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Abstract: This paper seeks and examines N-symmetric vortical solutions of the two-layer geostrophic
model for the special case when the vortices (or eddies) have vanishing summed strength (circulation
anomaly). This study is an extension [Sokolovskiy et al. Phys. Fluids 2020, 32, 09660], where the
general formulation for arbitrary N was given, but the analysis was only carried out for N = 2.
Here, families of stationary solutions are obtained and their properties, including asymptotic ones,
are investigated in detail. From the point of view of geophysical applications, the results may help
interpret the propagation of thermal anomalies in the oceans.
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1. Introduction

The concept of point-vortex hetons, proposed in [1,2] as the simplest model of vortex
heat flow, is based on the equations of geophysical fluid dynamics [3]. It has found a wide
range of applications in oceanic [4–20], atmospheric [21–24] and laboratory [25–28] research.
Hetons are most effectively used to model the propagation of temperature anomalies and,
in particular, to explain the phenomenon of deep convection in the ocean [14–16,29–37].
Although hetons are relatively simple entities, the dynamics of a collection of hetons may
exhibit both regular and chaotic motion [2,11,37–43].

The study of finite-core hetons has proved especially fruitful [44,45]. In particular,
collections of finite-core hetons in mutual equilibrium have been found, and their stability
addressed. Their nonlinear interactions are highly varied, including vortex merger, vortex
splitting, filamentation, as well as vertical alignment [42,46–60].

In this paper, we extend the results obtained in [61] (hereafter referred to as SKDR),
for both point vortices and finite-core vortices, to the case of an arbitrary N. The paper
is organised as follows. The formulation of the general problem for the motion of N
hetons found in SKDR is restated in Section 2. The complete system of 2N differential
equations is reduced to four equations for an ‘equivalent’ heton, and subsequently to just
two equations for a ‘virtual’ heton. Next, in Section 3, the possible modes of behaviour
for the heton system, following from the properties of the Hamiltonian, are described.
Furthermore, vortex trajectories for various distinct types of motion are presented, and the
class of so-called ‘choreographies’ is considered. The interesting problem of the direction
of rotation of the vortices located at the vertices of the larger N-gon is discussed separately.
Section 4 compares the evolution of the point-vortex hetons with the evolution of the more
realistic finite-core hetons on selected examples. Section 5 discusses our main findings and
their implications, as well as open problems for future research. Appendix A provides
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useful formulas for reference. Appendix B contains a detailed analysis of the asymptotic
properties of the mean angular velocity of the vortex rotation.

2. Mathematical Model and Problem Formulation

We consider the motion of a system of 2N point vortices in a two-layer quasi-geostrophic
flow. For simplicity, the layers are taken to have equal non-dimensional thickness
h1 = h2 = 1/2. In the conclusions, we discuss h1 ̸= h2 as a natural extension. Each layer
contains N identical vortices, initially located at the vertices of a regular N-gon. Vortices
in different layers have opposite strengths (volume-integrated potential vorticity), so that
the net integrated potential vorticity is zero. The two regular N-gons have the same centre,
but can have different size. Additionally, the two regular N-gons can be offset by an angle
(see Figure 1) which shows two examples of initial conditions for N = 6.

The equations are simplest if we introduce the complex coordinate zα
j = xα

j + iyα
j for

the αth vortex in layer j (with j = 1 for the upper layer and j = 2 for the lower layer). The
vortex strengths κα

j are all equal to κα
2 = κ > 0 in the lower layer and to κα

1 = −κ < 0 in the
upper layer, corresponding to ‘warm’ hetons, following [1].

The vortex motion in an unbounded horizontal domain is governed by the ordinary
differential equations [57]

˙̄zα
j =

(−1)jκ

4πi

{
N

∑
β=1
β ̸=α

1

zα
j − zβ

j

[
1 + γ|zα

j − zβ
j |K1

(
γ|zα

j − zβ
j |
)]

−
N

∑
β=1

1

zα
j − zβ

3−j

[
1 − γ|zα

j − zβ
3−j|K1

(
γ|zα

j − zβ
3−j|

)]}
, (1)

where j = 1, 2 and α = 1, 2, . . . , N. Here, q̄ denotes the complex conjugate of any quantity
q, while K1 is the first-order modified Bessel function of the second kind, and γ = 1/λ is the
inverse internal Rossby deformation length λ =

√
g′h1h2/(h1 + h2)/ f , with g′ = g∆ρ/ρ0

being the reduced gravity, g is the acceleration due to gravity, ∆ρ = ρ2 − ρ1 (ρ1 and ρ2 are
the densities of upper and lower layers, respectively, while ρ0 is the mean density).

Figure 1. Schematic of the initial vortex system with r2 < r1 and N = 6 (viewed from above):
(a) Φ = 0; (b) Φ = π/6, where Φ is the angle by which the vortex polygons are offset. The solid
lines correspond to polygons with circumscribed radii r1 and r2, and the dashed lines correspond
to a polygon with 2N = 12 sides joining the vortices in both layers. Red (‘warm’) and blue (‘cold’)
colours mark the auxiliary lines and vortices in the upper and lower layers, respectively.
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Note that Equation (1) is invariant under both translation and rotation. It follows that
the two real components, Px and Py, of the linear impulse and the angular impulse, M,

Px + iPy =
κ

2

2

∑
j=1

(−1)j
N

∑
α=1

zα
j and M =

κ

2

2

∑
j=1

(−1)j
N

∑
α=1

∣∣∣zα
j

∣∣∣2 (2)

are invariants of motion. Moreover, the linear impulse is zero in each layer. A further
invariant is the Hamiltonian, or interaction energy. It takes the form

H = − κ2

8π

2

∑
j=1

{
N

∑
α,β=1
α ̸=β

[
ln
∣∣zα

j − zβ
j

∣∣− K0

(
γ
∣∣zα

j − zβ
j

∣∣)]

−
N

∑
α, β=1

[
ln
∣∣zα

(3−j) − zβ
j

∣∣+ K0

(
γ
∣∣zα

(3−j) − zβ
j

∣∣)]}. (3)

Henceforth, we restrict attention to the N-fold symmetric situation. It follows from
the invariants (2) that this symmetry is preserved for all time. Moreover, one can find a
solution of (1) of the form

zα
j = zj(t)ei 2π(α−1)

N = rj(t)e
i
(

φj(t)+
2π(α−1)

N

)
, j = 1, 2, α = 1, 2, . . . , N. (4)

For the initial configurations described in Figure 1, the initial angles are φ1(0) = 0,
φ2(0) = 0 in panel (a) and φ1(0) = 0, φ2(0) = π/N in panel (b).

Remark 1. Equation (2) for the angular impulse M simplifies to (r1)
2 − (r2)

2 = −2M/κN.
Since the latter is invariant, it follows that for any motion of the hetons, r1 and r2 must always
increase or decrease simultaneously and, in particular, take extreme values synchronously. This fact
is used in the analysis of the regimes of vortex motion.

Substituting a solution in the form (4) into (1) allows one to obtain evolution equations
for the radial rj and angular coordinates φj of an ‘equivalent’ heton (see SKDR). Using
angular momentum conservation, we can write the equations for the radial coordinates in
the form:

ṙj =
R ϱ2−j

1 − ϱ2 ,̇ j = 1, 2. (5)

Here, ϱ = r2
r1

, R ≡ r1, R2 = − 2M̃
N
(

1−ϱ2
) (M̃ = M

κ

)
, and

ϱ̇ = −κ
(
1 − ϱ2)
4πR2

[
γR

N−1

∑
n=0

sin
(
Φ + 2πn

N
)

G(ϱ, Φ, n)
K1
(
γR G(ϱ, Φ, n)

)
− NϱN−1 sin NΦ

1 + ϱN(ϱN − 2 cos NΦ)

]
. (6)
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The equations for the angular coordinates φj have the form

φ̇1 = − κ

4πR2

[
γR

(
N−1

∑
n=1

sin
πn
N

K1

(
2γRsin

πn
N

)
+

N−1

∑
n=0

1 − ϱ cos
(
Φ + 2πn

N
)

G(ϱ, Φ, n)
K1

(
γR G(ϱ, Φ, n)

))

− 1
2

(
N
(
1 − ϱ2N)

1 + ϱN(ϱN − 2 cos NΦ)
+ 1

)]
, (7)

φ̇2 =
κ

4πR2ϱ2

[
γRϱ

(
N−1

∑
n=1

sin
πn
N

K1

(
2γRϱsin

πn
N

)
+

N−1

∑
n=0

ϱ − cos
(
Φ + 2πn

N
)

G(ϱ, Φ, n)
K1

(
γR ϱ G(ϱ, Φ, n)

))

+
1
2

(
N
(
1 − ϱ2N)

1 + ϱN(ϱN − 2 cos NΦ)
− 1

)]
, (8)

where Φ ≡ φ2 − φ1. (Note that the argument sin πn
N of K1 is positive for all n = 1, 2, . . . ,

N − 1). In Equations (7) and (8) above,

G(ϱ, Φ, n) =

√
1 + ϱ

[
ϱ − 2 cos

(
Φ +

2πn
N

)]
. (9)

We have thus reduced the original system of 4N Equation (1) to a system of just three
equations, (5), (7) and (8). The trajectories of the remaining N − 1 hetons can be recovered
by simple rotations through angles 2πn/N, n = 1, 2, . . . , N − 1.

