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Abstract: Assessing drag force and Reynolds stresses in turbulent flows is crucial for evaluating
the stability and longevity of hydraulic structures. Yet, this task is challenging due to the complex
nature of turbulent flows. To address this, physical models are often employed. Nonetheless, this
practice is associated with difficulties, especially in the case of high sampling frequency where the
inherent randomness of velocity fluctuations becomes mixed with the measurement noise. This study
introduces a stochastic approach, which aims to mitigate bias from measurement errors and provide a
probabilistic estimate of extreme stress values. To accomplish this, a simple experimental setup with
a hydraulic jump was employed to acquire long-duration velocity measurements. Subsequently, a
modified first-order autoregressive model was applied through ensemble simulations, demonstrating
the benefits of the stochastic approach. The analysis highlights its effectiveness in estimating the
uncertainty of extreme events frequency and minimizing the bias induced by the noise in the
high-magnitude velocity measurements and by the limited length of observations. These findings
contribute to advancing our understanding of turbulent flow analysis and have implications for the
design and assessment of hydraulic structures.

Keywords: turbulent flows; stochastic modeling; drag force; Reynolds stresses; experimental
hydraulics; hydraulic jump; return period

1. Introduction

Turbulent flow, a prominent phenomenon in many natural water systems, is char-
acterized by vigorous mixing of adjacent layers and continuous random fluctuations of
the velocity at any given point. The typical metric used to measure the intensity of these
fluctuations at a specific point of a flow is the turbulence intensity (TI) factor, which, in

the case of 1D flow, is defined as the ratio U′21/2
/U, where U′ = U − U (i.e., the velocity

fluctuation) and U is the mean flow velocity at the specific point [1,2]. Notably, TI simplifies
the coefficient of variation, the ratio of the standard deviation to the mean of U. This
connection highlights the inherent link between turbulent flow dynamics and probability
theory. Since velocity (U) acts as a random variable, theoretically it has no upper and
lower limits. Instead, the probability that U exceeds a specific threshold in a given period
is estimated.

The importance of this perspective becomes more apparent when considering the
implications the TI value has on the frequency of extreme values of velocity. While a typical
TI value of unobstructed flows is 0.1 [3], TI values up to 0.4 are met in hydraulic jumps [4],
whereas in the case of axisymmetric wakes behind various bodies, TI ranges from 0.3 to
1.1 [1]. To obtain an idea of how TI influences the frequency of extreme values, suppose
an intense turbulent flow where TI equals 0.4 and U follows the normal distribution with
U = 2 m/s. Then, the standard deviation of U will be 0.8 m/s, and it can be easily
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verified (e.g., in MATLAB 2021a numerical environment with: norminv(0.999)*0.8 + 2,
which gives 4.47) the probability U to exceed 4.47 m/s is 0.1%. This means that with a
probability of 50% (binomial distribution), 0.1% of the total duration of the turbulent flow,
the flow velocity will be greater than 4.47 m/s, i.e., more than twice the average value.
This example emphasizes the importance of understanding the statistical properties of the
velocity in turbulent flows for thoroughly assessing their short- and long-term effects on
nearby structures.

For this reason, various researchers have introduced statistical and stochastic models
in the study of turbulent flows. For example, Flores-Vidriales et al. [5] have employed
an advanced statistical analysis of measurements of the discharge of a river with a joint
probability distribution function of the annual maximum and the number of events in a one-
year block, in order to calculate the scour depth around bridge piers following the approach
suggested by FHWA as it is described in the HEC-18 report [6]. They also examined a
stochastic approach, where the scour is estimated by the SRICOS-EFA methodology [7]
that takes as input a synthetic time series of discharge generated with an autoregressive
moving integrated average stochastic model. Brandimarte et al. [8] have also suggested
the use of a stochastic model, an autoregressive fractionally integrated moving average
model, as a probabilistic approach to perform the analysis for contraction scour. In both
these studies the stochastic and statistical models operated with daily time steps.

