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Abstract: The vector-transmitted Citrus Greening (CG) disease, also called Huanglongbing, is one
of the most destructive diseases of citrus. Since no measures for directly controlling this disease are
available at present, current disease management integrates several measures, such as vector control,
the use of disease-free trees, the removal of diseased trees, etc. The most essential issue in integrated
management is how CG-infected trees can be detected efficiently. For CG detection, digital image
analyses using deep learning algorithms have attracted much interest from both researchers and
growers. Models using transfer learning with the Faster R-CNN architecture were constructed and
compared with two pre-trained Convolutional Neural Network (CNN) models, VGGNet and ResNet.
Their efficiency was examined by integrating their feature extraction capabilities into the Convolution
Block Attention Module (CBAM) to create VGGNet+CBAM and ResNet+CBAM variants. ResNet
models performed best. Moreover, the integration of CBAM notably improved CG disease detection
precision and the overall performance of the models. Efficient models with transfer learning using
Faster R-CNN were loaded on web applications to facilitate access for real-time diagnosis by farmers
via the deployment of in-field images. The practical ability of the applications to detect CG disease
is discussed.

Keywords: attention mechanism; CNN models; deep learning; object detection; plant disease
detection; transfer learning

1. Introduction

Citrus Greening (CG) disease, caused by the pathogen Candidatus Liberibacter asiaticus,
is a destructive disease of citrus that is spread by grafting or transmitted by the vector
insect citrus psyllid [1]. The most typical symptoms of the disease are “blotchy mottling”,
partial yellowing of green leaves, leaf-thickening, and corking of veins [2]. As the disease
develops, infected trees gradually decline and finally die. No curable measures for this
disease have been developed for practical citrus cultivation. The current management of
CG thus mainly involves insecticide application to control vectors and frequent surveillance
of trees to detect and remove infected trees as soon as possible. Hence, the detection of
diseased trees is one of the most important management practices, as it can reduce the risks
of both primary and secondary infections. The most widely adopted disease-detection
practice is the use of Polymerase Chain Reaction (PCR) [3], which requires collecting plant
materials from trees and subsequently processing them for chemical analysis to detect
pathogen genes in the samples. However, this requires skills in chemical experiments, is
time- and labor-intensive, and requires a long time to obtain results. These conditions make
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growers reluctant to use the method. Therefore, there is a demand for the development of
simple and rapid diagnostic methods.

Digital image analyses for plant disease diagnosis are increasingly being used. Convo-
lutional neural networks (CNNs) incorporating image analyses of individual plant leaves
have been examined as classification models, particularly under a controlled laboratory
environment [4]. For instance, deep learning techniques with machine learning are used in
citrus disease diagnosis systems [5]. This approach, applied to a dataset with five categories
of leaves based on disease development, attained an average accuracy of 87% on test sets.
Prior to the application, five categories of healthy and diseased leaf images of citrus should
be defined to implement transfer learning with VGG19 and AlexNet models, which suc-
cessfully distinguish the groups with 94.3% average accuracy on the test set [6]. Although
the approach can perform well in a laboratory under stable conditions, its reliability is
limited in fields where conditions, e.g., weather, light conditions, and background noise,
easily vary [7]. The other factor that seriously affects the accuracy of image analyses is the
coexistence of other diseases with symptoms similar to CG, easily reducing the confidence
of the analyses.

On the other hand, object-detection technology using deep learning techniques is used
to identify and locate specific objects (targets) in images and videos. This procedure is
widely applied in the diagnosis of plant diseases. Although this technique is computation-
ally expensive, it can recognize different categories of objects and draw bounding boxes
around each of them. An optimized YOLO-V4 model was used to examine six different
disease images obtained from fruits in a citrus orchard [8]. The EfficientNet model was used
for classification and achieved 84.2% accuracy in CG disease. This model was implemented
with different object detection models to effectively detect citrus disease by focusing on
the spot where the symptoms occur [9]. As citrus psyllid is the only insect vector of CG
disease, Dai F et al. [10] aimed to prevent CG disease by detecting citrus psyllids on citrus
leaves taken from a natural environment and achieved an average precision of 90.21%.

