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Abstract: Ensuring the integrity of aviation plug components is crucial for maintaining the safety and
functionality of the aerospace industry. Traditional methods for detecting surface defects often show
low detection probabilities, highlighting the need for more advanced automated detection systems.
This paper enhances the YOLOv5 model by integrating the Generalized Efficient Layer Aggregation
Network (GELAN), which optimizes feature aggregation and boosts model robustness, replacing the
conventional Convolutional Block Attention Module (CBAM). The upgraded YOLOv5 architecture,
incorporating GELAN, effectively aggregates multi-scale and multi-layer features, thus preserving
essential information across the network’s depth. This capability is vital for maintaining high-fidelity
feature representations, critical for detecting minute and complex defects. Additionally, the Focal
EIOU loss function effectively tackles class imbalance and concentrates the model’s attention on
difficult detection areas, thus significantly improving its sensitivity and overall accuracy in identifying
defects. Replacing the traditional coupled head with a lightweight decoupled head improves the
separation of localization and classification tasks, enhancing both accuracy and convergence speed.
The lightweight decoupled head also reduces computational load without compromising detection
efficiency. Experimental results demonstrate that the enhanced YOLOv5 architecture significantly
improves detection probability, achieving a detection rate of 78.5%. This improvement occurs with
only a minor increase in inference time per image, underscoring the efficiency of the proposed model.
The optimized YOLOv5 model with GELAN proves highly effective, offering significant benefits for
the precision and reliability required in aviation component inspections.
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1. Introduction

Ensuring the integrity and functionality of various components in the aerospace indus-
try is paramount for maintaining flight safety and operational efficiency [1,2]. Specifically,
aviation plug key slots and pin numbers, as integral components of aircraft electrical sys-
tems, critically influence the aircraft’s reliability and safety. Key slots ensure stable electrical
connections, while pin numbers provide vital operational and maintenance information.
Defects in these components, such as physical damage, dimensional inaccuracies, or eroded
markings, can lead to electrical failures or operational mishaps, thereby compromising in
firsthand the operability of the aircraft and ultimately the flight safety.

This process has primarily depended on visual inspections. Upon detecting a defect, a
thorough evaluation is required to ascertain whether a failure has occurred. In recent years,
to minimize human intervention and improve detection accuracy and efficiency, Various
machine vision-based techniques have been successfully implemented in specific industrial
and aviation contexts, producing outstanding results.

Advancements in computer vision have transformed visual inspection into the main-
stream methodology for quality control. Defect detection, a subset of surface inspection, has
been thoroughly explored by numerous scholars [3–5]. They have detailed the application
of traditional visual techniques in detecting surface defects, encompassing aspects such
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as texture, color, and shape features. With ongoing improvements in computer hardware,
deep learning algorithms have outperformed traditional algorithms in detection probability
and speed due to their streamlined and efficient network architectures. Non-destructive
detection techniques include ultrasound [6–8], magnetic particle [9,10], X-ray [11,12], and
optical inspections [13–15], with the latter progressively becoming the preferred choice due
to its minimal material requirements and capability for continuous product monitoring.
The prevalent approach involves capturing images of the inspection areas and analyzing
them with various image recognition algorithms. Initially, the captured images undergo
preprocessing, which typically includes normalization [14], filtering [16], and enhance-
ment [17,18]. Following this, localization and segmentation tasks are performed, using
techniques like template matching [17,19], thresholding [8,20], or segmentation based on
edges [21,22]. Algorithms then apply rules based on human experience to define target fea-
tures by shape, area, grayscale, and texture. Ultimately, common classification algorithms
are employed for quality assessment, such as the Gaussian-mixture-model-based automatic
optical inspection algorithm for solder joints introduced by Cai et al. [23]. Robust principal
component analysis has recently been applied to various defect detection tasks, enhancing
the identification of anomalies [24] and demonstrating impressive efficacy. Khan et al. [25]
proposed an innovative hierarchical ensemble machine learning model to predict flight
departure delays and durations, effectively handling the complexity of aviation data. The
model sequentially predicts to reduce decision ambiguity and integrates various machine
learning algorithms and advanced sampling techniques like SMOTETomek, enhancing
its ability to handle imbalanced and high-dimensional data. Khan et al. [26] proposed a
novel data-driven model to predict IATA-coded flight delays and analyze the underlying
causes. The model combines a parallel-sequential structure with the Adaptive Bidirectional
Extreme Learning Machine (AB-ELM), optimizing training efficiency and performance
through adaptive learning rate adjustments.

Recently, deep convolutional neural networks (CNNs) have gained considerable inter-
est across diverse anomaly detection tasks [27–30], especially within image datasets [31,32],
due to their ability to autonomously learn features with robustness and broad generalizabil-
ity. Wang et al. [33] proposed an automated data augmentation framework for industrial
defect detection called “ALADA.” This framework employs a novel three-step bilevel
optimization scheme to reduce hyperparameter tuning and implements policy gradient
sampling to address the challenges of non-differentiable optimization, thereby optimizing
augmentation strategies more effectively.

Moreover, in general object detection methodologies, detectors are primarily catego-
rized into two types: one-stage detectors and two-stage detectors. Prominent two-stage
detectors, such as Fast R-CNN [34], adhere to a coarse-to-fine detection pipeline—first
generating preliminary candidate objects and then employing a region classifier to pre-
dict their categories and refine their positioning. Although they achieve higher detection
precision, their extensive computational demands and suboptimal real-time performance
restrict their practical applications. To enhance detection speed, various one-stage detectors
have been developed. These detectors execute a single inference step, directly determining
the coordinates of bounding boxes and their respective class probabilities, exemplified by
models like SSD [35], YOLO [36], and related models [36–38]. Due to their exceptional
inference speed and dependable detection accuracy, these models are extensively utilized
for defect detection across various industrial sectors.