The previously mentioned studies have highlighted the effectiveness of statistical and
stochastic methodologies in analyzing turbulent flows using coarse time steps. Note that,
from here on, we will use the term “statistical” to refer to approaches based on fitting
theoretical distributions to the data, and “stochastic” for methodologies based on numerical
schemes that generate synthetic time series with statistical properties similar to those
observed. The application of stochastic models with fine time steps has also been suggested
by researchers, though in the sense of stochastic filtering, i.e., using “partial observations
and a stochastic model to make inferences about an evolving system” [9]. For example, He and
Liu employed a stochastic model in a data assimilation process that blends low-sampling-
frequency data from image velocimetry with high-sampling-frequency data from an array
of microphones [10]. Lo et al. used alternative stochastic models to evaluate the effect of
instantaneous fluctuations on entrained particles when studying numerically the particle
dispersion and deposition in turbulent pipe flows [11]. Olson has employed a similar
approach where a stochastic model of a turbulent fluid feeds the differential equation of
convection-dispersion to study the effect of fiber length on particle dispersion [12]. Tissot
and Cavalieri proposed a stochastic formulation of the Navier–Stokes equations to study the
propagation of coherent structures within a turbulent channel flow [13]. Vianna and Nichele
proposed a stochastic model to represent the annular flow in a tubular reactor followed by a
numerical simulation to generate sample paths fitting the residence time distributions [14].
Luhur et al. suggested a method based on stochastic differential equations to replace
traditional look-up table methods used in wind turbine studies by simulating effective
response dynamics of lift and drag forces [15].

Despite the availability of sophisticated numerical models, physical models remain
essential for studying complex hydraulic processes such as turbulent flows and their impact
on hydraulic structures like piers. Modern measuring equipment capable of high-sampling
frequency velocity measurements is crucial for turbulent flow studies, providing detailed
insights into turbulent behavior and enabling accurate analysis of turbulence statistics
and dynamics. However, measurements at higher sampling frequencies are susceptible
to increased noise influence. This influence is defined as the variance of the measurement
one would obtain if a constant velocity were measured, which is proportional to the
noise level and sampling frequency [16]. This noise-originating variance is compounded
with the genuine variance of the measured velocity, potentially biasing the statistical
properties of the measured time series. Therefore, in this study, we advocate for the use of
a stochastic model to effectively reduce the negative influence of this noise, particularly
in coping with the increased bias at high values, allowing for more reliable answers to
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critical questions, such as determining the velocity that corresponds to a given probability
of exceedance. To achieve this, an innovative stochastic model was employed in ensemble
simulations following the k-fold concept. A relatively new statistical analysis tool, the
climacogram, has been employed, which is ideal for studying the scale invariance of
turbulence processes across different temporal scales [17]. Climacogram is the function of
the variance versus time scale, wherein the time series is repeatedly aggregated to higher
scales, and for each new time series obtained from each aggregation, the corresponding
variance is calculated [18].

To validate this approach, we conducted an experiment in the Laboratory of Hydrome-
chanics and Hydraulic Engineering at the University of Siegen. This experiment captured
long-duration (36 min) flow measurements. We then employed the novel stochastic model
specifically designed to handle data with significant skewness, which is a challenge in the
analysis of turbulent flow stresses. The stochastic model is applied in ensemble simulations,
leveraging k-fold cross-validation, a commonly used technique in statistics and machine
learning for evaluating predictive models [19].

2. Materials and Methods
2.1. The Experimental Setup

The experimental setup, displayed in Figure 1a, consists of a flow in an open channel
of the rectangular cross-section with a sluice gate. The experiment had the following
characteristics: depth upstream of the sluice gate and downstream the jump 16 and 9.5 cm
respectively, height of sluice gate opening 3.5 cm, slope −0.7 cm/1 m, probe location 34.5 cm
from the sluice gate, discharge 3.43 l/s, channel width 8.5 cm, and total channel length 5 m.
These characteristics correspond to Froude numbers of 0.20, 0.44, and 1.35 before the sluice
gate, downstream the jump, and immediately after the sluice gate respectively, whereas the
corresponding Reynolds numbers are 8885, 13,085, and 20,562, respectively. The TI at the
location of the measurements was 0.20.

Figure 1. The experimental channel: (a) general view of the apparatus; (b) the velocimeter NORTEK
Vectrino Plus.