The above approaches have been tested for their ability to detect various targets, but
their availability remains to be studied. The diagnosis can be made when the trees bear
fruits, but this is not practical for early diagnosis and management [8]. The research in [9]
attempted to identify diseases from the fine features of citrus leaves, but since symptoms of
CG disease appear across the entire leaf, it was difficult to make judgments based on specific
localized areas; thus, they did not consider diagnosing CG disease. Another study [10] has
the potential to help prevent the early spread of CG disease, but because the target is too
small, it is difficult to grasp the overall situation in an orchard. Additionally, it cannot be
used for detecting images of CG disease that do not contain vector insects.

This study reports on how a simple and precise diagnostic system for CG disease can
be developed, focusing on the following issues:

1. A non-invasive method that involves collecting high-resolution, in-field images taken
in the natural environment of an orchard and performing annotations of leaves
on branches;

2. A diagnostic approach using the Faster R-CNN object detection architecture, en-
abling simultaneous identification and localization of CG disease, thereby improving
detection efficiency;

3. The integration of the Convolution Block Attention Module (CBAM) attention mecha-
nism into the VGGNet and ResNet models to improve CG disease detection capability;

4. The development of a web application tool for real agricultural scenarios.

This system was examined to determine whether it could quickly determine the CG-
infection status of leaves by simply photographing citrus branches without the interaction
by the location or background noises. Based on the results, this study considered the
potential of the tested models for practical uses by growers.
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2. Results
2.1. Results of VGGNet and ResNet

The effectiveness in detecting CG disease by the 5-fold CV using the VGGNet and
ResNet models is ranked as follows: VGG19 < VGG16 < ResNet50 < ResNet152 < ResNet101,
with ResNet101 recording the highest AP of 85.07% (Table 1). ResNet50 distinguished
the two categories “healthy” and “others” most effectively, achieving an AP of 91.29%,
leading to the highest overall model performance with an mAP. Additionally, the AP for all
categories was higher for ResNet models than for VGGNet models, indicating that ResNet
models performed more stably and comprehensively.

Table 1. The 5-fold CV results of VGGNet and ResNet.

Model/Label Greening Healthy Others mAP

VGG16 81.44 90.63 94.23 88.77
VGG19 79.04 89.04 90.29 86.12

ResNet50 83.49 93.20 97.18 91.29
ResNet101 85.07 91.54 96.88 91.16
ResNet152 84.51 92.24 95.48 90.74

The AP with the 5-fold CV distinguished the “greening” category (Table 2 and
Figure 1) best by ResNet101 in the experiment (3/5), achieving an AP of 87.96%. The
mAP (Table 3 and Figure 2) for all categories was highest with ResNet101 in the experiment
(2/5), reaching 93.25%. Moreover, except for experiment (3/5), where VGG16’s mAP
outperformed both ResNet101 and ResNet152, ResNet models generally outperformed
VGGNet in both CG disease identification ability and overall model performance.

Table 2. AP of “greening” with VGGNet and ResNet in each experiment.

Model/Experiment
AP of “Greening” (%)

(1/5) (2/5) (3/5) (4/5) (5/5)

VGG16 83.26 82.63 86.20 79.47 75.62
VGG19 79.96 79.46 84.54 78.38 72.84

ResNet50 86.32 83.21 86.62 83.20 78.09
ResNet101 87.38 85.36 87.96 84.23 80.40
ResNet152 86.94 84.77 87.59 84.90 78.34
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Table 3. mAP of VGGNet and ResNet in each experiment.

Model/Experiment
mAP (%)

(1/5) (2/5) (3/5) (4/5) (5/5)

VGG16 89.34 90.35 91.54 86.83 85.77
VGG19 85.24 88.51 88.08 84.71 84.06

ResNet50 91.95 92.03 91.60 90.41 90.46
ResNet101 91.92 93.25 91.09 90.82 88.75
ResNet152 90.94 92.77 90.87 91.40 87.72
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Figure 2. mAP of VGGNet and ResNet in each experiment.