Sha et al. [24] developed a refined YOLOv5 model by integrating an SE with a Feature
Pyramid Network (FPN) to detect solder defects on aviation plugs, generating enhanced
multi-scale features for the subsequent localization and quality assessment of the solder
spots. Gao et al. [39] adapted YOLOv5, enhancing the model with deconvolution compu-
tations and K-means clustering to address challenges in the effectiveness and generality
of complex label text detection, thereby improving detection accuracy. Ning et al. [40]
proposed an improved YOLOv8 model that integrates the DCNV2 module and channel
attention in C2f to combine adaptive receptive fields. Along with the efficient Faster Block,
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this enhancement strengthens the model architecture, simplifies feature extraction, reduces
redundant information processing, and improves the accuracy and speed of multi-class
steel defect detection.

Table 1 reviews CNN-based detection methods, highlighting their strengths and
limitations. YOLO stands out for its high efficiency, precision, and strong generalization
capability, making it the most popular and reliable method for various defect detection
tasks. Considering its ease of use, rapid deployment, and compatibility with multiple
frameworks, this study selected YOLOv5. Consequently, we are exploring its application
for detecting key slot and pin number defects in aviation plugs.

Table 1. Advantages and limitations of various detection techniques.

Taxonomy Methods Advantages Limitations

One-stage Faster R-CNN [34] High accuracy
High computational

complexity,
detectors SSD [35] poor real-time

YOLOv5 [24] High efficiency,
Two-stage YOLOv7 [41] high accuracy, Slightly weak at
detectors YOLOv8 [40] strong generalization detecting small targets

YOLOv9 [42]

In the early stages, to extend the lifespan of aviation plugs and enhance system relia-
bility, a comprehensive approach includes regular preventive maintenance and the use of
advanced materials coupled with real-time monitoring. Predictive maintenance, optimized
through data analytics, reduces costs and focuses resources effectively. Compliance is
ensured by keeping up-to-date with safety standards and conducting thorough audits.
System reliability is further enhanced by incorporating redundancy, high-quality materials,
and continuous improvement processes. These strategies collectively ensure the operational
efficiency and long-term safety of aviation plugs.

However, as depicted in Figure 1, typical defects in aviation plug key slots closely
resemble normal key slots, making differentiation using solely low-level, manually crafted
features challenging. Moreover, these methods are often too slow for real-time, online
detection. While traditional methods employing handcrafted features suffice for simple
tasks, their limited representational capacity results in low accuracy and poor robustness.
Therefore, accurate detection of defects in aviation plug key slots and pin numbers is
crucial. This detection not only facilitates the timely identification and repair of potential
safety hazards but also significantly extends the lifespan of aircraft components, reduces
maintenance costs, and ensures compliance with stringent aviation regulations. Moreover,
it enhances system reliability by minimizing unexpected failures.

This study utilizes a proprietary aviation plug defect dataset. Due to inherent variabil-
ity in the dataset, experimental results may vary across different systems. Consequently,
this research assesses network improvements primarily through comparisons of results
before and after network optimization.

Utilizing the current YOLOv5 model to detect keyway defects in aviation plugs
presents several challenges. Keyway defects may be underrepresented in the training
dataset, leading to class imbalance issues that hinder the model’s learning efficacy. The
quality of the training dataset is crucial; labeling inaccuracies, noise, or inconsistencies
can adversely affect detection outcomes. Keyway defects exhibit a variety of shapes and
appearances, requiring robust generalization capabilities to identify different defect types
effectively. While YOLOv5 is known for its detection speed, identifying complex keyway
defects may require more computational resources and time, potentially impacting real-
time performance. The model must also accurately distinguish keyway defects from other
defect categories. Beyond detection accuracy, the interpretability of the model remains
critical to ensure the results are conducive to further analysis and processing.
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Figure 1. Examples of aviation plug defects.

This paper advances the traditional YOLOv5 model to address the specific challenges
associated with detecting defects in aviation plug components, by incorporating several
cutting-edge features:

1. The Generalized Efficient Layer Aggregation Network (GELAN) [42] was integrated
to reduce information loss across network layers by aggregating multi-scale and
multi-layer features, essential for pinpointing subtle defects;

2. Furthermore, the Focal EIOU loss [43] function was implemented to enhance focus on
challenging detection areas, thereby improving detection accuracy in regions where
defects are critical but less visually apparent;

3. An S-Decoupled Head was also introduced to optimize the separation of localization
and classification tasks, significantly enhancing both the precision and efficiency of
defect identification.

Collectively, these enhancements not only augment the model’s detection capabilities
but also bolster its reliability and operational efficiency in the quality control processes of
aviation components.