The flow velocity was monitored with the acoustic velocimeter NORTEK Vectrino Plus,
with a sampling frequency of 50 Hz, nominal maximum velocity of 4 m/s, and sampling
volume height of 4 mm. The NORTEK Vectrino Plus employs the pulse-to-pulse coherent
method to obtain velocity measurements. This technique relies on detecting the phase
difference between two reflected pulses. While offering enhanced accuracy compared
to standard Doppler-based systems, it does have limitations such as velocity ambiguity
and phase wrap. Consequently, careful selection of the nominal maximum velocity is
required [16]. The NORTEK Vectrino Plus consists of two components: the logger and the
probe. While the unit can only accommodate one probe at a time, it supports two types of
probes: the down-looking and the side-looking probe. Each probe is designed for specific
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flow measurement applications. In this study, the side-looking probe was used (Figure 1b)
following the suggestion of the user guide “If the flow is dominantly 1D, the side-mounted
configuration, where the transmitter is orientated perpendicular to flow direction, is preferable”.

2.2. Data Collection And Cleaning

The Vectrino recorded velocities in an XYZ coordinate system, where the X-axis aligns
with the flow direction (providing measurements for U1), and the Z-axis represents the
vertical direction (providing measurements for U3). The average signal-to-noise ratio
(SNR) was 23.0 dB, while the average normalized correlation value was 74%. According to
the Vectrino user guide [16], SNR should ideally be greater than 15 dB, and normalized
correlations above 70% are considered sufficient for generating good-quality data. For
2160 s, a total of 108,000 measurements were obtained, of which 57,879 exhibited normalized
correlation values below 70%.

Figure 2 displays the histograms of the raw data collected with the Vectrino velocimeter.
The range of the horizontal axes in these histograms indicates the minimum and maximum
values observed. This range is plausible only for the shape of the histogram of U2.

Figure 2. Histogram of velocity components along XYZ axes of the raw data: (a) U1 bin size 0.25 m s−1,
(b) U2 bin size 0.069 m s−1, (c) U3 bin size 0.549 m s−1.

According to the Vectrino user guide [16], velocity limits and measurement uncertainty
are fundamentally tied to the geometry of the deployment of the central transducer and the
receiver arms. The velocity component in the direction of the central transducer, U2 in this
case, yields a lower measurement uncertainty. Additionally, the user guide states: “Due to
the design, the side-looking probe has higher instrument noise in the vertical than in the horizontal”.

For these reasons, we considered the U2 measurements reliable as is, but we discarded
the measurements of U1 and U3 having a normalized correlation below 70%. Linear
interpolation was found to be the most efficient imputation method (see Appendix A).
Random sample imputation and replacement with the mean value were found to introduce
bias in the case of U1. This occurred because velocities with higher magnitudes, tending
to have measurements of lower normalized correlation, were mostly on one side of the
histogram, the left side (Figure 2a), due to the longitudinal flow in the channel.

Figure 3 displays the spectrum of U1 before and after filtering. The moving average is
also presented in this figure with a yellow line. A moving average is a statistical method
used to analyze time series data by creating a series of averages of different subsets of the
full data set. The purpose of a moving average is to smooth out short-term fluctuations
and highlight longer-term trends or cycles. The size of the window was set equal to 1/200
of the length of the spectrum time series.
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Figure 3. Spectrum of U1 measurements: (a) raw data, (b) filtered data; includes a yellow line
representing the smoothed spectrum using the moving average method; with a red line indicating
the theoretical −5/3 slope.

Figure 4 displays the climacogram [18] of U1 before and after filtering. The value of
the Hurst coefficient that corresponds to the large aggregation scales is also displayed in
this figure (H = 0.85 and H = 0.84 for the raw and filtered data respectively).

Figure 4. Climacogram of U1 measurements: (a) raw data, (b) filtered data.

Figure 5 displays the histogram of the square of the velocity components measure-
ments along the XYZ axes. The histograms suggest the existence of a significant skewness.

Figure 5. Histograms of U2
i obtained from the filtered measurements: (a) U2

1 bin size 0.45 m2 s−2,
(b) U2

2 bin size 0.024 m2 s−2, (c) U2
3 bin size 1.788 m2 s−2.
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Figure 6 displays the histogram of the absolute value of the product of the fluctuation
of the velocity components. The absolute value is employed in order to set the focus on the
magnitude, and not on the direction of the shear force. All histograms suggest the existence
of a significant skewness.

