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Abstract: Creating time-marching unsteady governing equations for a steady state in high-speed
flows is not a trivial task. Residue convergence in time cannot be achieved when using most low- and
high-order spatial discretization schemes. Recently, high-order, weighted, essentially non-oscillatory
schemes have been specially designed for steady-state simulations. They have been shown to be
capable of achieving machine precision residues when simulating the Euler equations under canonical
coordinates. In the present work, we review these schemes and show that they can also achieve
machine residues when simulating the Navier–Stokes equations under generalized coordinates. This
is carried out by considering three supersonic flows of perfect fluids, namely the flow upstream a
cylinder, the flow over a blunt wedge, and the flow over a compression ramp.

Keywords: TVD schemes; WENO schemes; residue convergence; increment convergence

1. Introduction

The high-speed flows under discussion in this work are modeled by unsteady and
compressible Navier–Stokes equations for perfect fluids. These governing equations are
solved using the method of lines. This represents a two-step simulation process that first
generates a system of ordinary differential equations from the partial differential equations
composing the original model governing equations and then marches it forward in time.
A wide range of methods can be applied to generate this system. A review of them is beyond
the scope of this work, but several relevant books can be used as a starting point [1–5].
This system is obtained here by applying finite-difference schemes under a generalized
coordinate framework to the spatial operators of the model. The code developed to run
all the simulations presented here is called 3D4S [6,7]. It stands for one-, two-, and three-
dimensional structured steady-state solvers and uses the C++ programming language [8].

1.1. Literature Review
1.1.1. Spatial Discretization

Apart from unconventional source terms that are not employed in the present work,
all spatial operators in the unsteady and compressible Navier–Stokes equations for perfect
fluids are applied to inviscid and viscous fluxes. Their discretizations are usually treated
using different methodologies, whose implementations are briefly discussed below.

On the one hand, the discretization of viscous flux spatial gradients employs the
traditional second-, fourth-, and sixth-order central-difference schemes in conservative
form. It is important to note that the third one usually renders the resulting code too
numerically unstable [9], and hence, it is not used here.
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On the other hand, an accurate discretization of inviscid fluxes that can capture shocks
is significantly more complex. This is due to the nonlinear stability properties that are
required to prevent the Gibbs phenomenon near discontinuities. Monotone schemes are
capable of doing so. This property states that (i) new minima and maxima cannot be
created, (ii) a local minimum cannot be reduced, and (iii) a local maximum cannot be
increased. They are, however, first-order accurate. High-order accuracy requires the use
of special techniques to control the oscillations induced by discretizing across the shock.
One possibility is to relax the monotonicity requirement for something else less restrictive.
Following this path [10] leads to second-order accurate schemes that are total-variation
diminishing (TVD). This property states that the solution’s total variation at a given time
step is always smaller than or equal to the solution’s total variation at the previous time
step. These schemes also satisfy the entropy condition, which guarantees the convergence
of weak solutions of hyperbolic conservation laws. Furthermore, all monotone schemes
are TVD and all TVD schemes are monotonicity-preserving [11]. This property states that
a solution that is monotone at a given time step will remain monotone at the next time
step. Furthermore, TVD schemes work by employing flux-limiters, which are weights
placed on the forward and backward fluxes. They are designed to locally reduce the
scheme to first-order accurate near discontinuities [12]. There are many flux limiters.
Superbee [13] and Minmod [14–16] are the ones that introduce the least and most numerical
diffusion, respectively. All others fall in between these two, such as the Monotonized
Central Difference [17], van Leer [18], Koren [19], Sweby [20], Osher [21], Ospre [22]
and van Albada [23]. 3D4S can use either the first-order accurate upwind/downwind
discretization or the second-order accurate TVD scheme developed by [10], coupled with
any of these flux limiters.

Unfortunately, it is well known that TVD schemes suffer from an accuracy order
reduction near discontinuities [18,24,25]. Furthermore, they are first-order accurate for
two-dimensional problems [26]. A path towards higher-order accuracy is to relax the TVD
requirement for something that is less restrictive. This was performed by introducing the
class of essentially non-oscillatory (ENO) schemes [27]. They represent higher-order gener-
alizations of the first-order Godunov scheme [28] and its second-order extension known
as the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) [29]. ENO
schemes choose between different candidate stencils in order to avoid including disconti-
nuity in the discretization. The selection is performed by comparing the local smoothness
of the discretization on these different stencils, measured using divided differences [30,31].
A variation of these schemes, known as weighted ENO (WENO) schemes, was then devel-
oped to achieve higher-order accuracy and smoother numerical fluxes [32]. Instead of using
only one of the candidate stencils, as in ENO, WENO uses a convex combination of all
candidate stencils based on nonlinear weights determined by smoothness indicators. 3D4S
can use several different fifth-order WENO schemes for unsteady simulations, such as the
original WENO5-JS [33], as well as WENO5-M [34], WENO5-Z [35] and WENO5-Z+ [36],
and steady simulations, such as WENO5-ZQ [37] and its variants [38–41].