For a general qualitative analysis of this reduced dynamical system, it is convenient to
further reduce (5)–(8) to a system of two equations for a ‘virtual’ vortex. The right-hand
sides of (5) and (7)–(8) only depend on Φ, the angular difference between the lower-layer
and upper-layer vortices (not on φ1 and φ2). This fact allows us to reduce the system to
just two equations. The first is Equation (6) above for ϱ = r2/r1, while the second is

Φ̇ =
κ

4πR2ϱ2

{
1
2

(
N
(
1 − ϱ2N)(1 − ϱ2)

1 + ϱN(ϱN − 2 cos NΦ)
− (1 + ϱ2)

)

+ γRϱ

[
N−1

∑
n=1

sin
πn
N

(
ϱK1

(
2γR sin

πn
N

)
+ K1

(
2γRϱ sin

πn
N

))

−
N−1

∑
n=0

((
1 + ϱ2) cos

(
Φ + 2πn

N
)
− 2ϱ

)
G(ϱ, Φ, n)

K1
(
γR G(ϱ, Φ, n)

)]}
(10)

for Φ = φ2 − φ1.
The Hamiltonian (3), re-expressed in the variables (ϱ, Φ), takes the form

H =
κ2

4π

[
ln

R2(1 + ϱN(ϱN − 2 cos NΦ)
)

ϱN−1 + 2
N−1

∑
n=0

K0
(
γR G(ϱ, Φ, n)

)
+

N−1

∑
n=1

(
K0

(
2γR sin

πn
N

)
+ K0

(
2γRϱ sin

πn
N

))]
. (11)
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Here, we have used the properties of trigonometric products, see Equation (A2) of
Appendix A. It is convenient to re-express Equations (6) and (10) in their Hamiltonian form

ϱ̇ =
1 − ϱ2

2κϱR2
∂H
∂Φ

, Φ̇ = −1 − ϱ2

2κϱR2
∂H
∂ϱ

, (12)

explicitly showing this is a (reduced) Hamiltonian system.

3. Analysis of Possible Motion Regimes

The possible motion regimes are completely determined by the structure of the Hamil-
tonian. The phase portrait of the Hamiltonian H(ϱ, Φ) is shown in Figure 2 for M̃ = −1.2
and N = 2, 3 and 4. The interval Φ ∈ [0; 2π] includes the entire periodically repeating
structure of heton system.

Separatrices delimit regions of localised and unbounded motions. The intersections of
the separatrices (red dashed lines) at the hyperbolic points occur at values of ϱ, for which
the two vortex N-gons are in relative equilibrium for Φ = π/N. Such a case is shown in
Figure 1b for N = 6. Scanning across in ϱ for any fixed Φ, bounded or localised motions
occur only between the separatrices.

Figure 2. Examples of Hamiltonian phase portraits H(ϱ, Φ) for ϱ ∈ [0; 1] and Φ ∈ [0; 2π], at
M̃ = −1.2: (a) N = 2; (b) N = 3; (c) N = 4. The thin horizontal lines in each panel indicate Φ = nπ/N

(n = 0, 1, . . . , 2N). The red dashed lines are the separatrices of field Φ(ϱ)
∣∣∣

M̃=−1.2
, delimiting regions

of localised and unbounded motions.

It should be noted that the system is invariant through a rotation of
2π

N
, so it suffices

to consider the values Φ = 0 and Φ = π
N for the virtual vortex. In both cases, the equalities

(. . . )i = −(. . . )N−i hold, where (. . . ) are the expressions within the sums (see Appendix A).
It follows that the right-hand side of (6) vanishes for these values of Φ, and ϱ reaches an
extremum. This means that

ϱ̇
(

Φ = 0,
π

N

)
= 0, (13)

which is clearly seen in Figure 2. The same is true for r1,2 due to Equation (5).
To analyse the extrema,

ϱ− = ϱ(Φ = 0), ϱ+ = ϱ
(

Φ =
π

N

)
(14)

we evaluate the second derivative of ϱ,

ϱ̈
∣∣∣
Φ=0, π

N

=
1 − ϱ2

2κϱR2
∂2H
∂Φ2 Φ̇

∣∣∣
Φ=0, π

N

. (15)

It is shown in Appendix B that ∂2 H
∂Φ2 > 0 and Φ̇ > 0 for Φ = 0. Hence, the extremum

ϱ− is always a minimum. It is also shown that ∂2 H
∂Φ2 < 0 for Φ = π/N. However, Φ̇ changes

sign in this case. We have Φ̇ > 0 for ϱ+ < ϱ∗, Φ̇ = 0 at ϱ+ = ϱ∗ and Φ̇ < 0 for ϱ+ > ϱ∗.
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This means that, for 0 ≤ ϱ+ < ϱ∗, the second derivative ϱ̈+ < 0 and ϱ+ is maximum on
this interval. Then, the second derivative ϱ̈+ > 0 for ϱ∗ < ϱ+ < 1 and ϱ+ is minimum on
this interval.

The extreme values of ϱ can be obtained from the equation

H
(
Φ±, ϱ±

)
= H̄, Φ− = 0, Φ+ =

π

N
, (16)

where H̄ is a some fixed value of the Hamiltonian. It is, therefore, useful to analyse, in turn,
the extreme values of the Hamiltonian (see also [61–63]):

H− = H
(
Φ−, ϱ−

)
, H+ = H

(
Φ+, ϱ+

)
. (17)

To this end, we examine the dependence of H− and H+ on ϱ± in Figure 3. Here, we
restrict attention to the interval 0 < ϱ < 1 without loss of generality, since the situation
ϱ > 1 corresponds to swapping the two layers. It is shown in Appendix B that both H−

and H+ tend to infinity as ϱ → 0, due to a logarithmic singularity.

Figure 3. H+ (thick lines) and H− (thin lines) as a functions of ϱ for N = 2, 3, 4, 5, 6: (a) M̃ = −0.001;
(a1) the same as (a), but on the interval ϱ ∈ [0.99; 1.00], i.e., the horizontal axis is scaled by a factor
100; (b) M̃ = −1; (c) M̃ = −100. In panel (d), M̃ = −5 is shown only for N = 2 and 6. The dashed
horizontal line shows the minimum values of H+, denoted H+∗

2 and H+∗
6 , found at ϱ = ϱ+∗

2 and
ϱ = ϱ+∗

6 respectively. (Here, H+∗
2 ≈ 1.8680 at ϱ+∗

2 = 0.5078 and H+∗
6 ≈ 1.0135 at ϱ+∗

6 = 0.9296.) Two
additional lines of constant energy are drawn in solid: H = Hu2 lying above H+∗

2 , and H = Hd2

lying below H+∗
2 for N = 2 (blue horizontal lines); also, H = Hu6 and H = Hd6 for N = 6 (red

horizontal lines). The intersections of either of these lines with H−(ϱ) are denoted by ϱ−2 and ϱ−6 ,
respectively. Note, the lines H = Hu2 and H = Hu6 intersect the curves H+ at two points, which we
denote ϱ = ϱ+1

2 and ϱ+2
2 when N = 2, and ϱ = ϱ+1

6 and ϱ+2
6 when N = 6. Note that ϱ+2

N > ϱ+1
N .
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For ϱ → 1, the situation differs. H+ tends to infinity (see (A24)), but H− tends to a
finite constant (see (A25)). Since ∂H−

∂ϱ is always negative (see Section 3) one concludes that

this derivative is a monotonically decreasing function of ϱ. On the other hand, ∂H+

∂ϱ changes
sign at ϱ = ϱ∗, as shown in Appendix B. Thus, H+ has a minimum at ϱ = ϱ∗.

It is also shown in Appendix B that the difference H+ − H− is always positive, but
remains very small for small ϱ+ and ϱ−. The amplitude of the oscillation ϱ+ − ϱ− is also
very small for ϱ ≪ ϱ∗.