Figure 6. Histograms of |U′
i U

′
j | obtained from the filtered measurements: (a) |U′

1U′
2| bin size

0.074 m2 s−2, (b) |U′
1U′

3| bin size 0.363 m2 s−2, (c) |U′
2U′

3| bin size 0.111 m2 s−2.

From Figures 5 and 6 becomes evident that if a stochastic model is going to be ap-
plied directly on the U2

i or |U′
i U

′
j |, then this model should be capable of reproducing the

significant skewness suggested by these histograms.

2.3. The Stochastic Model

Rozos et al. [20] used a stochastic model to analyze the measurements of a turbulent
flow obtained with an image velocimetry algorithm [21,22] applied to a video displaying a
hydraulic jump. More specifically, a first-order autoregressive model (AR1) was used to
analyze the velocity data obtained simultaneously at 100 locations of the hydraulic jump.
In that study, Rozos et al. highlighted some limitations regarding this approach, most
notably the inability of the classical AR1 model [23,24] to handle time series with significant
skewness. However, in that study, the majority of the flow velocities that were analyzed by
the stochastic model exhibited mostly a symmetric histogram, therefore the classical AR1
model handled the data successfully.

In this study, we propose a new methodology based on Rozos et al. [20]. We employed
an acoustic velocimeter capable of high-frequency velocity measurements at a single point
using the pulse-to-pulse coherent method. This measurement option was chosen for
its superior accuracy compared to PIV and its capacity to handle extended time series,
making it ideally suited for analyzing flow properties at a single point. After, we analyze
the newly collected data with a stochastic model. Furthermore, unlike Rozos et al. [20],
we focus on quantities derived from the velocities that are directly related to turbulent
flow stresses, namely: U2

1 , U2
2 and U2

3 for drag forces, and |U′
1U′

2|, |U′
1U′

3| and |U′
2U′

3| for
Reynolds stresses. Indices 1,2 and 3 represent directions along the flow, transverse, and
vertical axes respectively. This approach aims to improve the model’s accuracy by directly
simulating the relevant stress quantities. As mentioned previously, some of these derived
quantities exhibit significant skewness, posing a challenge for the classical AR1 model.

The basic equation of the univariate AR1 model is [23,24]:

xt = µ + a(xt−1 − µ) + bϵt (1)

where xt is the time series value at time step t, ϵt is the innovation or error term, a = r1
and b2 = s2(1 − a2); µ, s2 and r1 are the sample mean, variance and lag-1 autocorrelation
respectively [23].

The previously described model generates a synthetic time series that effectively
preserves the mean, variance, and autocorrelation characteristics. However, to ensure the
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preservation of skewness, a specific approach was adopted in this study. For ϵt, we utilized
a generalized Pareto [25] random number generator, of which the parameters (shape, scale,
and location) were calibrated to have a mean value equal to 0, variance equal to 1, and a
third moment equal to µ3[ϵ], as given by the following equation (see Equation (8) in [26]).

µ3[ϵ] = b−3(µ3[x]− µ3[ax]) (2)

It is evident that the inclusion of the random variable ϵ introduces stochasticity into the
synthetic data. This allows using Equation (1) to generate multiple equiprobable time series,
i.e., ensemble simulations, enabling the assessment of uncertainty in the stochastic analysis.
Taking advantage of this, the stochastic model was independently executed to produce
numerous synthetic time series with an approach akin to k-fold cross-validation [19].
Employing a k-fold enables the model to enhance its generalization capabilities while
improving insight into the overall modeling uncertainty. To accomplish this, the available
data were partitioned into 10 equal subsets, and the stochastic model was applied twice to
each subset, resulting in a total of 20 runs.

3. Results

Figure 7 displays the return period plots for U2
1 , U2

2 , and U2
3 . The horizontal red line

indicates the average value of the observations. The black line represents the return period
plot created using the filtered measurements, while the blue marks represent the return
period plots of the 20 synthetic time series generated using the stochastic model outlined in
Equation (1). For both black line and blue marks, the (empirical) Hazen plotting position
method was employed (see Table 5.4 of [18]). The blue line represents the median of the
20 return period plots.