2.2. Results of VGGNet+CBAM and ResNet+CBAM

Based on the 5-fold CV with CBAM, the performance in CG disease detection was
ranked as follows: VGG19+CBAM < VGG16+CBAM < ResNet50+CBAM < ResNet101+CBAM
< ResNet152+CBAM (Table 4), with the highest AP of 86.52% achieved by ResNet152+CBAM.
ResNet101+CBAM showed the best performance for the “healthy” category, while
ResNet152+CBAM performed best for the “others” category. Overall model performance
was slightly better in ResNet152+CBAM than in ResNet101+CBAM, providing the highest
mAP of 92.33%.

Table 4. The 5-fold CV results of VGGNet+CBAM and ResNet+CBAM.

Model/Label Greening Healthy Others mAP

VGG16+CBAM 83.45 92.56 95.71 90.57
VGG19+CBAM 80.76 90.85 92.77 88.13

ResNet50+CBAM 85.20 92.75 96.83 91.59
ResNet101+CBAM 86.13 93.14 97.68 92.32
ResNet152+CBAM 86.52 92.56 97.90 92.33

The AP (Table 5 and Figure 3) with a 5-fold CV distinguished the “greening” category
best in the experiment (3/5) with ResNet152+CBAM, achieving an AP of 89.92%. The
mAP (Table 6 and Figure 4) for all categories was highest in the experiment (2/5) with
ResNet152+CBAM, reaching 94.02%. Additionally, except for experiment (3/5), where
VGG16+CBAM’s mAP surpassed ResNet50+CBAM, ResNet+CBAM models generally out-
performed VGGNet+CBAM models in both CG disease distinction and overall performance
across all categories.
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Table 5. AP of “greening” with VGGNet+CBAM and ResNet+CBAM in each experiment.

Model/Experiment
AP of “Greening” (%)

(1/5) (2/5) (3/5) (4/5) (5/5)

VGG16+CBAM 86.42 83.99 87.17 81.88 77.78
VGG19+CBAM 81.55 81.54 85.25 80.43 75.04

ResNet50+CBAM 87.95 85.36 87.98 84.72 79.99
ResNet101+CBAM 88.68 86.37 89.00 85.14 81.44
ResNet152+CBAM 89.00 86.48 89.92 85.76 81.46
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Figure 3. AP of “greening” with VGGNet+CBAM and ResNet+CBAM in each experiment.

Table 6. mAP of VGGNet+CBAM and ResNet+CBAM in each experiment.

Model/Experiment
mAP (%)

(1/5) (2/5) (3/5) (4/5) (5/5)

VGG16+CBAM 90.86 92.00 91.96 89.25 88.80
VGG19+CBAM 88.43 89.64 88.86 88.74 84.97

ResNet50+CBAM 92.29 92.91 91.49 91.16 90.12
ResNet101+CBAM 93.06 93.78 93.10 91.38 90.27
ResNet152+CBAM 92.17 94.02 93.31 91.27 90.86
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2.3. Comparison with the Integration of CBAM

The integration of CBAM increased both the performance distinction of CG disease and
the overall performance of all models (Figure 5). Before the integration of CBAM, ResNet101
achieved the highest AP of 85.07% for the “greening” category, while ResNet50 attained the
highest mAP of 91.29%. After integrating CBAM, notably, the ResNet152+CBAM model
showed an enhancement in CG disease detection by 1.45%, reaching the highest AP of
86.52%. Concurrently, the overall model performance exhibited an improvement of 1.04%,
achieving the highest mAP of 92.33%.
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2.4. ResNet152+CBAM

The ResNet152+CBAM model achieved the highest AP (89.92%) for CG disease in
the experiment (3/5) (Table 5). The precision–recall curve of this model (Figure 6) shows
the precision (y-axis) against the recall (x-axis) for different probability thresholds, and the
area under each curve presents the AP of each category. Although the AP for CG disease
was slightly less than 90%, it reached 91% for the healthy category and more than 98% for
other diseases.
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The availability of the ResNet152+CBAM model as a CG disease diagnosis tool for
agricultural practices was evaluated using the web application introduced in Section 4.6 of
this paper. The images used were new in this evaluation, and the probability threshold was
set to 0.8, meaning that an instance was only classified as positive if the model predicted
it with more than 80% confidence. The model correctly detected CG-symptomatic leaves
with multiple objects, even at positions slightly away from citrus leaves (Figure 7).
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Figure 7. The detection results based on ResNet152+CBAM in the experiment (3/5). (a,b) Samples of
CG-affected leaves; (c) A sample of healthy leaves; (d) A sample of leaves with other diseases.