We next analyse the influence of the angular momentum and the number of vortices
N on H− and H+. We examine the possible localised (periodic) and non-localised (un-
bounded) types of motion. For this, it is convenient to introduce the following definitions,
which are depicted graphically in Figure 3. We define ϱ∗ as the value of ϱ, for which the
function H+ has a minimum H+∗ (the dashed horizontal lines in Figure 3d). We also define
ϱ− to be the intersection point between H−(ϱ) and either of the two levels of constant
energy, H = Hd or Hu, are defined so that Hd < H+∗ and Hu > H+∗. Finally, we define
ϱ+1 and ϱ+2 to be the minimum and the maximum solutions to H+(ϱ) = Hu.

It is shown in Appendix B that ϱ− and ϱ+2 always correspond to minima of ϱ, while
ϱ+1 always corresponds to a maximum of ϱ, for a given energy H = H̄. It is worth
mentioning that the limit ϱ → 1 corresponds to the limit r1, r2 → ∞. If ϱ = 1 at t = 0,
it follows from (12) that ϱ = 1 for all times since ϱ̇ = 0 exactly. For this special case,
Equation (10) simplifies to

Φ̇ =
κ

4πR2

N−1

∑
n=1

sin
πn
N

K1

(
2γR sin

πn
N

)
+ 2γR

N−1

∑
n=0

∣∣∣∣sin
(

Φ
2
+

πn
N

)∣∣∣∣ K1

(
2γR

∣∣∣∣sin
(

Φ
2
+

πn
N

)∣∣∣∣)− 1, (18)

where R = r1 = r2. This special case was studied in [1] (see also [11,38,57]). It was shown
that there exists R = R∗ such that the solutions to (18) are localised and periodic, and the
corresponding trajectories follow closed quasi-quadrangular patterns for R < R∗. The
trajectories are unbounded for R > R∗. Thus, one deduces three possible regimes of motion
(see also Figure 3 for illustration) for the virtual vortex:

(A) Unbounded motion within the interval ϱ− ≤ ϱ ≤ 1, when H < H+∗;
(B) Localised (bounded and periodic) motion within the interval ϱ− ≤ ϱ ≤ ϱ+1, when

H > H+∗;
(C) Unbounded motion within the interval ϱ+2 ≤ ϱ ≤ 1, when H > H+∗.

For example, if we initialise the system with ϱ(0) = ϱ0 = ϱ+ and Φ(0) = Φ0 = π/N,
and choose a value of the angular momentum M̃ to determine the initial values of the radial
coordinates r10 and r20, the subsequent motion will be localised (bounded) if ϱ+ < ϱ∗, but
unbounded if ϱ+ > ϱ∗. Both cases, in fact, correspond to the same condition: H > H+∗.
It is worth mentioning that it is impossible to have H < H+∗ for ϱ(0) = ϱ0 = ϱ+ and
Φ(0) = Φ0 = π/N, irrespective of M̃. We consider the case H < H+∗ separately below.

The region of unbounded motions [∞] is shaded in blue in Figure 4. The critical curve
M̃(ϱ∗) separating bounded and unbounded motion is found by solving the equation

∂H+

∂ϱ
=

∂H(Φ = π
N , ϱ)

∂ϱ
= 0 (19)

for each value of M̃. Notably, the asymptotes of this critical curve can be found for large
values of −M̃, see Appendix B. We find

ϱ∗ = 1 − δ∗

N
, R∗ ≈

√
− M̃

δ∗
(
δ∗ ≈ 1.5485,−M̃ ≫ 1

)
(20)
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and the asymptotes are indicated in Figure 4a–c by the vertical dashed lines; the boundary
of the [∞] regions approaches the respective asymptotes as −M → ∞.

An approximate form of the boundary of the region of parameter space corresponding
to unbounded motion can also be found from Equation (A16) in Appendix B:

−M̃ ≈ 0.827
N3

γ2π2

(
1 − ϱ2

)
(21)

for small (1 − ϱ). For sufficiently large N and γRG(ϱ, Φ, n) ≥ 1, the value of δ∗ in
Equation (20) can be determined from Equation (A11) in Appendix B, and we have δ∗ ∼
1.5485. For γRG(ϱ, Φ, n) ≤ 1 the value of δ∗ is smaller. It follows that ϱ∗ tends to the right
boundary of the region when N grows and when −M̃ decreases. For 2 < N < 10, we have
checked this tendency by direct calculation. This tendency is also shown in Figure 3.

Figure 4. (a–c) Regime diagrams showing the possible types of motion in the (ϱ+, M̃/N)-plane, for
the initial value Φ0 = π/N for N = 2, 3 and 6, respectively. The blue [∞] region corresponds to
unbounded motion, while the red [−/+], black [−0 + /+] and yellow [+/+] regions correspond
to localised, bounded motions in which all vortices in both layers move within annular zones
bounded by concentric circles. The white lines inside the black regions in these panels and in
panel (e) correspond to a families of periodic solutions, the so-called ‘absolute choreographies’.
The white markers on these lines correspond to parameters used to generate the blue, green and
red lines in Figure 6. The black markers in the upper right corner of the panel (c) correspond to
the numerical experiments in Figure 8. The green segment on the white line in panel (c) over the
interval ϱ+ ∈ [0.60; 0.98] corresponds to a family of absolute choreographies shown in Figure 7 below.
Horizontal dashed lines are the asymptotes to which the lower boundary of the red region [−/+]
approaches at N → ∞ (see Equation (26). Vertical lines are asymptotes for the left border of the
blue area [∞] as M̃ → −∞ for each N (see Equation (20)). Panel (d) shows regions for the single
regime [−/+], for N = 2, 3, 4, 5 and 6 (filled with different shades of red). Here, the vertical scale
is multiplied by by ≈ 5.4 for clarity. Panel (e) shows the case N = 3 (as in panel (b)), but with the
vertical scale multiplied by 8. Here, the white markers at M̃/N = −0.28 correspond to parameters
for the numerical experiments presented in Figure 5. Panel (f) shows regions for the single regime
[∞], for N = 2, 3, 4, 5 and 6 (filled with different shades of blue).
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Hence, the boundary of the [∞]-region tends to the point (M̃, ϱ) = (0, 1) along the
curve (21), with a slope increasing with N.

3.1. Examples of Trajectories: Absolute and Relative Choreographies

Panels (a–f) of Figure 5 show early-time trajectories of the equivalent heton for
M̃/N = −0.28, N = 3, Φ(0) = Φ0 = π/3 and ϱ+ = 0.864, 0.878, 0.8892, 0.9, 0.9144
and 0.9145. The parameter values (ϱ+, M̃/N) are indicated by white markers in Figure 4e.
When (ϱ+, M̃/N) = (0.864, −0.28), as shown on Figure 5a, the initial conditions belong to
the red region of Figure 4e. This region, symbolised by [−/+], corresponds to cases where
the average angular velocity of the orbital motion of the upper layer vortex is negative,
and the lower layer vortex is positive. In the general case, in addition to circular motion,
the vortices also perform nutational oscillations relative to their mean position. Thus, their
trajectories over long times fill concentric annular regions.

Figure 5. Trajectories of vortices (here and everywhere below, the absolute and relative trajectories of
the vortices are depicted in the Cartesian coordinate system (x, y), the dimensionless horizontal and
vertical axis, correspondingly) of the equivalent heton (top view) at early times for M̃/N = −0.28 and
N = 3: (a) ϱ+ = 0.864: (b) ϱ+ = 0.878; (c) ϱ+ = 0.8892; (d) ϱ+ = 0.900; (e) ϱ+ = 0.9144; (f) ϱ+ = 0.9145.
The red lines correspond to the upper-layer vortices, and the blue lines correspond to the lower-layer
vortices. Legends in brackets indicate the type of motion (see Figure 4); the symbol corresponding to
a specific type of trajectory is highlighted in red in panels (b–e). These experiments are for parameters
represented by the white markers for M̃/N = −0.28 in Figure 4e.

Panels (b–e) show examples of motions in the [−0 + /+] region (black area of Figure 4).
Symbols ‘−’, ‘0’ and ‘+’, respectively, correspond to an anticyclonic displacement, the
absence of any average displacement, and a cyclonic displacement of the upper layer vortex.
The symbol ‘+’ after the forward slash corresponds to a cyclonic rotation in lower layer. In
each panel of Figure 5, the corresponding symbol is highlighted in red. A characteristic
feature of this class of motions is that the sign of the total angular velocity (not averaged) of
the upper-layer vortices alternates (nutational trajectories are loop-shaped). In panel (c), the
outer vortex only performs periodic nutational motions, while the inner vortex periodically
rotates along a fixed quasi-triangular curve (the corresponding marker in Figure 4a lies
on the white line). In reality, we have a six-vortex structure, in which three peripheral
vortices in the upper layer rotate along individual closed trajectories shifted relative to each
other by an angle π/3, and three vortices in the lower layer move along a common central
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quasi-triangular trajectory one after the other with the same angular displacement. For this
reason, the trajectories in panel (c) are called ‘absolute complex choreographies’.