Figure 7. Return period plots of the square of the velocity components along XYZ axes: (a) U2
1 , (b) U2

2 ,
(c) U2

3 ; with black line the return period of measurements; with red line the mean value of U2
i of

the measurements; with marks in blue the 20 return periods of synthetic time series. The blue line
represents the median of the 20 return period plots.

The value of the median of the return period plots from the synthetic U2
1 values at

2000 s is 1.88 m2 s−2. There are two values obtained from the filtered observations that
are greater than the maximum value of the vertical axis of Figure 7a, namely, 4.90, and
9.00 m2 s−2. The value of the median of the return period plots from the synthetic U2

2
values at 2000 s is 0.71 m2 s−2. The value of the median of the return period plots from
the synthetic U2

3 at 2000 s is 0.96 m2 s−2. There are five values obtained from the filtered
observations that are greater than the maximum value of the vertical axis of Figure 7c,
namely, 3.73, 8.38, 8.96, 9.11, and 35.76 m2 s−2.

Figure 8 displays the return period plots of |U′
1U′

2|, |U′
1U′

3|, and |U′
2U′

3|. The median
of the return period plots of synthetic |U′

1U′
2| at 2000 s is 0.84 m2 s−2. There is one value

obtained from the filtered observations that is greater than the maximum value of the
vertical axis of Figure 8a, which is equal to 1.09 m2 s−2. The median of the return period
plots of synthetic |U′

1U′
3| at 2000 s is 0.93 m2 s−2. There are two values obtained from
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the filtered observations that are greater than the maximum value of the vertical axis of
Figure 8b, namely, 3.11, and 7.22 m2 s−2. The median of the return period plots of synthetic
|U′

2U′
3| at 2000 s is 0.43 m2 s−2. There is one value obtained from the filtered observations

that is greater than the maximum value of the vertical axis of Figure 8c, which is equal to
1.48 m2 s−2.

Figure 8. Return period plots of the product of the fluctuation of the velocity components: (a) |U′
1U′

2|,
(b) |U′

1U′
3|, (c) |U′

2U′
3|; with black line the return period of measurements; with red line the mean

value of the measurements; with marks in blue the 20 return periods of synthetic time series. The
blue line represents the median of the 20 return period plots.

4. Discussion

Figures 2–6 highlight the significance of statistically analyzing the available data.
Figure 2 initially suggests potential measurement errors in the raw data. Consequently, the
raw data underwent filtration following the guidelines outlined in the Vectrino user manual.

Comparing Figure 3a with Figure 3b (as well as Figure 4a with Figure 4b) makes it
evident that this filtration process effectively reduces data noise. Particularly noteworthy
is the steeper slope within the inertial range in Figure 3b, indicating a noise reduction
(similar to the findings in the study by Chowdhury et al. [27]). It is important to note
that the filtration process should be executed cautiously, following experimentally derived
guidelines (such as those employed in this study, provided by the user guide of the Vectrino
velocimeter) or based on evidence-based decisions. For instance, Romagnoli et al. [28]
implemented a more aggressive filtering approach by removing all spikes from the data,
which were attributed to the presence of numerous bubbles in the flow at the measurement
location. In our case study, we meticulously positioned the velocimeter probe in a location
where the presence of bubbles in the flow was minimal.

Regarding the deviation of the slope in Figure 3b within the inertial range from the
theoretical value of −5/3, this could be attributed either to the distance from the hydraulic
jump (or the source of disturbance), as observed by Mukha et al. [4] and Buchhave and
Velte [29], or to the rapidly rotating type of flow [30,31].