2. The Improved YOLOv5 Algorithm System Overview
2.1. Image Augmentation

The YOLOv5 model requires numerous training images for robust detection. To
maintain economic efficiency, efforts are made to prevent manufacturing defects, but
creating a large volume of defective items wastes resources. Consequently, the limited
number and variety of defective samples can lead to overfitting and decreased performance.
Image augmentation addresses this issue by generating diverse images from available
datasets. For detecting keyway and pin number defects in aviation plugs, YOLOv5’s built-
in augmentation techniques, such as random cropping, rotation, and color transformation,
are effective and simplify implementation. ALADA [33] is suited for more complex datasets
and may be unnecessary for standardized images. YOLOv5’s direct parameter control
offers transparency and predictability, crucial for accuracy. Therefore, YOLOv5’s built-in
augmentation techniques are sufficient and resource-efficient for specific defect detection
tasks. This study adopted the following image enhancement techniques:

Image graying: Converting images from RGB to grayscale eliminates reliance on
color information, allowing the model to focus on contextual features, thereby enhancing
generalization. Image graying is applied to 30% of the images.

Image blurring: Platform movement, camera shake, and depth of field variations can
blur aviation plug images. This study uses mean and median filtering to enhance model
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recognition of blurred images. Mean filtering reduces noise by averaging pixel values,
while median filtering preserves edge details. These techniques improve performance with
images of varying clarity. Gaussian blur with a 3 × 3 kernel is applied to 20% of the images.

Horizontal flipping: Given the symmetrical left–right structure of aviation plugs,
horizontal flipping does not alter their appearance. This study uses horizontal flipping
to augment the dataset, effectively doubling the number of training images. This method
enhances dataset diversity and improves the model’s robustness and generalization capa-
bilities. Horizontal flipping is applied to 50% of the images.

HSV jittering: Converting images from RGB to HSV space allows intuitive color
adjustments. By modifying hue, saturation, and value, diverse environmental and lighting
conditions can be simulated, enhancing the model’s generalization and robustness. HSV
jittering is applied to 30% of the images, with ranges of ±10% for hue, ±30% for saturation,
and ±30% for value.

Mosaic [44]: A data augmentation technique randomly scales and combines four
training samples into a single image during training. This method allows the model to
process four images simultaneously without additional computational demands, promoting
robust feature learning from complex composites. Scaling reveals smaller objects, enhancing
small target detection. This technique increases data diversity and complexity, improving
generalization across various scales and object sizes. The mosaic technique, applied to all
images, maintains the original image size while stitching four images together.

Figure 2 illustrates the outcomes of the data augmentation process. These augmented
images maintain structural integrity while subtly modifying the spatial and semantic
contexts of objects. Such adjustments are essential for training the model to recognize
objects under diverse conditions and perspectives. Augmentation techniques are combined
and applied at specified probabilities to enhance dataset diversity, crucial for developing a
robust model that generalizes well across varied real-world scenarios.
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2.2. GELAN

CBAM [45] is an attention module for CNNs that enhances key feature focus through
channel and spatial attention (Figure 3). The channel attention module creates channel
descriptors using global average and max pooling, processed through an MLP and com-
bined via a sigmoid function. The spatial attention module compresses feature maps
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with pooling and captures dependencies using a 7 × 7 convolution, producing a spatial
attention map via a sigmoid function. CBAM can be integrated into any CNN architecture,
enhancing classification, detection, and segmentation tasks with low complexity. However,
potential issues include missing critical local details due to global pooling and emphasizing
non-critical background features, leading to model confusion. Integrating CBAM adds
computational steps, increasing the model’s burden and potentially affecting speed and
efficiency. The additional parameters and layers may complicate training and optimization,
especially with limited or imbalanced data, potentially causing instability or overfitting.
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Figure 3. The architecture of CBAM.

Recent advancements in deep learning have focused on addressing the challenge
of information loss across deep network layers, which is crucial for maintaining feature
integrity in tasks such as object detection. To effectively tackle this issue, the Generalized
Efficient Layer Aggregation Network (GELAN) [42] has been introduced. GELAN combines
the neural network architectures of CSPNet [46] and ELAN [47], designed to balance
lightweight design, inference speed, and accuracy. The overall architecture is illustrated in
Figure 4. GELAN extends the original ELAN, which only used stacked convolutional layers,
to a new architecture that can utilize any computational block. This ensures the retention
of critical data throughout the network and maintains an accurate and reliable gradient
flow during training. GELAN optimizes parameter usage by replacing deep convolutions
with traditional convolutional operators, creating a lightweight and efficient structure that
enhances accuracy and inference speed.
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Specifically, GELAN combines global and local attention mechanisms to refine feature
representations effectively. The global attention mechanism is represented by Equation (1).

Yglobal = X ⊙ σ
(

W2·ReLU
(

W1·Poolglobal(X)
))

(1)

X represents the input feature map, and Poolglobal denotes the global average pooling
operation, which reduces each channel of the feature map to a scalar. W1 and W2 are the
weights of the fully connected layers used to learn the importance of global information.
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ReLU is the non-linear activation function, and σ is the sigmoid function, which normalizes
the weights to the [0, 1] range. The symbol ⊙ denotes element-wise multiplication. It
captures broad contextual information from the input features by applying global pooling,
followed by a series of transformations that weigh the importance of each channel-wise
feature. Concurrently, the local attention mechanism is described by Equation (2).

Ylocal = X ⊙ σ(Wlocal ∗ X) (2)

Wlocal represents the convolutional layer weights used to capture local dependencies,
and ∗ denotes the convolution operation. It focuses on enhancing local feature details by
applying a convolution that adjusts spatial relevance across the feature map.

Integrating GELAN into our object detection framework is expected to significantly
improve detection accuracy and model robustness, particularly in challenging applications
such as detecting defects in aviation plug components, by leveraging GELAN’s advanced
feature aggregation capabilities, represented by the fusion Equation (3).