Remark 2. Simó [64] introduced the concept of choreography applied to rigid body dynamics.
Choreographies can be (a) absolute, if the trajectories are closed in a fixed coordinate system;
(b) relative, if the trajectories are closed in a uniformly rotating or translating coordinate system;
(c) simple, if all of the material points move along a common trajectory; and (d) complex, if at least
one of the points moves along a separate trajectory. The concept of choreography in vortex theory was
used for the first time in [65]. Modern studies of choreography as applied to 2D vortex dynamics are
presented in [65–69], and for a two-layer rotating fluid in [56,57,61].

It should be noted that the values of the values of the parameter ϱ+ in panels (b–d)
differ only slightly and, therefore, the markers in Figure 4e are almost undistinguishable.
The last pair of trajectories of this type in Figure 4e corresponds to initial conditions close to
the border of the black region. There, the loops almost disappear, and the trajectory of the
outer vortex approaches a circular form. An increase in ϱ+ by just 0.0001 shifts the initial
conditions into the region of unbounded motions, when three two-layer pairs (hetons)
scatter in different directions—see Figure 5f. It should be noted that the example of absolute
choreographies, shown in Figure 5c, is not unique. Trajectories of this type correspond to
points belonging to the white lines in Figure 4a–c,e. The case N = 2 was studied in detail
in SKDR.

Figure 6 shows a gallery of absolute choreographies for 2 ≤ N ≤ 6, corresponding to
the maximum values of ϱ+ (the closed curves or orbits were obtained numerically). We call
these periodic trajectories the ‘limiting’ ones. The parameters ϱ+ and M̃/N for the cases
N = 2, 3 and 6 correspond to the white markers in the upper right corners of Figure 4a–c.

Figure 6. Gallery of the ‘limiting’ periodic trajectories (absolute choreographies) of vortices of an
equivalent heton for the following external parameter values (ϱ+, M̃/N): (0.9323; −0.0899) for N = 2;
(0.9543; −0.1223) for N = 3; (0.9739; −0.1163) for N = 4; (0.9794; −0.1138) for N = 5 and (0.9854;
−0.1326) for N = 6.

Figure 6 shows that the size of internal N-shaped (N-gons with smoothed corners)
choreographies increase with increasing of N.

We next consider the topological properties of the choreographies for the case N = 6
(Φ(0) = Φ0 = π/6) in more detail in Figure 7. We show a family of choreographies over
an interval for ϱ+ ∈ [0.60; 0.97] with an increment of 0.01. This interval is the green portion
of the white line in Figure 4c. Numerical experiments show that as ϱ+ decreases, the
quasi-hexagonal choreographies decrease in size in the lower layer and the trajectories
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become nearly circular. In the upper layer, the situation is more complicated. For ϱ+ ≥ 0.97,
the vortices move along thin drop-shaped trajectories, whose innermost tips point towards
the origin. For ϱ+ = 0.96, figure-of-eight orbits begin to form due to the emergence of
a second closed loop to the left of the tip. Such doubly connected patterns occur in the
interval ϱ+ ∈ [0.93, 0.96]. In this interval, as ϱ+ decreases, the left part of the ‘eight’ grows,
while the right part shrinks. Finally, for ϱ+ = 0.93, the right part completely disappears, and
now the drop-shaped trajectory has a tip pointing away from the origin. As we decrease ϱ+

further, the size of the drop first increases to reach a local maximum at ϱ+ ≈ 0.90, and then
decreases, eventually shrinking to a point.

We next consider the evolution of the system close to the figure-of-eight stationary
states for ϱ+ = 0.95 (purple curves in Figure 7) and for ϱ+ = 0.97 (black curves). The next
three figures are devoted to ϱ+ = 0.95, followed by another devoted to ϱ+ = 0.97.

Figure 7. (a,b): Gallery of ‘absolute choreographies’ of the equivalent heton for N = 6
(Φ(0) = Φ0 = π/6) along the interval ϱ+ ∈ [0.60; 0.98] with increment 0.01. Each value of ϱ+ has
its own colour, and is the same for the trajectories of the upper and lower layers. Panel (a) shows
the lower-layer trajectories in natural scale. Panel (b) shows the upper-layer trajectories in stretched
coordinates: 4 times in x and 16 times in y. Panel (c) shows the limiting simply connected upper-layer
trajectories at ϱ+ = 0.92 (left) and ϱ+=0.97 (right); here, the x scale is expanded by 8 and the y
scale is expanded by 40. Panel (d) shows a family of intermediate doubly connected figure-of-eight
trajectories for ϱ+ = 0.93, 0.94, 0.95 and 0.96. The x scale is the same as in panel (c), but the y scale
is doubled.

Figure 8 shows a series of vortex trajectories in the vicinity of an equivalent heton with
N = 6 and ϱ+ = 0.95. Panel (b) shows the absolute choreography of the [-0+/+] type, for
which the vortex trajectory of the upper layer has a figure-of-eight shape, and panels (a) and
(c) show the absolute vortex trajectories of types [-0+/+] and [-0+/+],, respectively, when
the upper layer vortex moves along a loop-like trajectory, unwinding in the anticyclonic and
cyclonic directions, respectively. This behaviour is found in the black region of Figure 4c.

We construct the relative choreographies for these cases in Figure 8(a1,c1). The relative
choreographies are the closed trajectories obtained in a reference frame rotating with the
average angular velocity ω of the vortex in the upper layer. One may see that the relative
choreographies have loop-like absolute upper-layer trajectories (found inside the black
region of Figure 4c) also belong to a type of figure-of-eight trajectory. The figure-of-eight
relative choreographies also occur in some parts of the red and yellow areas of the diagram,
where the upper-layer vortices move along zigzag trajectories—see Figure 9.

Further away from the stationary state, it is possible to obtain drop-shaped relative
choreographies, both in the red region (for M̃/N = −0.2) and in the yellow region (for
M̃/N = −0.5) in Figure 4c, as shown in Figure 10.
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Figure 8. The trajectories of vortices of the equivalent heton (top view) at ϱ+ = 0.95 and N = 6:
(a) M̃/N = −0.35; (b) M̃/N = −0.35183 (absolute choreography); (c) M̃/N = −0.36. Relative
choreographies in panels (a1,c1) into which trajectories from panels (a,c) are subject to external
rotation with positive and negative angular velocity, respectively. The insets to the right of the
choreographies show zooms of the upper-layer closed trajectories (here, x is expanded by 5 and y is
expanded by 25).

Figure 9. (a,b): Absolute vortex trajectories of an equivalent heton for N = 6, ϱ+ = 0.95;
(a) M̃/N = −0.3 and (b) M̃/N = −0.4. Panels (a1,b1) show their respective figure-of-eight rela-
tive choreographies, into which trajectories from panels (a,b) are subject to external rotation with
positive and negative angular velocity, respectively. In the insets, x is expanded by 5 and y is
expanded by 25.



Fluids 2024, 9, 122 13 of 31

Figure 10. The same as in Figure 9, but for M̃/N = −0.2 (a) and M̃/N = −0.5 (b). Drop-shaped
relative choreographies, into which trajectories from panels (a,b) are subject to external rotation with
positive and negative angular velocity and are shown in panels (a1,b1), respectively. In inset (a1), x is
expanded by 24 and y by 125; in inset (b1), x is expanded by 9 and y by 72.

We next consider the second class of motions in the vicinity of the stationary state,
when the absolute choreography for the vortex of the upper layer has a drop-like shape,
i.e., for ϱ+ = 0.97. Results are presented in Figure 11, where all absolute trajectories of
the upper-layer vortices are loop-shaped. The initial conditions are in the black region of
Figure 4c, outside the yellow [+/+]-region. All relative choreographies are drop-shaped.

Figure 11. The trajectories of vortices of the equivalent heton (top view) at ϱ+ = 0.97 and N = 6:
(a) M̃/N = −0.25 (type [-0+/+]); (b) M̃/N = −0.26767 (absolute choreography, type [-0+/+]);
(c) M̃/N = −0.31 (type [-0+/+]). Relative choreographies in panels (a1,c1), into which trajecto-
ries from panels (a,c) are subject to external rotation with positive and negative angular veloc-
ity, respectively.