The climacogram shape of the filtered data in Figure 4 appears more plausible com-
pared to that of the raw data (see Figure 9.5 of [18]). Specifically, it is expected that the
climacogram curve will be almost horizontal on the left side of the plot, indicating minimal
variance reduction with aggregation at small time scales. The scale at which the curve
starts bending significantly downwards marks the minimum sampling frequency required
to capture the stochastic structure of the studied process. In Figure 4b, this frequency is
indicated to be approximately three times lower than the 50 Hz frequency used in this
study, approximately 17 Hz. Subsequently, the slope becomes steeper before transitioning
to a segment with a gentler slope. The increased slope in the middle segment of the curve
is likely due to periodicity in the data, possibly caused by a stagnant wave upstream of the
sluice gate (compare with the middle segment of Figure 9.5 of [18], which corresponds to
the annual periodicity of river flow). The gentle slope of the final segment indicates signifi-
cant persistence in the studied process. The Hurst coefficient H, which is dimensionless
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and ranges from 0 to 1, is directly related to this slope s via the formula s = 2H − 2. The
Hurst coefficient in Figure 4 is approximately 0.84, which is within the range of values
reported in the literature. For example, for turbulent flow around a jet, Hurst coefficient
values between 0.7 and 0.9 have been reported [32].

Lastly, Figures 5 and 6 offer valuable insights into the fundamental characteristics
of the stress-related time series. Preserving these characteristics, including skewness, is
crucial for the reliable analysis of the turbulent flow impacts.

The drag force and Reynolds stresses play a pivotal role in characterizing the stresses
exerted on hydraulic structures. These are determined by the squared velocity U2

i and the
product of velocity fluctuation components |U′

i U
′
j |. In the design of hydraulic structures,

obtaining accurate estimations of these quantities for a given probability of failure is crucial.
This involves first computing the intensity and duration of the design discharge based
on the probability of failure. Subsequently, the values of U2

i and |U′
i U

′
j |—corresponding

to the design discharge—need to be determined. Caution must be taken when deriving
these values from a physical model to avoid potential inaccuracies resulting from simplistic
methods. For instance, in the case of Figures 7 and 8, while the average value is significantly
lower than the higher values, some extreme values are unrealistic, most likely due to
measurement errors. To address these challenges adequately, it is advisable to report, for
the given probability of failure, the U2

i or |U′
i U

′
j | value based on a return period plot, as

demonstrated in Figures 7 and 8.
While one might argue against the necessity of a stochastic model, return period plots

derived directly from data can be prone to errors, as demonstrated in Figures 7 and 8.
Measurement errors, particularly in the range of high values, can distort the shapes of these
plots, undermining their reliability. Moreover, even with minimal noise in measurements, a
statistical or stochastic approach becomes essential when the return period corresponding
to the probability of failure exceeds the duration of observations. To illustrate this point, let
us consider an example. Suppose the data collected from the physical model corresponds
to an extreme event with an expected duration of 2000 s, and we need to find the value
of U2

1 corresponding to a 4% probability of failure. The return period of observations in
Figure 7a exhibits an unrealistic sharp rise in the high-value range, likely due to errors in
the measurement. Therefore, to obtain a more reliable estimate, we should use the median
value of the return period plots of the synthetic time series at 2000 s, which is 1.88 m2 s−2. To
calculate the probability of failure for this value for 2000 s (note the intentional coincidence
in this example of the maximum obtainable return period from the available data and the
duration of the design event), we can use the following formula:

P = 1 − (1 − 1/T)n (3)

where T is the return period and n is the number of time steps (in the same time unit as T)
corresponding to the duration of the design event.

Using Equation (3) with T = 2000 s and n = 2000 yields P = 63.2%, which is much
higher than the target of 4%. To determine the value of U2

1 corresponding to P = 4%, it is
necessary to generate a synthetic time series with a sufficiently large length. This length
must be adequate for calculating the U2

1 value corresponding to a return period of 50,000 s
(i.e., setting T = 50, 000 s and n = 2000 in Equation (3) results in a P = 0.04). For the specific
time step in this study (1/50 s), this suggests that a synthetic time series of a minimum
length of 2,500,000 values is required (if ensemble simulations, then multiple time series of
this length). This implies that even if the return period plots were not distorted in the range
of high values of return periods (see black lines from Figure 7a,c), observations would
still need to be 25 times longer than what is currently available (i.e., instead of running
the experiment for 36 min, to run it for 15 h). Running the stochastic model to generate a
time series of sufficient length (more than 4,000,000 values), we estimated the value of U2

1
corresponding to a return period of 50,000 s to be 2.1 m2 s−2.
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Figure 7a,c illustrates how measurement errors can significantly impact return period
plots derived from the observed data, leading to unreliable estimates. To address this
issue, ensemble simulations of a stochastic model with the k-fold method offer a solution.
By generating multiple synthetic datasets (in this case 20), we can mitigate the impact of
outliers and obtain a set of plots for the return period instead of a single one. This set
provides valuable insights into the uncertainty associated with the measurements. The
median values from this set offer robust estimates that are less affected by measurement
errors, ensuring safer or economical design considerations.