The total loss curves of both the training and validation sets of this model (Figure 8)
were used to examine whether the model exhibits overfitting or underfitting during the
training process. The total loss, which corresponds to the sum of two classification losses
(identifying what those objects are), two regression losses (determining where the objects
are), and a regularization loss (to prevent overfitting), helped prevent the models from
overfitting and contributed to fitting the distribution of the new data. This means that as
more training iterations were conducted, the total loss on the training set steadily decreased.
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Although the validation set loss fluctuated, it tended to decrease as well. Therefore, the
model progressively learned and fit the features of the training data in the right direction.
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3. Materials
3.1. Dataset

The experimental field in this study covered approximately 4000 m2 and contained
around 120 trees of the local mandarin variety Sai Num Phung, Citrus reticulata. The
orchard was located in Mae Na, Chiang Dao District, Chiang Mai, Thailand (Figure 9,
19◦21′26′′ N 98◦48′38′′ E, 969 MSL). Trees were planted with 3 m spacing between rows and
4 m spacing between trees within individual rows. The ages of the trees ranged between
5 and 7 years. A total of 20 leaves per tree were randomly collected from 60 trees, and
CG infection was confirmed with a Polymerase Chain Reaction (PCR) test conducted by
Highland Research and Development Institute (HRDI), which revealed 24 CG-infected and
36 non-infected trees. Branches from these 60 trees, each with at least 5 extended leaves,
were photographed from approximately 40 cm away on a sunny afternoon between 13:00
and 17:00 on 12 January 2021. A total of 82 images capturing leaves were used in this study.
All images were obtained with a digital camera (ILCE-6000, Sony, Tokyo) at a resolution of
6000 × 4000 pixels.
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3.2. Data Augmentation

Data augmentation is a method of artificially increasing the size of an existing training
dataset to improve the performance of deep learning models [11]. This process is commonly
used to enhance the model’s generalization ability and improve performance on new, un-
seen data. Various data-augmentation techniques, such as image rotation, flipping, scaling,
cropping, color adjustment, and noise addition, have been instrumental in preventing over-
fitting and contributing to model performance improvement, especially in cases of small
datasets [12]. In this study, the 82 images obtained were flipped horizontally/vertically or
rotated by 90 degrees, resulting in a total of 656 images (Figure 10).
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3.3. Annotation

Deep learning with annotation, where correct labels are manually attached to data
such as images, text, and audio, helps the model understand what it should learn. The
quality of annotations directly affects the model’s accuracy when it processes new data,
making it a crucial element for the success of supervised learning tasks [13]. In the present
study, the open-source tool “LabelImg [14]” was adopted to create annotations. This tool is
used to identify and define bounding boxes for ground truth positions within the images.
Leaves in each image were annotated, as shown in Figure 11, where the leaves to be
analyzed were depicted with squares. The annotation process was based on the results of
visual inspections by experts with more than 20 years of experience to ensure accuracy. To
maximize the robustness of the classification, we defined the following three categories
for the model application: “greening” for symptomatic CG-infected leaves, “healthy” for
non-symptomatic healthy leaves, and “others” for leaves showing symptoms of other
diseases, as shown in Figure 12. The numbers of annotated leaves in each of the three
categories are shown in Table 7.
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Figure 12. Samples of leaves with different symptoms in annotations. (a–c) CG-infected leaves
with different symptoms were annotated as “greening”; (d) non-symptomatic healthy leaves were
annotated as “healthy”; (e) leaves with other disease symptoms were annotated as “others”.

Table 7. The number of annotations and images with our dataset.

Label Greening Healthy Others *

Number of annotations 2544 998 582

Number of images 656
* Diseases other than CG disease.