A distinguishing feature of the aforementioned upwind/downwind schemes is that
their discretization must be performed according to the propagation direction of the invis-
cid flux characteristics. There are essentially two different ways to identify these directions,
which are known as the flux-difference and vector-splitting methods [42]. The former
are known as Riemann solvers whereas the latter are known as Boltzmann solvers, al-
though they can also be considered Riemann solvers in a wider sense. On one hand,
flux-difference splitting first discretizes the inviscid fluxes using their cell-faced values
and only then separates their propagation directions to evaluate these values. Flux-vector
splitting, on the other hand, first separates the inviscid fluxes according to their propagation
directions and only then discretizes each part accordingly. It is important to note that they
can also be categorized as either complete or incomplete solvers. The former resolves all
waves that are present, whereas the latter neglects some of these waves. 3D4S can currently
employ many of these methods, such as Roe [43], HLL [44] and Roe-HLL [45] based on
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flux-difference splitting as well as Steger–Warming [46] and Lax–Friedrichs [33] based on
flux-vector splitting, which are applied in either conservative or characteristic form.

1.1.2. Temporal Discretization

Having applied the spatial discretization of choice on a given grid to the unsteady
and compressible Navier–Stokes equations for perfect fluids, the resulting system can then
be marched in time. This is performed in 3D4S using different methodologies to generate
either time-accurate unsteady or steady states. Since physically stable flows are studied in
this work, explicit time-marching schemes can be employed to reach their steady states.

The explicit Euler scheme is a good choice for time-marching the unsteady governing
equations towards time-asymptotic stable stead states not only due to its simplicity but
also due to its parallelization efficiency. This is the approach used when employing 3D4S
in this scenario. When time accuracy is required for shock-capturing, however, high-order
temporal integration should be used. Furthermore, this should be performed in such
a way as to preserve the nonlinear numerical stability properties of the chosen spatial
discretization schemes. All time-marching schemes with this property are known today
as Strong-Stability-Preserving (SSP), although they were originally called TVD as well
because this property does not allow the solution’s total variation to increase in time.
High-order time-marching schemes with this property preserve the nonlinear numerical
stability properties of the Euler scheme, as long as their maximum time step is restricted.
The SSP property was first proposed for an explicit Runge–Kutta (RK) scheme [30]. Al-
though this SSP-RK scheme was originally presented in a format that did not belong to
the traditional Butcher formulation [5], it can be written in this way using appropriate
algebraic procedures [47,48]. The nonlinear upper bound imposed on the maximum time
step of high-order SSP marching schemes, which is smaller than its linear counterpart, led
to the optimization of these schemes so they can achieve the largest possible maximum
time steps. Optimal explicit SSP-RK schemes have been derived with up to fourth-order
accuracy and five stages [49]. They are the ones used in 3D4S for time-accurate simulations.

It is important to mention here that implicit SSP-RK schemes exist as well [50], where
optimal diagonally implicit schemes have been developed with up to fourth-order accuracy
and eight-stages [51,52] and with up to sixth-order accuracy and eleven stages [53]. Second-
and third-order accurate implicit–explicit (IMEX) RK schemes also exist [54], but only the
explicit part is SSP. However, there is strong evidence that the nonlinear upper bound
imposed on the time steps of implicit and IMEX SSP-RK schemes renders them inefficient
when compared to their explicit counterparts [55]. Hence, they are not used in 3D4S for
time-accurate simulations.

1.1.3. Convergence towards Steady States

As far as the authors are aware, the effect that high-order WENO schemes have
on convergence towards steady-state was first evaluated almost two decades ago [56].
This study shed light on the existence of small-amplitude post-shock oscillations, which
prevented residue convergence to machine precision. It also led to the development of
WENO schemes specially designed for steady-state simulations [37–40]. The use of these
schemes did lead to residue convergence towards machine precision zero by reducing the
amplitude of post-shock oscillations.

1.2. Present Contributions

Nevertheless, there are still issues that must be addressed on this front. For instance,
steady-state convergence in the aforementioned studies was evaluated when considering
the Euler equations, which do not include viscous effects. Furthermore, the test cases
simulated in these studies considered quite simple geometries; i.e., they could be simulated
using standard coordinate systems. Both issues are addressed in the present paper, namely
the ability to achieve steady-state convergence to machine precision residues when using
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WENO schemes (i) in the presence of viscous diffusion and (ii) when performing numerical
simulations in generalized coordinates.