Y = λYglobal + (1 − λ)Ylocal (3)

λ is the weight parameter used to balance the contributions of global and local
attention. This integration enables YOLOv5 to better handle various complex detection
tasks, especially those requiring the simultaneous processing of multi-scale and fine-grained
features. This approach provides an effective means to enhance the model’s attention
mechanism, thereby improving its recognition capability. As a result, our model can detect
subtle defects that previous models might have overlooked, thereby increasing the overall
safety and reliability of aviation components.

In detecting keyway and pin number defects in aviation plugs, GELAN offers signifi-
cant advantages over CBAM. The design of GELAN enables it to simultaneously handle
local details and global context, which is crucial for accurately capturing small defects
in aviation plugs, such as cracks, deformations, or wear. It effectively identifies these
subtle defects through a detailed attention mechanism and integrates global information
to understand the potential impact of these local defects on the overall structure, thereby
improving detection accuracy and reliability. Additionally, GELAN can effectively separate
true defects from complex backgrounds, reducing background interference, especially
when background elements are complex or similar to defect features. GELAN also demon-
strates superior adaptability and generalization capability, maintaining high performance
under varying lighting conditions and from different viewing angles, ensuring stability
and accuracy in detection tasks across diverse environments. Thus, GELAN provides a
more comprehensive solution for high-precision and detailed recognition tasks in aviation
plug defect detection.

In the field of object detection, heatmaps are an invaluable tool that visually demon-
strates the degree of response by a model to specific regions within an image, providing
an intuitive way to understand model behavior. This visualization technique not only
assists developers and researchers in verifying whether the model is appropriately focusing
on regions containing the target but also reveals whether the model is influenced by the
background or irrelevant objects. Heatmaps generated using techniques such as Class
Activation Mapping (CAM) [48] or Grad-CAM [49] effectively highlight the areas that most
significantly impact model decisions. This not only boosts the model’s interpretability
but also enhances its performance optimization. As illustrated in Figure 5, the heatmaps
display the response levels of models integrated with CBAM and GELAN to specific areas
of the image.



Aerospace 2024, 11, 488 8 of 21

Aerospace 2024, 11, x FOR PEER REVIEW 8 of 22 
 

 

In detecting keyway and pin number defects in aviation plugs, GELAN offers signif-

icant advantages over CBAM. The design of GELAN enables it to simultaneously handle 

local details and global context, which is crucial for accurately capturing small defects in 

aviation plugs, such as cracks, deformations, or wear. It effectively identifies these subtle 

defects through a detailed attention mechanism and integrates global information to un-

derstand the potential impact of these local defects on the overall structure, thereby im-

proving detection accuracy and reliability. Additionally, GELAN can effectively separate 

true defects from complex backgrounds, reducing background interference, especially 

when background elements are complex or similar to defect features. GELAN also demon-

strates superior adaptability and generalization capability, maintaining high performance 

under varying lighting conditions and from different viewing angles, ensuring stability 

and accuracy in detection tasks across diverse environments. Thus, GELAN provides a 

more comprehensive solution for high-precision and detailed recognition tasks in aviation 

plug defect detection. 

In the field of object detection, heatmaps are an invaluable tool that visually demon-

strates the degree of response by a model to specific regions within an image, providing 

an intuitive way to understand model behavior. This visualization technique not only as-

sists developers and researchers in verifying whether the model is appropriately focusing 

on regions containing the target but also reveals whether the model is influenced by the 

background or irrelevant objects. Heatmaps generated using techniques such as Class Ac-

tivation Mapping (CAM) [48] or Grad-CAM [49] effectively highlight the areas that most 

significantly impact model decisions. This not only boosts the model’s interpretability but 

also enhances its performance optimization. As illustrated in Figure 5, the heatmaps dis-

play the response levels of models integrated with CBAM and GELAN to specific areas of 

the image. 

 
(a) (b) (c) 

Figure 5. Grad-CAM visualizations show that the heatmap color change from cool to warm repre-

sents increasing attention: (a) the original image of the defect; (b) the image processed by the CBAM 

module; (c) the image processed by GELAN. 

2.3. Focal EIOU 

The traditional YOLOv5 algorithm employs the Complete Intersection Over Union 

(CIOU) loss function for its computations, representing a significant improvement over 

more conventional metrics such as Intersection Over Union (IOU), Generalized Intersec-

tion Over Union (GIOU), and Distance Intersection Over Union (DIOU). The IOU loss 

function calculates the ratio of the intersection area to the union of areas, specifically de-

fined as the area of overlap between the predicted bounding box A and the ground truth 

bounding box B relative to their combined area. The formulation of the CIOU loss function 

is presented as Equation (4). 

IOU =
A∩B

A∪B
  (4) 

When the predicted bounding box does not intersect with the ground truth bounding 

box, the Intersection Over Union (IOU) metric yields a value of zero, leading to the van-

ishing of the loss function’s gradient. To address this limitation, the Generalized Intersec-

tion Over Union (GIOU) loss function was optimized. The GIOU loss function identifies 

Figure 5. Grad-CAM visualizations show that the heatmap color change from cool to warm represents
increasing attention: (a) the original image of the defect; (b) the image processed by the CBAM module;
(c) the image processed by GELAN.