4. Methods
4.1. Faster R-CNN-Based Diagnosis System

The Faster R-CNN [15] is a type of deep learning architecture designed to locate and
identify objects within multi-scale images, achieving high accuracy in object-detection tasks.
Its capability to fine-tune parameters for specific datasets makes it particularly effective
for transfer-learning applications. Figure 13 outlines our diagnosis system’s configuration,
which utilizes the Faster R-CNN framework. In this system, the input images are resized
to 900 × 600 pixels and processed through the Faster R-CNN for training, resulting in a
well-trained model. This model is hosted on a web server, facilitating an online CG disease
diagnosis platform. Users can upload images of any size via a web application and receive
results featuring bounding boxes, labels, and confidence scores of the identified targets.
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4.2. Backbone and Transfer Learning

The backbone is a CNN model located in the initial stages of object-detection models
like Faster R-CNN, playing a crucial role in extracting useful features from the input image.
By using a backbone, it is possible to capture features ranging from low-level characteristics
such as edges, textures, and shapes to more advanced abstract features. Therefore, the
method of using a pre-trained CNN model as a backbone through transfer learning is
widely employed to adapt to new tasks [16].
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Transfer learning involves applying the knowledge (weights and feature extractors)
of a model trained on a large-scale task as initial values for another specific task. This can
reduce the amount of data required for learning, shorten the learning time, and improve
performance, especially when the data are scarce or the task is complex [17]. When using
transfer learning with Faster R-CNN, its capability to capture various image features allows
it to immediately provide high-level feature-extraction abilities for new object-detection
tasks [15].

In this study, we utilized pre-trained models based on the ImageNet subset of the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [18] as the backbone of Faster
R-CNN. The ILSVRC is a large-scale database composed of over 1.2 million annotated
images, encompassing more than 1000 object categories, and is widely used as a standard
benchmark in many computer vision studies. Specifically, the pre-trained models used in
this study were VGGNet and ResNet, which have demonstrated high performance across
various tasks.

4.2.1. VGGNet

VGGNet [19], a profound CNN model, is highly regarded in the field of image classifi-
cation for its simplicity and uniform design. It is characterized by multiple convolutional
layers with small 3 × 3 filters, each followed by max-pooling layers. The defining feature
of VGGNet is its repetitive stacking of convolutional layers, enabling deeper representa-
tions [19]. VGGNet has several variations, with VGG16 and VGG19 being the most used.
VGG16 consists of 13 convolutional layers and 3 fully connected layers, while VGG19 has
an additional 3 convolutional layers, enhancing its ability to capture more complex features.
In this study, we utilized these two pre-trained VGGNet models for transfer learning.

In transfer learning, a common approach involves freezing certain blocks of the
network. This means maintaining the weights of these frozen blocks as unchanged while
updating the weights of the other layers during training. This strategy effectively leverages
pre-trained knowledge while tailoring the model for a new task, especially with limited
data [20]. In our study, we found that freezing the first two blocks of VGGNet yielded
optimal training performance. The architecture of our employed VGGNet is illustrated in
Figure 14.
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4.2.2. ResNet

ResNet [21] is an innovative deep learning model that can effectively train deep
networks and is considered the benchmark model for most computer vision tasks. Previous
CNN models before ResNet tended to suffer from vanishing or exploding gradients as the
network deepened, making learning difficult [20]. ResNet introduced the “residual block”
structure, using “skip connections” that add the input directly to the output, effectively
avoiding these issues.

There are various ResNet model variations. In this study, we adopted the ResNet50,
ResNet101, and ResNet152 models, which have demonstrated effectiveness across a wide
range of computer vision tasks. To achieve optimal learning effects in transfer learning,
experiments were conducted similarly to VGGNet, and it was found that freezing the layers
before the third block was optimal. The structure of the ResNet models used is shown in
Figure 15.
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4.3. Attention Mechanism

When reading a text, one may “pay attention” to certain words according to the context
and deeply understand their meaning. The attention mechanism in deep learning models
attempts to mimic this human process. Since the advent of the Transformer [22] model,
the attention mechanism has garnered significant interest, especially in natural language
processing, and has since been widely applied to other areas like image recognition. By
using the attention mechanism, deep learning models can focus on important parts of
the data, making it a powerful tool that improves task performance [23]. In this study, to
achieve higher diagnostic performance, we integrated the CBAM attention mechanism into
the two types of backbone models mentioned in Section 3.2 and conducted experiments.

