed in VOC. Lastly,
the impact of median filtering varies while processing images with different complexities,
whereas median filtering might prove more effective in reducing noise without a significant
loss of detail in VOC’s simpler backgrounds and fewer targets, it may not yield comparable
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results within COCO’s complex scenes. This discrepancy can subsequently affect the final
visual quality evaluation metrics. All these factors contribute to the limited discernible
effect of median filtering on adversarial perturbations generated within the COCO dataset
compared to that observed within VOC.
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In general, regardless of the Pascal VOC or COCO datasets, the perturbation imper-
ceptibility of the adversarial examples processed by median filtering is still significantly
improved, and the visual effect is also better.

5. Conclusions

Aiming to address the issue of excessive perturbation and poor visual visibility in
adversarial examples generated using generative adversarial networks, this paper pro-
posed an enhanced method based on median filtering. The effects of single median filtering,
mean filtering, Gaussian filtering, bilateral filtering, and combined filtering were compared.
Initially, the adversarial perturbations produced by the generator were smoothed through
high-frequency noise filtration. Subsequently, these processed perturbations were overlain
onto the original image to generate the adversarial examples. Experimental evaluations con-
ducted on Pascal VOC and COCO datasets demonstrated that median filtering effectively
enhances imperceptibility of the adversarial perturbations while improving the subjective
visual visibility of the adversarial example. These adversarial examples closely resemble
the original image and are challenging to distinguish with the naked eye.

The adversarial examples improved through median filtering align more closely with
human visual perception, concealing the adversarial perturbations to a greater extent.
This research explores advancements in generating adversarial examples using filtering
technology, offering novel insights for adversarial defense, and fostering the continuous
development of defensive techniques against various forms of attacks. However, due to
the object detector’s sensitivity towards category-specific details and the potential removal
of low-frequency noise by the median filter, there is a reduction in the attack success rate of
these adversarial examples while still maintaining a relatively high level of effectiveness.

Therefore, subsequent research will focus on devising an adversarial attack methodol-
ogy that not only ensures the optimal visual visibility of the generated adversarial examples
but also enhances their attack success rate. In future endeavors, we will contemplate in-
corporating an adaptive filtering module that dynamically adjusts filtering parameters
based on image content and the characteristics of the adversarial perturbation to achieve
more precise processing of such perturbations. For instance, in visually sensitive regions,
filtering intensity can be reduced to preserve intricate details, while concentrated areas
of adversarial perturbation may warrant increased filtering intensity for improved imper-
ceptibility. Additionally, employing multi-objective optimization techniques can facilitate
finding an optimal trade-off between concealment, attack success rate, and image quality
in generating offensive yet imperceptible adversarial examples.
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