2.3. Focal EIOU

The traditional YOLOv5 algorithm employs the Complete Intersection Over Union
(CIOU) loss function for its computations, representing a significant improvement over
more conventional metrics such as Intersection Over Union (IOU), Generalized Intersection
Over Union (GIOU), and Distance Intersection Over Union (DIOU). The IOU loss function
calculates the ratio of the intersection area to the union of areas, specifically defined as the
area of overlap between the predicted bounding box A and the ground truth bounding box
B relative to their combined area. The formulation of the CIOU loss function is presented
as Equation (4).

IOU =
A ∩ B
A ∪ B

(4)

When the predicted bounding box does not intersect with the ground truth bounding
box, the Intersection Over Union (IOU) metric yields a value of zero, leading to the vanish-
ing of the loss function’s gradient. To address this limitation, the Generalized Intersection
Over Union (GIOU) loss function was optimized. The GIOU loss function identifies the
smallest enclosing rectangle C that encompasses both bounding boxes A and B and quan-
tifies the distance between the boxes based on C. The formula for GIOU is presented as
Equation (5).

GIOU = IOU − C − A ∪ B
C

(5)

From the formulation of the Generalized Intersection Over Union (GIOU), it is estab-
lished that the range of GIOU values lies between (−1, 1). Specifically, when the rectangular
boxes A and B do not intersect, the farther apart the two boxes are, the larger the encom-
passing box C becomes, and the GIOU value approaches 1 − A∪B

C . Conversely, when the
rectangular boxes A and B completely overlap, the numerator becomes 0, resulting in
a GIOU value of 1. However, GIOU does not effectively address scenarios where the
overlapping areas are the same, but their orientations and distances differ, as illustrated in
Figure 6.
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In response to the limitations of the Generalized Intersection Over Union (GIOU) loss
function, researchers have proposed the Distance Intersection Over Union (DIOU) loss
function. This improvement focuses on the degree of overlap and the centroid distance
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between the target and the prediction frame, enhancing alignment and accuracy. The DIOU
approach aims to reduce the distance between the centroids of the bounding boxes, thus
ensuring that the predicted box not only overlaps more accurately with the target but
also aligns better in terms of position. This alignment enhances both the accuracy and the
robustness of the bounding box predictions. The formula for the DIOU loss function is
given as Equation (6).

LCIOU = 1 − IOU +
ρ(bp, bg)

c2 (6)

In the Distance Intersection Over Union (DIOU) loss formula, bp and bg represent
the prediction frame and the actual frame, respectively. The term ρ(bp, bg) quantifies the
Euclidean distance between the centroids of the two bounding boxes, while c denotes the
diagonal length of the smallest enclosing rectangle that encompasses both frames. Although
DIOU offers improvements by considering the centroid distance, it does not address the
variations in aspect ratio between the bounding boxes. This specific issue is addressed by
the CIOU loss function, which incorporates adjustments for aspect ratio disparities. This
enhancement optimizes the alignment further and improves the accuracy of bounding box
predictions. The formulation of the CIOU loss function, which includes these additional
compensatory measures, is detailed in Equation (7).

LCIOU = 1 − IOU +

(
1 − A ∪ B

C

)
+ αv (7)

The CIOU loss function, employed in the YOLOv5 algorithm, represents a significant
optimization over previous loss functions. CIOU comprehensively accounts for the overlap
area, centroid distance, and aspect ratio in bounding box regression. However, its treatment
of the aspect ratio as a relative value introduces some ambiguity. This relative measure
can sometimes hinder model optimization by failing to adequately address the balance
problem between difficult and easy samples. This limitation can impact the precision with
which the model discriminates between more complex and simpler detection scenarios.

To overcome these challenges, this research adopts the Efficient Intersection Over
Union (EIOU) loss function [43] instead of the Complete Intersection Over Union (CIOU)
loss function. EIOU directly calculates the differences in width and height rather than
relying on the aspect ratio, which reduces ambiguity. Additionally, to address the imbalance
between difficult and easy samples, Focal Loss was incorporated, significantly improving
the training process in scenarios affected by sample disparities. Focal Loss [43] primarily
addresses the issue of class imbalance in object detection. In object detection tasks, back-
ground class samples far outnumber foreground class samples. Traditional cross-entropy
loss functions often lead models to focus excessively on the abundant, easily classified
samples while ignoring the fewer, harder-to-classify samples. Focal Loss modifies the
cross-entropy loss by introducing a modulation factor (1 − pt)γ, where pt is the probability
that the model predicts the sample as its true class, and γ is a tunable parameter. This factor
reduces the loss contribution of easily classified samples and increases the loss weight of
hard-to-classify samples, ensuring the model focuses more on the latter. The combined
Focal-EIOU loss function [43] addresses class imbalance and enhances bounding box local-
ization accuracy. This loss function is particularly well suited for detecting small objects
and targets in complex backgrounds, as the Focal Loss component improves sensitivity to
hard-to-detect samples, while the EIOU component ensures more accurate bounding box
localization. The detailed implementation of the Focal EIOU loss function [43] in this study
is presented in Equations (8)–(10).

LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

c2
w

+
ρ2(h, hgt)

c2
h

(8)

FL(pt) = −αt(1 − pt)
γlog(pt) (9)
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LFocal−EIOU = λ1FL(pt) + λ2LEIOU (10)

Cw and Ch represent the width and height, respectively, of the smallest external rect-
angle that encompasses both bounding boxes involved in the computation. The variables
b and bgt denote the centroids of the prediction box and the target box, respectively. The
term ρ signifies the Euclidean distance between these centroids, enhancing the spatial
accuracy of the model. Additionally, γ is a parameter that modulates the degree of outlier
suppression in the model’s learning process. pt represents the probability that the model
predicts the current class. αt is a balancing factor used to adjust the weights of positive and
negative samples. λ1 and λ2 are weight parameters used to adjust the relative importance
of the two loss components. This modulation is crucial for adapting the learning rates
based on the proximity of the bounding boxes, thereby optimizing the detection accuracy
and robustness.