4.3.1. CBAM

The CBAM [24] is designed to bolster the representational capabilities of CNNs by
focusing on both spatial and channel-wise attention. CBAM comprises two sub-modules:
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the Channel Attention Module (CAM) and the Spatial Attention Module (SAM). Figure 16
shows the structure of the CBAM.
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Figure 16. The structure of the CBAM attention mechanism.

CAM concentrates on the inter-channel relationships of features, emphasizing "what"
aspects of input images are meaningful. The process starts with global max pooling and
global average pooling of the input features, each then fed into a two-layer neural network.
The reduction ratio parameter adjusts the neuron count reduction in the first layer, followed
by ReLU activation. The second layer’s neuron count is restored to its original number. The
outputs are then combined using element-wise summation and passed through a sigmoid
activation, leading to a channel-refined feature for SAM.

SAM leverages the inter-spatial relationships of features, focusing on "where" informa-
tive parts are located. The channel-refined feature undergoes channel-based max pooling
and average pooling, followed by concatenation. A 7 × 7 convolution operation with ReLU
and sigmoid activation is then applied. Finally, an element-wise multiplication with the
channel-refined feature generates the refined features.

4.3.2. Proposed Model

CBAM is a lightweight module that can be seamlessly integrated into any position
within any CNN model [24]. Chougui A. et al. [25] demonstrated enhanced feature extrac-
tion by adding CBAM after each of the five blocks of the VGGNet model on a large-scale
plant disease dataset. In this study, given the use of a small-scale dataset, optimal results
were achieved by incorporating CBAM only after Block5 of VGGNet and Block4 of ResNet.
The structure of our proposed model is detailed in Figure 17.
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4.4. Platform and Hyperparameters

Even with the use of transfer learning, there are instances where the pre-trained model
may not perfectly adapt to the specifics of a given task or new dataset. Therefore, it becomes
necessary to experiment with various hyperparameters to tailor and optimize the model
for the specific task. In this study, we compared different optimizers and regularization
techniques using the same dataset to find the optimal hyperparameters. We looked at two
types of optimizers: Momentum and Adam. For regularization techniques, we evaluated
L1 Lasso and L2 Ridge. Additionally, we experimented with various settings for learning
rate, weight decay, dropout, and batch size to optimize our results.

In this research, we utilized PyCharm Community Edition 2023.2.1 for building and
generating deep learning models; Anaconda3 for managing library files; and LabelImg
v1.5.2 for annotating. The details regarding the experimental platform and recommended
hyperparameters are presented in Table 8.

Table 8. Platform and hyperparameters used in experiments.

Platform Hyperparameter

Operating system Windows 11 Pro Learning rate 0.001

CPU i9-12900 K Weight decay 0.001

GPU NVIDIA RTX 4070, 12 GB Regularization L2 ridge regression

RAM 64 GB Optimizers Adam

Python 3.7 Dropout 0.5

Tensorflow 2.10.0, gpu Batch size 256

CUDA 11.4 RPN batch size 256

cuDNN 8.9.5 Max iteration 40,000
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4.5. Model Evaluation

In this study, we tested 10 models using a 5-fold cross-validation (5-fold CV) method,
including VGGNet, ResNet, and these models integrated with CBAM (VGGNet+CBAM
and ResNet+CBAM). We recorded the average precision (AP) for the three categories
“greening”, “healthy”, and “others”, as well as the mean AP (mAP) across all categories to
compare the overall performance of the models.

4.5.1. Evaluation Metric

Given the imbalanced nature of the three labels in our dataset, with a majority being
“greening”, there exists a risk that the model could achieve high accuracy by predominantly
predicting the majority labels while neglecting the minority labels. To address this potential
bias and to evaluate the model’s performance more comprehensively, AP [26] was employed
as the primary evaluation metric. By calculating the AP for each category and using their
mean value mAP, it is possible to evaluate the overall performance of the model. In this
study, we used AP and mAP to evaluate the detection capability of each category and the
overall performance of the models.