Regarding the choice of observation and simulation time step (sampling frequency),
while larger time steps tend to filter out observational noise, they may also smooth out the
flow bursts recorded in observations. Bursts are a significant characteristic of turbulent
flows, particularly in TI values of medium range [33,34]. Various probabilistic approaches,
such as Gessler’s study on entrainment, are based on the concept of bursts [35]. Gessler pro-
posed a probabilistic approach to partially offset the smoothing effect caused by temporal
aggregation resulting from the finite frequency of sampling in any physical process. This is
achieved by increasing the “confidence” for higher values when the standard deviation of
the time series is lower. Similar approaches could be explored to address the smoothing
effect on other types of stresses exerted by turbulent flows on hydraulic structures.

As noted by other researchers (e.g., Luhur et al. [15]), gaining deeper insight into the
underlying process requires proper representation of the conditional probability density
function (PDF) of a stochastic process X, P(X(t + τ) < x|X(t)), as it contains comprehen-
sive information regarding the process evolution dynamics. However, it has been observed
that the stochastic model represented by Equation (1) may not adequately capture the decay
of the autocorrelation function in stochastic processes that exhibit significant persistence
(Koutsoyiannis et al. [18]). In such cases, a generalized moving average scheme may be a
more appropriate option for stochastic simulations.

5. Conclusions

This study utilized an experimental setup featuring a hydraulic jump downstream of
a sluice gate. Velocity vector measurements were collected using an acoustic velocimeter,
positioned 34.5 cm downstream the sluice gate. Due to the probe geometry and the
nature of the flow, the measurement accuracy was non-isotropic. Consequently, raw data of
velocity components along the three axes (longitudinal, transverse, and vertical) underwent
different pre-processing methods. Despite pre-processing, a few large values persisted,
prompting further investigation into their nature (extreme values or measurement errors)
through stochastic analysis. Ensemble simulations employing a stochastic model generated
a series of synthetic time series related to typical turbulent flow stresses (drag force and
Reynolds stresses). Empirical return period plots derived from these synthetic time series
yielded crucial insights into turbulent flow measurement analysis.

The suggested methodology can be applied independently to an arbitrary number
of different locations within the hydraulic flow. While we cannot obtain measurements
simultaneously at multiple locations with the acoustic velocimeter, analyzing data from
multiple locations could allow us to capture variations in flow parameters across different
points. The findings of this study hold broad applicability and are summarized below:

• When monitoring hydraulic phenomena, careful consideration of measurement er-
rors is crucial, especially in regions of high values critical for design. Employing
statistical recognition and meticulous filtering is essential for ensuring accurate and
reliable results.

• Maximum values of such measurements may be significantly inflated due to mea-
surement errors. Therefore, probabilistic approaches, such as return period plots, are
essential for a comprehensive analysis.

• Return period plots derived from observations may exhibit significant bias at large
return periods. Thus, adopting stochastic approaches is necessary to construct more
reliable plots and at the same time estimate their uncertainty.
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• Stochastic approaches are indispensable for supporting probabilistic assessment of
extreme values with return periods significantly larger than the length of observations.

Finally, it should be noted that the proposed methodology and findings are broadly
applicable to case studies involving high-frequency measurements of any kind.
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Appendix A

Data filtering was performed with the following MATLAB 2021a code. Columns 15 to
18 of the matrix Data contain the normalized correlation values along the X, Y, and Z axes.
The velocity measurements are kept in the matrix Velocities.

missingvalues= sum(Data(:,15:18)<70,2) >0;
for i=[1,3]

Velocities(:,i)= interp1(find(~missingvalues), ...
Velocities(~missingvalues,i), 1:length(Velocities), ...
’linear’);

end
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