2.4. S-Decoupled

In this study, we explore the integration of a decoupled head [50] within the YOLOv5
framework, specifically tailored for detecting defects in aviation plug key slots and pin
numbers. Traditional YOLO architectures employ coupled detection heads that integrate
classification and localization tasks, potentially compromising the model’s efficiency in
complex detection scenarios. Our analysis indicates that transitioning to a decoupled
head significantly enhances both model convergence and end-to-end performance. As a
result, the original coupled detection head was replaced with a lightweight, decoupled
variant. This new head incorporates a 1 × 1 convolution layer aimed at reducing channel
dimensions, followed by two parallel branches, each consisting of 3 × 3 convolution layers,
dedicated to independently handling classification and localization tasks. This architectural
modification not only improves detection accuracy but also boosts the model’s structural
and operational efficiency by clearly separating responsibilities relevant to different de-
tection tasks. Experimental results confirm that introducing the decoupled head reduces
average precision loss and results in a marginal increase in inference time, validating its ef-
fectiveness in accurately identifying subtle defects in aviation plug components, such as key
slots and pin number markings. This advancement successfully addresses the inherent con-
flict between classification and regression tasks in object detection frameworks, providing
a robust solution that enhances accuracy and reliability in aviation component inspections.

To address the challenge of class imbalance and enhance early model convergence
while reducing computational load, we systematically improved the decoupled head based
on recent research [43], as shown in Figure 7. Specifically, we made targeted adjustments
to the bias parameters within the neural network to resolve two main issues. First, by
modifying the biases in the object presence layers, we optimized the network’s sensitivity
to potential object locations, as shown in Equation (11).

RegBias = log

(
8

(640/s)2

)
(11)

This Equation is used to initialize the bias for predicting whether each anchor contains
an object, aiming to adjust the model’s sensitivity to object presence and adapt to different
feature map resolutions. The 8 in the equation represents the assumed average number
of objects in each 640 × 640 pixel image, based on empirical data or analysis. The 640/s
term indicates the feature map’s stride, where s is the scaling factor of the feature map
relative to the original image, thus determining the feature map’s size. As the feature map
size decreases, the actual area covered by each cell increases, necessitating appropriate bias
adjustments to reflect this change. By setting the bias for object presence prediction at each
anchor appropriately, the formula helps balance the model’s sensitivity to object detection
across different scales, enabling more accurate identification and localization of objects
within images.
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Figure 7. Illustration of the coupled head and decoupled head.

Second, by adjusting the biases in the classification layers, we enhanced the model’s
ability to handle class imbalances present in the training data, as shown in Equation (12).

ClsBias = log
(

cf
cf.sum()

)
(12)

This is used to initialize the bias for predicting the target class of each anchor. When
class frequency data are available, it utilizes the actual class frequencies to set the biases.
Here, cf is an array representing the frequency of each class in the training set, and cf.sum()
is the total number of occurrences of all classes in the training data. This bias initialization
method enables the model to pay more attention to less frequent classes in the dataset,
thereby effectively improving the detection performance for these rare classes. By adjusting
the biases, this method helps the model handle all classes more equitably in the face of
class imbalance, particularly enhancing the recognition of minority classes.

This is crucial for improving the overall effectiveness and fairness of the model. These
refinements significantly increase the model’s classification accuracy and robustness in
detecting defects in aviation plug key slots and pin numbers. The architecture of the
improved YOLOv5 network is illustrated in Figure 8.
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Figure 8. The structure of improved YOLOv5 algorithm.

3. Experimental Results and Analysis
3.1. Experimental Dataset and Environment

To validate the efficacy of the enhanced YOLOv5 model, a specialized dataset including
aviation plug key slot defects (Flaw) and pin number defects (0) was utilized. This dataset
was curated from the assembly line of an aerospace electronics manufacturing facility
in Zhejiang, China. To prevent overfitting, the dataset underwent augmentation using
five previously described image enhancement techniques. Additionally, to test the method’s
robustness under different lighting conditions, the brightness levels in the test samples
were variably adjusted—decreased in one dataset and increased in another.

The augmented dataset comprises 2700 images, each with a resolution of 1920 × 1080
pixels. It was randomly shuffled and split into training, validation, and testing sets in
an 8:1:1 ratio, providing 2160 images for training, 270 for validation, and 270 for testing.
Figure 9 details the distribution of bounding boxes across various categories within the
training set. The experimental setup, including these configurations, is outlined in Table 2.
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Table 2. Experiment configuration.

Experiment Configuration Version

Hardware accelerator RTX 4090
Torch 1.13

CUDA 11.6
Python 3.8

3.2. Evaluation Criteria

The primary metrics for evaluating object detection include both accuracy and speed.
Speed metrics measure the number of images processed per second or the processing time
per image under consistent conditions. Accuracy is assessed using Average Precision (AP)
and Mean Average Precision (mAP), with Precision (P) indicating the likelihood of correct
detections and Recall (R) assessing the completeness of detections across relevant instances.
These metrics, detailed in Equations (13)–(16), provide a consistent basis for evaluating
object detection model performance.