4.5.2. k-Fold Cross-Validation

k-fold CV [27] is a widely used method for evaluating the performance of models in
deep learning. This method involves dividing the dataset into k mutually exclusive folds
and alternately conducting training and validation to aim for a more accurate estimation
of the model’s performance. Specifically, k cycles of training and validation are carried
out, where one of the k folds is selected as the validation dataset in each cycle, and the
remaining k − 1 folds are used as the training dataset. Performance evaluations are recorded
in each cycle, and the average of these evaluations is calculated to estimate the model’s
average performance.

Using k-fold CV allows all data to be used for both training and validation, enabling
a fairer assessment of the model’s generalization ability, particularly when dealing with
small datasets. This maximizes data utilization and evaluates the model across multiple
independent validation sets, making the performance estimation more stable and reliable.
Typically, k is chosen between 5 to 10, but for our small datasets, k was set to 5. The
approach of a 5-fold CV is illustrated in Figure 18.
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In detail, we initially divided the 82 collected images randomly into 5 folds, labeled 1
through 5. We then applied data-augmentation techniques of rotation and flipping to the
images in each fold, ensuring that both original and augmented images remained within
the same fold. For each iteration of the 5-fold CV, 4 folds (e.g., 1, 2, 3, 4) were used as the
training set, and the remaining fold (e.g., 5) served as the validation set. This process was
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repeated such that each fold acted as the validation set once, thereby completing the 5-fold
CV cycle.

4.6. Web Application

Alongside developing the CG disease-detection model, we also created a web applica-
tion for practical use. This application, developed using the Django [28] web framework
in Python, allows users to upload leaf images (supporting multiple image uploads) for
real-time diagnosis. The user interface of our web application is depicted in Figure 19. Local
farmers can take images of leaves on branches and upload them to the web application
via smartphone or computer. Uploaded images are transferred to a server computer in
the laboratory for disease diagnosis. Frames are drawn directly on the targeted leaves,
displaying the classification category and confidence scores on each frame. The diagnosis
results are then immediately shown as output images on the web application. The web
application is hosted on the server of the Faculty of Informatics at Kansai University and is
accessible via the following URL: citrus.kutc.kansai-u.ac.jp.
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Using the web application allows for the real-time monitoring of disease conditions,
enabling the early diagnosis and management of diseases, which can reduce the spread and
impact of the diseases. Additionally, by accurately identifying and treating infected trees,
the use of chemical pesticides can be reduced, contributing to environmental protection
and reducing production costs.

5. Discussion

This study focuses on identifying optimal networks and solutions for the simple and
efficient detection of CG disease in field applications. We explored the Faster R-CNN
architecture with transfer learning, which demonstrated strong recognition capabilities
even under challenging conditions, such as distant targets or backgrounds lacking similar
objects, highlighting its robust anti-interference abilities. Users can take advantage of
our CG disease-diagnosis system by uploading photos directly from the field to our web
application for real-time diagnosis, proving highly practical for immediate use. However,
transfer-learning models, which are built on limited datasets, typically excel within similar
feature spaces but may struggle with out-of-domain data [29].
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Our data collection was restricted to leaves from a single citrus variety, gathered only
under sunny conditions in January, and from trees aged 5 to 7 years. These limitations
could impact the effectiveness of the model, for instance, when applied to different citrus
varieties. Nevertheless, CG disease exhibits minimal variation in disease characteristics
(appearance and manifestation) across different seasons and varieties [30]. The universality
of these disease characteristics suggests that our system could be effectively adapted for
use with other types and in various regions. Future improvements will focus on enhancing
the model’s versatility. We plan to expand our dataset to include a wider range of citrus
species, age groups, and lighting conditions, aiming to address variations in leaf color and
size that could affect recognition accuracy. Additionally, by collecting and training samples
from other plants using our proposed method, we believe this will also help in diagnosing
other plant diseases.

To enhance the model’s ability to recognize CG disease, we presented a novel approach
by integrating the CBAM with VGGNet and ResNet models, marking the first attempt
within the field to conduct a precision comparison using this combination. Table 9 shows
the performance difference between models before and after the integration of CBAM with
5-fold CV. Models with positive values were improved by the integration of CBAM and
vice versa.