Let us point out another new type of absolute choreography in the N-symmetric
dynamics of N hetons. In this choreography, trajectories are circular synchronous rotations
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of the lower-layer and upper-layer vortices around a common centre. Clearly, these move-
ments are of the [+/+] type (the yellow areas in Figure 4). For a circular motion, the right-
hand side of Equation (5) must be zero, i.e., ϱ ≡ 0, and we must have ω1 = φ̇1 = ω2 = φ̇2
(see Equations (7) and (8)). These conditions are satisfied for a discrete set of parameters
in the plane (ϱ+, M̃/N) in a narrow neighbourhood of the yellow region near the bound-
ary of the region [∞]. Two examples of such circular choreographies for N = 5 and 6
are shown in Figure 12. Markers in the figure only show the initial location of the two
vortices of the equivalent heton. In reality, five (respectively, six) anticyclones/cyclones in
the upper/lower layer move counter-clockwise, with the same angular velocity, thereby
preserving the regular pentagonal or hexagonal shape.

Figure 12. The circle choreographies for (a): N = 5 (Φ = π/5), ϱ+ = 0.78, M̃/N = −3.8923,
r1 = 4.4598, r2 = 3.4787 and (b): N = 6 (Φ = π/6), ϱ+ = 0.82, M̃/N = −3.9796, r1 = 4.4930,
r2 = 4.0427. Markers indicate the initial position of the equivalent heton vortices.

3.2. Direction of Rotation of the External Vortices

Since we assume throughout that r1 > r2 (as in Figure 1), the external N-gon is in the
upper layer. Thus, ‘external/internal’ and ‘upper-layer/lower-layer’ are synonymous in
this context. The internal vortices always maintain their direction of rotation, while the
external ones can change it.

The direction of rotation of the external vortices depends on the region of the parameter
space. The external vortices are expected to rotate in the opposite (anticyclonic) direction if
the interaction between the two layers is sufficiently weak. In the parameter space (ϱ+; M̃)
in Figure 4, this anticyclonic motion occurs in the red [−/+] region. To determine the
boundary of this region, we determine the value of the angular impulse M̃(ϱ+) at which
the angular velocity of the external vortices vanishes. This leads to the implicit equation:

φ̇+
1 =

κ

4πR2

[
N
(
1 − ϱN)+ 1 + ϱN

2(1 + ϱN)
−

N−1

∑
n=1

γR sin
πn
N

K1

(
2γR sin

πn
N

)
−

N−1

∑
n=0

1 − ϱ cos π(1+2n)
N

G(ϱ, π
N , n)

γRK1

(
γRG(ϱ,

π

N
, n)
)]

= 0. (22)

Analytical progress can be made assuming ϱ ≪ 1. Then, Equation (22) reduces to

φ̇+
1 =

κ

4πR2

[
N + 1

2
− 1

2

N−1

∑
n=1

2γR sin
πn
N

K1

(
2γR sin

πn
N

)
− NγR K1

(
γR
)]

= 0. (23)

We can estimate the solution by manipulating the sum in the equation. On the one
hand, if we neglect the sum, we obtain the approximate value of R = 1.257, which is smaller
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than the actual solution to Equation (23). On the other hand, we can find an upper bound
for the sum in question:

N−1

∑
j=1

nj+1

∑
n=nj

2γR sin
πn
N

K1

(
2γR sin

πn
N

)
<

N−1

∑
j=1

(
nj+1 − nj

)
2γR sin

πnj

N
K1

(
2γR sin

πnj

N

)
, n1 = 0, n2 = 1, . . . , nN = N − 1, (24)

from which we obtain the upper bound R = 2 for the solution to (23). Thus, we obtain the
following bounds for the solution:

1.257 < γR
(
ϱ+ = 0

)
= γ

√
−2M̃

N
< 2, M̃ = −N

2
R2(ϱ+ = 0

)
. (25)

Numerical solutions to Equation (23) for 50 ≤ N ≤ 100 suggest that R(ϱ+ = 0) tends
to R∞

0 ≈ 1.72.
From this result, we conclude that the boundary of the [−/+] region corresponds to

M̃ = −N
2
(R∞

0 )2 ≈ −1.4792N, (26)

when ϱ → 0, and decreases with N. The limiting lower boundary M̃/N ≈ −1.4792 of the
red regions is shown in Figure 4a–c by the dashed horizontal lines.

We next consider the direction of rotation of the internal (lower-layer) vortices. Their
angular velocity at the minimum of r2 = Rϱ is found from

φ̇−
2 =

κ

4πR2ϱ2

[N−1

∑
n=1

γRϱ sin
πn
N

K1

(
2γRϱ sin

πn
N

)
+ γRϱ

N−1

∑
n=0

ϱ − cos 2πn
N

G(ϱ, 0, n)
K1
(
γRG(ϱ, 0, n)

)
+

N − 1 + (N + 1)ϱN

2(1 − ϱN)

]
. (27)

We can see that φ̇−
2 is always positive. In Equation (27), only the second sum can be

negative, but at sufficiently large R this sum is exponentially small. For small R one can
use (A6) and approximate K0 as a natural logarithm and use (A2) to obtain the estimate

NϱN

(1−ϱN)
> 0 for this sum.

At the maximum distance of r2, the value of Φ̇+ vanishes only at the edge of the blue
[∞] region. It follows that φ̇+

2 must be opposite in sign to φ̇+
1 at this distance, i.e., it is also

positive at maximum distance. This confirms that the internal vortices always rotate in the
same direction.

We next analyse the boundary of the yellow [+/+] region shown in Figure 4, where
the vortices in the two layers rotate in the same direction. Along this boundary, given by
the curve M̃(ϱ+), the angular velocity of the external vortices vanishes at the minimum of
r1 = R. It thus cannot change sign for any r1. The equation for M̃(ϱ+) is

φ̇−
1 = − κ

4πR2

[N−1

∑
n=1

γR sin
πn
N

K1

(
2γR sin

πn
N

)
+ γR

N−1

∑
n=0

1 − ϱ cos 2πn
N

G(ϱ, 0, n)
K1(γRG(ϱ, 0, n))− N + 1 + (N − 1)ϱN

2(1 − ϱN)

]
. (28)

This curve coincides with the boundary of the red [−/+] region shown in Figure 4, in
the limit ϱ ≪ 1, and reaches the same limiting point given by Equation (26). There are no
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solutions for M̃ → −∞ or M̃ → −0. It follows that the boundaries of the yellow [+/+] and
the blue [∞] regions intersect at a finite value of M̃ (as has been confirmed numerically).

There is a small region between the [−/+] and [+/+] regions, shown in black in
Figure 4, where angular velocity of external vortices changes sign over the period T2 of
oscillation. The white curve lying inside this region indicates where the time-averaged
angular velocity, ⟨φ̇1⟩T2 , vanishes. Along this curve, the external vortices only nutate, with
no net rotation over a period.

We next consider the characteristics of the localised, bounded vortex motions. First, we
examine angular velocity profiles in a few examples. Figure 13 shows the initial upper-layer
and lower-layer profiles ω+

1,2 = φ̇+
1,2 (the right-hand sides of Equations (7) and (8) at t = 0),

for Φ = π/N and N = 3. In Figure 13a the profiles vary with ϱ+ = r2/r1 for two values of
R = r1, while in (b) the profiles vary with R for two values of ϱ+. In panel (a), the angular
velocity profile does not change sign over the entire interval of the parameter ϱ+, but the
signs are opposite for the upper-layer and lower-layer vortices when R = 1 (they move
in the direction corresponding to their strength). However, when R = 4, both angular
velocities are positive, due to the dominant role of the cyclonic lower layer. In Figure 13b in
both cases (ϱ+ = 0.6 and ϱ+ = 0.8), ω+

1 changes sign as R increases, when the upper-layer
vortices fall under the prevailing influence the lower-layer vortices.

Figure 13. Initial angular velocity profiles of the upper-layer and lower-layer vortices, ω+
1,2 = φ̇+

1,2,
for N = 3 and Φ = π/N: (a) dependence on ϱ+ for R = 1 and R = 4; (b) dependence on R for
ϱ+ = 0.6 and ϱ+ = 0.8. The colours of the curves correspond to the colours of the areas in Figure 4b,e,
yellow: regions [+/+], and red: region [−/+]. The segments of the curves in black correspond to
the [−0 + /+] region. The white markers (on the black segments) correspond to the white curve in
Figure 4 with zero values of the angular velocity, ω. The blue marker in panel (a) also corresponds to
zero angular velocity—this is the stationary state at the boundary of the region of bounded motions.
The monotonically decreasing curves in the upper parts of the panels correspond to ω+

2 ; the other
curves (in the lower parts of the panels) correspond to ω+

1 . A dashed black line is plotted at zero
angular velocity.