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

APi =
∫ 1

0
P(R)d(R) (15)

mAP =
1
N∑N

i=1 APi (16)

Within the aforementioned formulas, TP denotes the number of true positive detec-
tions, accurately identified as such. FP represents the number of false positives, which are
instances where negative samples are erroneously classified as positive. FN represents
the count of false negatives, indicating positive samples mistakenly classified as negative.
Additionally, N represents the total number of target categories considered, indicating the
scope of the dataset utilized in assessing detection algorithms.

FPS (Frames Per Second) is a key metric for evaluating the performance of video
processing and image processing systems, particularly in video games, video streaming,
and real-time image recognition and processing. FPS indicates the number of imaging
frames a system, program, or device can process per second, reflecting processing speed
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and real-time handling capability. In model-based visual tasks such as object detection
using YOLO models, FPS demonstrates how quickly and efficiently the model can process
input images. FPS is calculated based on the total number of frames processed and the
total time taken, with Equation (17).

FPS =
total frames

total time
(17)

In real-time applications, a high FPS means that images are updated more frequently,
processing speed is faster, and thus, a smoother visual experience and quicker response
can be provided. Therefore, optimizing FPS is crucial for enhancing the performance of
video and real-time image processing systems, especially in environments requiring rapid
response, such as autonomous vehicles and real-time surveillance systems. This paper
uses the FPS metric to test the improved model’s detection efficiency in industrial and
aerospace scenarios.

3.3. P-R Curve

In the aerospace sector, maintaining the integrity of plug key slots and pin numbers is
crucial due to their direct impact on flight safety and equipment reliability. An effective
defect detection system is therefore indispensable, with the Precision–Recall (PR) curve
serving as a vital tool for evaluating such systems. The PR curve illustrates the precision
of the detection model at various recall levels, providing a thorough understanding of
its performance. Analysis of the PR curve enables quantification of the model’s accuracy
in identifying genuine defects while minimizing false positives. Additionally, the area
under the PR curve (AUC-PR) acts as a comprehensive performance metric, facilitating the
comparison of various algorithms in real-world settings. This assessment is especially ben-
eficial in refining the selection and development of detection algorithms that meet specific
industry requirements, thus enhancing equipment reliability and ensuring flight safety.

Figures 10 and 11 present the Precision–Recall (P-R) curves for YOLOv5 and the
improved model for detecting key slot and pin number defects. These visual representations
provide empirical evidence of the superior detection capabilities of the enhanced model,
with an AP improvement of 15.8% for Flaw, highlighting its effectiveness in consistently and
accurately identifying defects under various conditions. The improvement in the P-R curves
specifically indicates increased precision and recall, reflecting significant advancements in
the model’s ability to detect subtle and critical defects in aviation components.
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3.4. Ablation Experiment

This study utilized an enhanced version of the YOLOv5s model, validated through
a series of ablation experiments designed to assess the efficacy of various enhancements.
The experimental results are shown in Table 3. Initially, by integrating the Generalized
Efficient Layer Aggregation Network (GELAN), the model’s Mean Average Precision (mAP)
increased from 72.1% to 74.4%, as observed in comparisons between Experiments 1 and 2.
This improvement underscores a heightened probability of defect detection and a reduction
in the rate of missed detections. Furthermore, replacing the traditional CIOU loss function
with the Focal EIOU loss function, as examined between Experiments 2 and 3, advanced the
mAP from 74.4% to 75.2%. This demonstrates the Focal EIOU loss function’s effectiveness
in enhancing model performance, particularly when dealing with imbalanced data.

Table 3. Ablation study results.

Method Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

YOLOv5s
√ √ √ √ √

GELAN
√ √ √ √

Focal EIOU
√ √ √

Decoupled
√

S-Decoupled
√

mAP% 72.1 74.4 75.2 78.5 78.5
Number of parameters

(
106 ) 7.02 7.31 7.32 12.4 4.71

FPS 232 185 157 141 139

Significant improvements were noted between Experiments 3 and 4, where substi-
tuting the traditional coupled head with a decoupled head increased the mAP by an
additional 3.3%. Furthermore, the transition from Experiments 4 to 5 involved imple-
menting a lightweight decoupled head, which reduced the computational load while
maintaining detection efficiency, significantly enhancing the model’s performance in chal-
lenging environments. Additionally, the improved model maintained an FPS of 139/s,
demonstrating excellent performance in detection tasks.

The introduction of the decoupled head, while substantially increasing the parameter
count and computational load, thereby invisibly raising training costs, led to notable
performance improvements. To address this challenge, a lightweight decoupled head was
implemented, which reduced training time without negatively impacting defect detection
rates. This indicates that the lightweight decoupled head successfully minimizes the
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model’s computational demands while preserving detection efficacy, rendering the model
more adaptable for deployment in environments with limited resources.

To validate the effectiveness of the proposed algorithm, it was compared with main-
stream object detection models such as SSD, Faster R-CNN, YOLOv5s, YOLOv7, YOLOv8s,
and YOLOv9s on the aviation plug dataset. The experimental results are presented in
Table 4 for comparison. Table 4 shows the mAP@0.5, parameters, and FPS values for
different models on various defects. As shown in Table 4, SSD and Faster R-CNN algo-
rithms exhibit slight differences in detection accuracy for aviation plug defects. Although
Faster R-CNN may have slightly better detection performance, as a two-stage detection
algorithm, it has a relatively high number of parameters and significantly slower detection
speed. For small defect sizes, the detection performance of YOLOv8s and YOLOv7 is not
satisfactory. YOLOv9s shows good detection performance but slower detection speed and
a higher number of parameters. YOLOv5s is the fastest detection algorithm with relatively
good detection performance. The improved YOLOv5 algorithm demonstrates an overall
enhancement in detection performance, with only a slight decrease in detection speed. The
number of parameters remains at a satisfactory level. Additionally, it shows significant
improvement in detecting certain small defects. Based on these findings, the proposed
algorithm outperforms other algorithms for aviation plug defect detection tasks, achieving
better performance in accomplishing detection tasks.