Table 9. Performance difference before and after the integration of CBAM.

Model/Label Greening HealthY others mAP

VGG16 2.01 1.93 1.48 1.81
VGG19 1.73 1.82 2.48 2.01

ResNet50 1.71 −0.45 −0.35 0.30
ResNet101 1.06 1.6 0.80 1.15
ResNet152 2.02 0.32 2.42 1.58

Table 9 demonstrates that the integration of CBAM yielded a notable improvement in
the AP for CG disease detection, with enhancements ranging from 1.06% to 2.02%. This
underscores the effective role of CBAM in enhancing feature extraction specific to CG
disease. For the ResNet50 model, there was an increase of 1.71% in detecting CG disease;
however, this was accompanied by declines of 0.45% and 0.35% in the “healthy” and “oth-
ers” categories, respectively. This suggests that due to the relatively shallow architecture
of ResNet50, the addition of CBAM may lead to an over-reliance on attention-weighted
features, potentially resulting in the neglect of other pertinent information or an inability to
fully capitalize on the sophisticated features offered by CBAM, thus impacting the accuracy
of identification. However, in terms of overall model performance, VGG16 and VGG19
exhibited enhancements of 1.81% and 2.01%, respectively, while ResNet50, ResNet101,
and ResNet152 achieved improvements of 0.30%, 1.15%, and 1.58%, respectively. This
indicates a trend that increasing the model depth correlates with greater overall perfor-
mance improvements. This suggests that for small-scale target-detection tasks requiring
the learning of a great number of detailed features, more complex models with sufficient
capacity to learn and utilize these enhanced features may benefit more substantially from
the integration of CBAM.

Although we successfully enhanced the feature extraction for CG disease by combining
the CBAM with VGGNet and ResNet models, the highest AP achieved was 89.92% with the
ResNet152+CBAM model. To further improve the detection capability for CG disease, it is
worth exploring the potential for increased detection accuracy through the integration of
other CNN models like EfficientNet [31] or ViT [32] with other attention mechanisms such
as ECA-Net [33]. Moreover, to further improve the practical efficiency of our system, we
aim to develop it to be capable of extracting frames from videos taken with smartphones
or drones to diagnose diseases. Essential improvements in the response speed of the
web application, such as using other object-detection architectures like RetinaNet [34] or
YOLOv7 [35], which have a faster object-detection speed, are also necessary. Furthermore,
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by registering disease information in a geographic information system, it is possible to
track the spread trends of CG disease within a region and provide a scientific basis for
disease prediction and prevention. However, the accuracy of location information at the
level of individual trees is insufficient with smartphone Global Positioning System (GPS)
functions, so management is currently performed at the plantation level. In practice, in the
mountainous areas of Chiang Mai Province, Thailand, the HRDI is developing a geographic
information system for managing plantations, and it is believed that the results of this
research can be utilized there.

6. Conclusions

In this study, we explored a fundamental yet innovative approach for diagnosing CG
disease using in-field images of citrus leaves taken in orchards in Thailand through transfer
learning with the Faster R-CNN architecture. The focus of our research was to compare the
effects of transfer learning using VGGNet and ResNet and the integration of the CBAM
attention mechanism into CNN models, providing valuable insights for future research.
We used AP and mAP as the evaluation metric and conducted a 5-fold CV, assessing a total
of 10 models based on VGGNet and ResNet. The key findings are as follows:

• The ResNet models demonstrated superior performance compared to the
VGGNet models;

• The integration of CBAM into VGGNet and ResNet models yielded
outstanding improvement;

• The ResNet152+CBAM model performed best in both the accuracy of CG disease
detection and overall performance;

• The implementation of Faster R-CNN with in-field images notably improved the
efficiency and practical application of CG disease detection.

By using our system for real-time CG disease diagnosis, the efficiency of early in-field
detection will be improved with a relatively high level of accuracy. Given the severe
impact of CG disease on global citrus production, the results of this study facilitate the
development of techniques to mitigate this disease problem and even support economic
citriculture to some extent. Furthermore, this study not only contributes to the stable
production of citrus and the improvement of plant quarantine systems but also has the
potential to be applied to research on other plant disease diagnoses.
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