Following SKDR, we introduce a characteristic of the direction of the upper-layer
vortex rotation:

δmax =
T1

T0
=

⟨ω2 − ω1⟩T0

⟨ω1⟩T1

, (29)

where T0 is the time it takes a vortex to move from its maximum radius to its minimum
radius and back, T1 is the upper-layer vortex rotation period around the origin, and
⟨· · · ⟩T denotes the time average over the interval [0, T]. For further insight, the parameter
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δ = T1/T2, which characterises the ratio of the rotational periods of the vortices in the
upper and lower layers, is also useful.

Figure 14 shows examples of the distributions δmax(ϱ+), for several values of the
angular impulse, M̃, and for N = 6. Here, the red line curve shows δmax(ϱ+) when
M̃/N = −0.1326, corresponding to the white marker in the upper right corner in Figure 4c,
as well as the red vortex trajectories (absolute choreography) in Figure 6, in which
ϱ+ = 0.9854. The nonmonotonic character of δmax(ϱ+) is consistent with the [−/+]-type
of motion, but the monotonically decreasing branch of this distribution corresponds to the
[+/+]-type of motion.

Figure 14. Upper-layer oscillation to rotation period ratio, δmax (limited to the range [0, 100]), as a
function of ϱ+ for a hexagonal hetonic array (N = 6) for several values of M̃/N (solid lines). The
dashed lines give the asymptotes ω+ = 0. The markers correspond to pairs of values (δmax, ϱ+) for
the periodic trajectories in Figure 15 (δmax = 2, 3, 4 and 5 on the green line) and Figure 16 (δmax = 20
on the red and blue lines).

According to Figure 4c, when M̃/N = −1 only the [+/+] type of bounded motion
occurs (the green line on Figure 14). The two cases M̃/N = −0.3 and −0.4 by contrast
contain both bounded and unbounded types of motion. The black markers in Figure 14
indicate the initial conditions for the periodic motions shown in Figures 15 and 16. We
see that δmax varies continuously in certain intervals of the parameters ϱ+ and M̃/N, with
the exception of the resonance values of ϱ+ when ω1 = 0. Of particular interest are the
cases with integer values of δmax; they correspond to closed periodic trajectories of the
vortex of the upper layer with an integer number of maxima. In view of Remark 1, in this
case, the vortex in the lower layer must also move along a closed trajectory, which must
also have an integer number of maxima. Thus, the value of δ for such cases is always
rational or an integer. Figure 15 shows four examples of stationary periodic trajectories
for an equivalent heton. In all cases, the closed shape of the vortex trajectory of the upper
layer is such that, as noted above, the number of maxima coincides with value of δmax: at
δmax = 2 it resembles an ellipse symmetrically flattened above and below. In the other cases,
the trajectories are quasi δmax-gonal in structure. In the lower layer, the situation as a whole
is more complicated. For δmax = 2, the trajectory is closed with three maxima of the radial
coordinate r2 and three self-intersection points. For δmax = 3, the trajectory has an oval
shape. The number of maximum increases as δmax increases.
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Figure 15. Vortex trajectories of an equivalent heton with N = 6 corresponding to stationary
periodic solutions, for integer values δmax = 2, 3, 4 and 5, for M̃/N = −1, and for ϱ+ = 0.9078
(R = 3.3720, δ = 4/3), 0.9041 (R = 3.3095, δ = 3/2), 0.8964 (R = 3.1906, δ = 3) and 0.8863
(R = 3.0537, δ = 4), respectively. These trajectories correspond to the black round markers on the
green line in Figure 14.

Figure 16. The same as in Figure 15, but for the single value δmax = 20. On the left: M̃/N = −0.1326,
ϱ+ = 0.96550 (R = 1.97761, δ = 7/4); on the right: M̃/N = −0.3, ϱ+ = 0.96447 (R = 2.931942,
δ = 17/4). These trajectories correspond to the black round markers on the red and blue lines
in Figure 14.

Figure 16 shows the periodic trajectories for δmax = 20, M̃/N = −0.1326, ϱ+ = 0.96550
(left panel) and M̃/N = −0.3, ϱ+ = 0.96447 (right panel). In the first case, the correspond-
ing marker in Figure 14 lies on the red non-monotonic curve, and in the second it lies on
the blue monotonic one. Since the values ϱ+ are very close for both cases, the markers in
Figure 14 are visually indistinguishable. It is important to note that in the first case the
solution belongs to the [−/+] type of motion; that is, when the upper-layer vortices rotate,
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on average, anticyclonically and the lower-layer vortices rotate cyclonically. In the second
case, all vortices rotate cyclonically (region [+/+]).

Remark 3. Recall that Figures 15 and 16 show the motion of an equivalent heton (i.e., one vortex
per layer). The motion of the complete vortex structure is obtained by N-fold symmetry.

Figure 17 shows the trajectories of all the vortices for the cases shown in Figure 15
with N = 6. The combined trajectories are 6-fold symmetric, unlike that of the equivalent
heton, but are also highly tangled. We discuss the cases with different integer values of
δmax in turn.

Figure 17. Periodic trajectories of all six vortices (N = 6) in each layer (upper/lower row for the
upper/lower layer) for δmax = 2, 3, 4 and 5 (left to right). Different colours and line widths are used
to distinguish the vortices. The initial positions of the vortices are numbered and coloured the same
way as the trajectories emanating from them.

For δmax = 2, there are three distinct trajectories in the upper layer (plotted in black, red
and blue) along which vortices (1,4), (2,5) and (4,6) move, respectively. In the lower layer,
we observe two distinct trajectories. Vortices 1, 3 and 5 move along the black trajectory,
while vortices 2, 4 and 6 move along the red one.

For δmax = 3, now there are only two distinct trajectories in the upper layer, with
vortices 1, 3 and 5 moving along the trajectory plotted in black, and vortices 2, 4 and 6
along the trajectory plotted in red. In the lower layer, there are three distinct trajectories
along which vortices (1,4), (2,5) and (4,6) move, respectively. This behaviour is exactly the
reverse of what was found for δmax = 2. The fact that the vortices move along independent
closed curves is characteristic of the vortex motion for low-mode periodic solutions (low
integer values of δmax) for N > 2.

For δmax = 4, as in the first case, three distinct trajectories are observed in the upper
layer, while now all vortices of the lower layer move along a single trajectory. During the
full period of revolution around the centre, the radial coordinate of the vortices reaches a
maximum twelve times.

The case δmax = 5 stands out from the previous ones, because now, in the upper layer,
each of the six vortices moves along its own individual trajectory. This is because N = 6
and δmax = 5 are co-prime. Each trajectory is plotted in a different colour in Figure 17. In
the lower layer, as before, all the vortices follow one another along one common trajectory,
and now the the radial coordinate reaches a maximum thirty times per period.

Thus, in all cases with integer values of δmax, all trajectories are absolute choreogra-
phies. In the first two cases, the choreographies are convoluted in both layers, and in
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last two cases, the choreographies are convoluted in the upper layer, but simple in the
lower layer.

Figure 18 shows three more examples of the trajectories of all six two-layer pairs of
vortices for M̃/N = −0.1396. The trajectories of the vortices of the upper layer are plotted
in red, while those of the lower layer are plotted in blue. The central part of the figure
shows the trajectories of all the vortices for ϱ+ = 0.96550 corresponding to R = 1.97761
and δ = 7/4, as previously shown in Figure 16. In this case, vortices (1,6), (2,5) and (3,6)
of the upper layer move along three distinct trajectories, while the vortices of the lower
layer move along a single trajectory. In the second case, for ϱ+ = 0.8954 corresponding
to R = 3.024729 and δ → ∞, the vortices of the lower layer follow a single trajectory
resembling an hexagon with smoothed edges. The vortices of the upper layer move along
distinct, closed, peripheral trajectories, as previously shown in Figure 6. In the third case,
for ϱ+ = 0.8960 corresponding to R = 3.088396 (i.e., a small increase in ϱ+ from the second
case), the vortices scatter as six heton pairs. This is justified by the fact that the second case
lies on the boundary between the regions of bounded and unbounded motion shown in
the regime diagram in Figure 4.

Figure 18. Superimposed vortex trajectories of different N = 6 hetons having M̃/N = −0.1326
and (1) ϱ+ = 0.9655, R = 1.97761, δ = 7/4, black marker on the red curve in Figure 14 (cen-
tre); (2) ϱ+ = 0.8954, R = 3.024729, δ = ∞, red asymptote in Figure 14 (intermediate structure) and
(3) ϱ+ = 0.8960, R = 3.088396 (scattering hetons). Markers indicate the initial positions of the vortices.