Table 4. Comparative analysis of different model performances.

Algorithm mAP (%) Number of Parameters (106) FPS

Faster R-CNN 70.4 28.6 28
SSD 68.1 34.3 109

YOLOv5s 72.1 7.0 232
YOLOv7 70.3 36.4 173
YOLOv8s 71.5 11.1 209
YOLOv9s 73.8 9.7 82

Improved YOLOv5 algorithm 78.5 4.7 139

The performance of the YOLOv5 model before and after improvements in detecting
aviation plug defects is shown in Figure 12.

To verify the improved model’s robustness to lighting, we tested it on the aviation
plug defect dataset under different lighting conditions. As shown in Figure 13, the model
maintained high performance regardless of lighting changes, accurately detecting defects.
The improved YOLOv5 is well suited for aviation plug defect detection and demonstrates
excellent robustness to lighting variations, making it ideal for use in uncertain industrial
and aerospace environments.

Given the inherent randomness in the outputs of deep learning algorithms, the im-
proved algorithm underwent multiple training and testing iterations to validate the consis-
tency and accuracy of its results. This methodological approach ensured a robust evaluation
of the algorithm’s performance. The effectiveness of the enhancements was quantitatively
assessed by averaging the results across these experiments, thereby providing a reliable mea-
sure of improvement. The detailed outcomes of this process are systematically presented in
Table 5, which offers a clear and structured overview of the performance enhancements.
The data indicate that the highest detection accuracy achieved is 78.5%, while the lowest is
77.8%, showing a marginal difference of 0.7% between the best and worst performances.
This suggests some degree of variability in the network’s performance. The mean result
from ten experiments stands at 78.1%, with a standard deviation of 0.258%. When disre-
garding the highest and lowest results, the majority of outcomes consistently exceed 78.1%,
clustering mainly between 78.1% and 78.5%. The modifications in this study enhanced the
network’s reliability and performance consistency. These improvements are particularly
effective for detecting keyway defects in aviation plugs within aerospace manufacturing
and maintenance. The model balances speed and accuracy, enabling near real-time image
processing and detection, ideal for production line and safety inspection. It integrates easily



Aerospace 2024, 11, 488 17 of 21

into existing industrial vision systems, supporting various programming environments
and hardware platforms.
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Table 5. Average experimental performance of the enhanced model.

Numbers of Experiments 1 2 3 4 5 6 7 8 9 10

Results (%) 78.1 78.3 77.8 77.9 77.8 78.3 78.2 78.5 78.3 78.5
Mean value of results (%) 78.1
Standard deviation (%) 0.258

To further demonstrate the improved YOLOv5’s generalization, we conducted sim-
ilar experiments on another publicly available surface defect detection dataset called
NEU-DET (1800 images). Using the same experimental settings, our results are shown in
Figures 14 and 15. The improved model showed enhancements in detecting most types of
defects, with a 5.6% increase in mAP. Notably, crazing exhibited a significant improvement
of 24.4%. However, the image preprocessing process used to improve the model may not
fully satisfy the inclusion category, potentially leading to the loss of critical details and re-
duced results for that category. This experiment indicates that our proposed model not only
achieved better performance on the aviation plug defect dataset but also showed significant
improvement on the NEU-DET dataset, highlighting its strong generalization capability.
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4. Conclusions

This paper introduces an enhanced YOLOv5 algorithm specifically tailored for detect-
ing key slot and pin number defects in aviation plugs. Using a custom proprietary dataset
designed for this study, the algorithm significantly improves detection accuracy over the
traditional YOLOv5 network. Detailed analysis and refinement of the network architecture
and training parameters were conducted. The inclusion of the Generalized Efficient Layer
Aggregation Network (GELAN) replaces the traditional Convolutional Block Attention
Module (CBAM), enhancing the model’s ability to tackle defect detection challenges. This
change improves multi-scale and multi-layer feature aggregation, optimizing defect detec-
tion and task separation. The Focal EIOU loss function and lightweight decoupled head
further balance precision and recall while reducing computational load. Experimental
results show a detection probability of 78.5% with minimal increase in inference time,
confirming both efficiency and accuracy. Future research can integrate YOLOv5 with
other models to enhance accuracy through multi-stage processing and adaptive learning
strategies. Techniques like oversampling and undersampling can address data imbal-
ance. Integrating defect detection data with airline maintenance databases and operating
systems can automate the logging and generation of repair tasks upon detecting defects.
Additionally, analyzing the impact of defects on aircraft fuel efficiency can optimize fuel
management strategies and reduce consumption. Integrating defect data into flight delay
prediction models can improve the accuracy of delay forecasts. Regular performance eval-
uations of defect detection and prediction models ensure operational efficiency and cost
reduction. Continuous optimization based on operational data and feedback will adapt to
new insights and enhance safety. Advanced defect detection technology not only improves
safety but also helps airlines reduce costs by minimizing unnecessary maintenance and
optimizing operational processes.
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