4. Finite-Core Hetons

In this section, we present some results for the interaction of finite-core hetons
(i.e., hetons comprised vortices with finite area). The hetons have uniform PV, q = ±2π,
without loss of generality. Considering finite-core hetons introduces a new length scale to
the problem, namely the size of the vortices. Vortices have initially a circular horizontal
cross-section of radius Rv. Finite-core vortices have a shape and can deform. The deforma-
tion affects the velocity field the vortices induce on each other. Vortices can also strongly
interact and merge when close together. No symmetry is imposed in the nonlinear evolu-
tion, and perturbations (including asymmetric ones) are allowed to develop. Simulations
are run using Contour Surgery with the method’s standard set-up [70]. Equations are
marched in time using a fourth-order Runge–Kutta scheme with a time step set by the
vortices PV: ∆t = π/(10q).
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In the first set of numerical experiments, we revisit the point-vortex case for N = 3,
M̃/N = −0.28 and ϱ+ = 0.8892 shown in Figure 5c, but now for finite-core vortices. We
first consider vortices of small to moderate radius, specifically Rv = 0.1, 0.2, 0.3, 0.4 and
0.5. We keep M̃/N = −0.28 fixed and we determine the value of ϱ+(Rv) corresponding to
quasi-closed trajectories (absolute choreographies) for the vortex centres, by trial and error.
The values of ϱ+(Rv) thereby obtained are listed in Table 1.

Table 1. Values of ϱ+ for an absolute choreography for N = 3 and M̃/N = −0.28 for various initial
radii Rv.

Rv 0.05 0.1 0.2 0.3 0.4 0.5
ϱ+ 0.8897 0.8904 0.8935 0.8978 0.9025 0.9078

The values of ϱ+(Rv) are remarkably close to the value obtained for point vortex
hetons, and the maximum relative departure for the largest hetons considered, Rv = 0.5, is
only about 2%.

Figure 19 shows both the long-time trajectories of the centre of the first vortex in each
layer (in black), as well as a the shape of the bounding contour for all six vortices at various
times (in blue for the anticyclones in the upper layer, and in red for the cyclones in the
lower layer).
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Figure 19. Trajectories for the first vortices in each layer (black lines) N = 3, M̃/N = −0.28,
(a): Rv = 0.05, ϱ+ = 0.8897, (b): Rv = 0.1, ϱ+ = 0.8904, (c): Rv = 0.2, ϱ+ = 0.8935,
(d): Rv = 0.3, ϱ+ = 0.8978, (e): Rv = 0.4, ϱ+ = 0.9025, (f): Rv = 0.5, ϱ+ = 0.9078. The blue (re-
spectively, red) contours show the vortex boundaries in the upper (respectively, lower) layer at
various times.

We next measure the vortex deformation by evaluating the semi-axis lengths a and
b, with a > b without loss of generality. We perform this by fitting ellipses having the
same second-order spatial moments to the actual vortex bounding contours (see, e.g., [63]).
As Rv is increased while keeping the other parameters fixed, as expected, the vortex
deformation becomes more significant, as shown in Figure 20 for the first vortex of the
upper layer. Instead of moving along a unique trajectory, the vortices move along criss-
crossing trajectories without deviating far from a mean line overall. This is a consequence
of the deformation of the vortices shown in Figure 20. The apparent thickness of the black
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lines (increasing with Rv) showing the vortex trajectories, in fact, indicates the spread of
the trajectories.
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t
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b

Figure 20. Evolution of the aspect ratio a/b of vortex 1 in layer 1 for N = 3, M̃/N = −0.28,
and Rv = 0.05, ϱ+ = 0.8897 (black), Rv = 0.1, ϱ+ = 0.8904 (red) Rv = 0.2, ϱ+ = 0.8978 (blue),
Rv = 0.3, ϱ+ = 0.8978 (green), Rv = 0.4, ϱ+ = 0.9025 (magenta) Rv = 0.5, ϱ+ = 0.9078 (cyan).

When Rv is increased further, the relative distance ℓ/Rv, where ℓ is a typical scale of
the distance between the vortex centres in a given layer, decreases, and vortices are likely
to strongly interact. Figure 21 shows such a strong interaction for N = 3, M̃/N = −0.28
and ϱ = 0.9073, i.e., close to the corresponding absolute choreography for larger vortices
Rv = 0.8. The three cyclonic vortices of the lower layer deform strongly, and merge first
in the centre of the domain. Three secondary satellite vortices form and are ejected away
from the centre. This is a consequence of the invariance of the angular impulse M, and the
migration of positive PV towards the centre of the lower layer.
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Figure 21. Top view on the vortex bounding contours for N = 3, M̃ = −0.28, Rv = 0.8, ϱ+ = 0.9073
at t = 0 (a), t = 5 (b), and t = 12 (c).

We next consider the interaction between six hetons close to the regime of absolute
choreography for M̃/N = −0.3. For Rv = 0.2, we recover the absolute choreography
for ϱ+ = 0.965 (see Figure 22a). With increasing Rv, obtaining absolute choreographies
for long times becomes difficult: numerical results indicate that the configuration is or
becomes unstable. For Rv = 0.5 and ϱ+ = 0.9678, when t ≤ 280, the vortices move along
quasi-closed trajectories, as seen in Figure 22b. They however depart from them at later
times, as shown in Figure 22c.
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Figure 22. Trajectories: N = 3, M̃/N = −0.3, (a): Rv = 0.2, ϱ+ = 0.965, (b): Rv = 0.5, ϱ+ = 0.9678
for 0 ≤ t ≤ 280. (c): same as (b) but for 280 < t < 408.

5. Discussion and Concluding Remarks

In SKDR, we analysed the motion of an N-symmetric two-layer system of 2N vortices
for the special case N = 2. In the present paper, we have extended these results to the
case of arbitrary N. Diagrams of all possible regimes of motion have been established and
analysed. Numerous examples of vortex trajectories have been considered, mainly for
N = 3 and N = 6. Particular attention has been paid to the study of the properties of relative
and absolute choreographies, both simple and complex [64]. Note that all the results of
the calculations and the analysis presented in this article for r1 < r2 are new, and have not
previously been considered by other authors. We can only note the work [2], where test
calculations were carried out for the cases N = 2 and N = 6, but at r1 = r2.

The concept of a two-layer quasi-geostrophic heton is attractive, first of all, because
it is the simplest model for the horizontal transfer of temperature anomalies. The vortex
structures considered in this work, with anticyclones in the upper layer and cyclones
in the lower layer, depress the interface between the layers. Thus, any vortex motion is
accompanied by the transport of a fluid column warmer than the surrounding medium. So,
the following ‘thermal’ interpretation can be given to the numerical experiments shown
in Figure 18.

1. ϱ+ = 0.9655: A regular mixing of warm water in both layers occurs inside an annular
region, somewhat wider than the area occupied by the trajectories. The total transfer
of warm fluid occurs in the cyclonic direction (type [+/+]).

2. ϱ+ = 0.8954: All the vortices of the lower layer move move along a single trajectory in
the cyclonic direction, and all the vortices of the upper layer move in the anticyclonic
direction along another peripheral closed curves (type [0/+]). Both sets of vortices
carry with them columns of fluid that are warmer than their surroundings.

3. ϱ+ = 0.8960: the twelve vortices form six two-layer pairs with tilted axes, which scatter
radially while preserving the N-fold symmetry of the system, and carrying warm
water (motion type [∞]).

In the general case, bounded motions of N-symmetric warm hetons are accompanied
either by cyclonic transport of warm water column from surface to bottom, or cyclonic
transport in the lower layer and anticyclonic in the upper layer inside an annular area.
Unbounded motions expel the warmer fluid radially, away from its initial location. A
similar transport of cold water would occur if the hetons were cold instead.

Finally, we have shown a few selected examples that the idealised point vortex trajec-
tories are reproduced for more realistic finite core hetons, so long as the vortices are not too
large. Large vortices may strongly interact in the nonlinear regime.

In this paper, we have not addressed the stability of stationary configurations. This
will be addressed in a future paper. We expect that the motions of unstable configurations
may also be irregular, breaking the initial symmetry of the heton.
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Appendix A. Some Useful Formulas and Results

One can write

N−1

∑
n=0
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[
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lπ
N

+
2πn
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−
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∑
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(

πl
N

+
2πn

N

)
F
[

f
(
− lπ

N
− 2πn

N

)]
. (A1)

It follows that the sum is equal to zero. Here, l ≥ 1, is an arbitrary continuous function
(K0 or K1 for our purposes), and f is an odd periodic function, for example cos

(
lπ
N + 2πn

N

)
.

We have used the following products

N−1

∏
n=0

(
ϱ2 − 2ϱ cos

(
x +

2πn
N

)
+ 1
)

= ϱ2N − 2ϱN cos Nx + 1,

N−1

∏
n=1

sin
πn
N

= 21−N N, (A2)

to obtain the Hamiltonian (11).
Let us recall the formula

cos2J A =
1

22J

[(
2J
J

)
+ 2

J−1
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2J
j

)
cos (2J − 2j)A
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From (A3), it follows that
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∑
n=0

[
j + 1

j
cosj+1
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Φ +

2πn
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)
− cosj−1

(
Φ +
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= 0, (A4)



Fluids 2024, 9, 122 25 of 31

if j < N − 1, and

N−1

∑
n=0

[
N

N − 1
cosN

(
Φ +

2πn
N

)
− cosN−2

(
Φ +

2πn
N

)]
=

N2 cos NΦ
(N − 1)2N−1 (A5)

if j = N − 1.
The following relationship is also useful to estimate the sign of the vortex rotation:

γRϱ
N−1

∑
n=0

ϱ − cos
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N
)

G(ϱ, Φ, n)
K1
(
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)
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∂
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(
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)∣∣x=ϱ. (A6)

Appendix B. Extreme Properties of the Hamiltonian

Let us consider the derivatives of the Hamiltonian at the extrema. In the case
γRG(ϱ, Φ, n) ≥ 1, the sums in (12) are exponentially small. One can write

4π

κ2
∂H
∂ϱ

∼ ∂

∂ϱ

[
ln R2

(
1 + ϱN

(
ϱN − 2 cos NΦ
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− ln ϱN−1
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− 1
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1 + ϱ2
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. (A7)

We can see that, for small enough ϱ, the derivative is negative for any value of Φ. For
larger ϱ, we use the equation

ϱ = 1 − δ

N
, δ ≪ N. (A8)

Now, we can write

4π

κ2
∂H
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∼ − 2
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[ (
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For the case Φ = 0, we have

4π
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∼ − 2
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)
δ
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1
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. (A10)

One can see that the derivative of H− = H(Φ = 0, ϱ) is always negative.
For the case Φ = π/N, we have

4π
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∼ − 2
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δ
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. (A11)

Here, the situation is different. The derivative of H+ = H(Φ = π/N, ϱ) changes sign.
It means that the function H+(ϱ) has a minimum at some value ϱ = ϱ∗. For the case above,
the critical value of ϱ is ϱ∗ ≈ 1 − 1.545

N .
We should consider now the case γRG(ϱ, Φ, n) ≤ 1. Let us expand the Bessel functions:
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. (A12)
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One can see that, in this case, the derivative of Hamiltonian is always negative for any
value of Φ.

However, the constraint γRG(ϱ, Φ, n) ≤ 1 depends on the value of ϱ. We now consider
a small −M̃. Then,

γRG
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ϱ,
π

N
, n
)
= γ

√
2
N

M̃
1 − ϱ2

[
1 + ϱ

(
ϱ − 2 cos

π(1 + 2n)
N

)]
. (A13)

Even if −M̃ is small, γRG(ϱ, Φ, n) can grow as ϱ → 1. We again use ϱ = 1 − δ
N ,

and obtain
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N
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δ

)
. (A14)

We also have R > 1, if δ is small enough, i.e., such that γRG(ϱ, Φ, n) ≥ 1. Thus, the
derivative of the Hamiltonian is negative again for the case Φ = 0, due to (A10). And, the
derivative of Hamiltonian changes sign for the case Φ = π/N, but for a larger value of ϱ∗

than for the case of a large −M̃. We can roughly estimate ϱ∗ for small −M̃. For this we
estimate the derivative of H as

4π
(
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Here, we have taken into account Equation (A14) and the exponential decrease in the
Modified Bessel function as j grows. For finite J ≪ N, we can solve Equation (A15) for
γRπ

N . We find that

γR
π

N
≈ 1.13; −M̃ ≈ 0.638

N3
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)
, (J = 14). (A16)

The solution changes very little for a larger J.
We also need to analyse the second derivative with respect to Φ:
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. (A17)

We again begin with the case γRG(ϱ, Φ, n) ≥ 1, when the Modified Bessel functions
are exponentially small,
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One can see that we have
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4π

κ2
∂2H+

∂Φ2 =
−2ϱN N2

(1 + ϱN)
2 < 0. (A19)
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Next, we analyse the case γRG(ϱ, Φ, n) ≤ 1. Let us expand the Bessel function
in (A17):
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Here, we take into account that the sums from cos
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and sin
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are
equal to zero. We expand this expression as a power series in 2ϱ
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Then, using (A5), we obtain the estimate
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Thus, in the case γRG(ϱ, Φ, n) ≤ 1, we again have a positive second derivative at
Φ = 0 and negative one at Φ = π N.

Consider the Hamiltonian limiting values. When ϱ → 0, the Hamiltonian tends to
infinity, irrespective of the value of Φ:

4πH
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Here, the sums are always positive, and one can chose a ϱ small enough such that
−(N − 1) ln(ϱ) will be larger than any other term in first line, even if R is very small. This
means that both H+ and H− are positive, and tend to infinity when ϱ tends to zero.

For the case Φ = π/N, we have
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∑
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(. . . ) (A24)

and the sums in (12) are again positive. This means that H+ is positive and tends to infinity
when ϱ → 1.

For the case Φ = 0, it was shown above that RG(ϱ−, 0, n), R → ∞ for n ̸= 0, N and
ϱ → 1. We obtain the estimate

4πH−

κ2 ∼ ln
R2
(

1 − (ϱ−)2
)(

1 − (ϱ−)N
)2(

1 − (ϱ−)2
)
(ϱ−)N−1

+ 2K0

(
γ

√
R2
(

1 − (ϱ−)2
)1 − ϱ−

1 + ϱ−

)

∼ ln
R2
(

1 − (ϱ−)2
)

δN

2
− 2

(
lnγ

√
R2
(

1 − (ϱ−)2
)1 − ϱ−

1 + ϱ−
+ γe

)

= 2
(

ln
N
γ

− γe

)
, (A25)
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where γe ≈ 0.5772 is Euler’s constant. This means that H− tends to finite constant as ϱ → 1.
Next, let us analyse the difference

4π(H+ − H−)
κ2 = 2 ln

(
1 + ϱN

1 − ϱN

)
+ 2

N−1

∑
n=0

[
K0

(
γRG(ϱ,

π

N
, n)
)
− K0(γRG(ϱ, 0, n))

]
. (A26)

If the arguments of K0 are sufficiently large, the sums are exponentially small, and
difference is positive and very small for ϱ < ϱ∗. For small R, we can use the power series
for K0 [71]

2
N−1

∑
n=0

[
K0(γRG(ϱ,

π

N
, n))− K0(γRG(ϱ, 0, n))

]
∼ −

N−1

∑
n=0

ln
G2(ϱ, π

N , n)
G2(ϱ, 0, n)

− (γR)2

8

N−1

∑
n=0

(
G2(ϱ,

π

N
, n) ln G2(ϱ,

π

N
, n)− G2(ϱ, 0, n) ln G2(ϱ, 0, n)

)
(A27)

We can represent the expression under the sum as an integral, and expand it in a
power series:

− (γR)2

8

N−1

∑
n=0

[(
G2(ϱ,

π

N
, n) ln G2(ϱ,

π

N
, n)− G2(ϱ, 0, n) ln G2(ϱ, 0, n)

)]

= − (γR)22ϱ

8

π
N∫

0

N−1

∑
n=0

sin
(

Φ +
2πn

N

)
ln
(

1 − 2ϱ

1 + ϱ2 cos
(

Φ +
2πn

N

))
dΦ

∼ 1
2
(γR)2Nϱ

N − 1

(
ϱ

1 + ϱ2

)N−1
+ o
(
(γR)2

)
+ o

(
ϱ

(
ϱ

1 + ϱ2

)N−1
)

> 0. (A28)

Finally, we have

4π(H+ − H−)
κ2 =

1
2
(γR)2Nϱ

N − 1

(
ϱ

1 + ϱ2

)N−1
+ o
(
(γR)2

)
+ o

(
ϱ

(
ϱ

1 + ϱ2

)N−1
)

> 0. (A29)

We can also estimate the amplitude of oscillation ϱ+ − ϱ− ≈ −H+(ϱ−)−H−(ϱ−)
∂H+(ϱ−)

∂ϱ

. For a

sufficiently large R and a small ϱ, we have

ϱ+ − ϱ− ∼ 4(ϱ−)N+1

N − 1
. (A30)

When both R and ϱ are small, we have

ϱ+ − ϱ− ∼ 1
4
(γR)2Nϱ

(N − 1)2

(
ϱ

1 + ϱ2

)N
. (A31)
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