In order to do so, a comparison of several shock-capturing schemes is performed using
the Navier–Stokes equations over a framework with generalized coordinates. In Section 2,
the methodology used to implement the numerical discretization of both spatial and
temporal terms of the governing equations is discussed. It also contains a brief review
of the grid-generation techniques employed here. In Section 3, the results obtained for
three different test cases are presented, namely the two-dimensional supersonic flow over a
compression ramp, over a planar blunt body and upstream of a cylinder. Finally, the major
conclusions derived from this work are highlighted in Section 4.

2. Methodology
2.1. Governing Equations

Using a Cartesian coordinate system, it is possible to write the Navier–Stokes equations
in dimensionless form as

∂Q
∂t

+
∂Ei

∂x
+

∂F i

∂y
+

∂Gi

∂z
=

∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
, (1)

where Q is the vector of conservative variables and E, F and G are the conservative flux
vectors in the x, y, and z directions, respectively. The superscripts i and v stand for inviscid
and viscous, respectively. These vectors are given by

Q =


ρ

ρu
ρv
ρw
ρE

 , Ei =


ρu

ρu2 + p
ρvu
ρwu

(ρE + p)u

 , Fi =


ρv

ρvu
ρv2 + p

ρwv
(ρE + p)v

 , Gi =


ρw

ρuw
ρvw

ρw2 + p
(ρE + p)w

 ,

Ev =


0

τxx

τxy

τxz

u τxx + v τxy + w τxz − qx

 , Fv =


0

τyx

τyy

τyz

u τyx + v τyy + w τyz − qy

 and

Gv =


0

τzx

τzy

τzz

u τzx + v τzy + w τzz − qz

 .

(2)

where the viscous stress tensor is defined by

τxx = Π1

[
2µ

∂u
∂x

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)]
, τxy = τyx = Π1

[
µ

(
∂u
∂y

+
∂v
∂x

)]
,

τyy = Π1

[
2µ

∂v
∂y

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)]
, τxz = τzx = Π1

[
µ

(
∂u
∂z

+
∂w
∂x

)]
and

τzz = Π1

[
2µ

∂z
∂x

+ λ

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)]
and τyz = τzy = Π1

[
µ

(
∂v
∂z

+
∂w
∂y

)]
,

(3)

and the heat flux is defined by

qx = −Π2k
∂T
∂x

, qy = −Π2k
∂T
∂y

and qz = −Π2k
∂T
∂z

. (4)
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The aforementioned system of equations has more variables than equations. However,
it is possible to employ the equation of state for an ideal gas, i.e.,

p = −Π3ρT , (5)

where Πk represents the dimensionless parameters, calculated with respect to the reference
quantities. They can be written in generic form as follows:

Π1 =
µR

ρRURLR
, Π2 =

kRTR

ρRU3
RLR

and Π3 =
RTR

U2
R

. (6)

The reference quantities, on the other hand, are selected based on the free stream conditions.
However, an exception is made for the reference velocity, which is derived from the free
stream’s speed of sound. Consequently, the dimensionless parameters become

Π1 =
Ma∞

Re∞
, Π2 =

Ma∞

(γ − 1)Re∞ Pr∞
and Π3 =

1
γ

, (7)

where Re is the Reynolds number, Pr is the Prandtl number, Ma is the Mach number,
and the subscript ∞ indicates free stream quantities. Having selected these three dimen-
sionless parameters, one must still select the dynamic viscosity and thermal conductivity.
The dimensionless dynamic viscosity is assumed to follow Sutherland’s law, i.e.,

µ(T) =
1 + T0

T + T0
T3/2 , (8)

and the dimensionless thermal conductivity is computed assuming that the Prandtl number
is constant Pr = Pr∞. Hence, one obtains

µ(T) = k(T) . (9)

since both heat capacities are constant in ideal gases.
The numerical methods utilized here were originally designed for rectangular domains.

In order to use them in complex geometries, a coordinate transformation is applied to
the governing equations to map the generalized physical space (x, y, z) to the rectangular
computational space (ξ, η, ζ). It must be noted that this transformation ensures that the
transformed equations retain their conservative behavior. Within the computational space,
the governing equations are reformulated as

∂q
∂t

+
∂ei

∂ξ
+

∂ f i

∂η
+

∂gi

∂ζ
=

∂ev

∂ξ
+

∂ f v

∂η
+

∂gv

∂ζ
, (10)

noting that the new coordinate system depends on the old one, i.e.,

ξ = ξ(x, y, z) , η = η(x, y, z) and ζ = ζ(x, y, z) , (11)

and, hence, the transformation Jacobian

J =
∂(ξ, η, ζ)

∂(x, y, z)
=

ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 , (12)

has a nonzero determinant, i.e.,

J =
1

J−1 = 1
/

∂(x, y, z)
∂(ξ, η, ζ)

= 1

/∣∣∣∣∣∣
xξ xη xζ

yξ yη yζ

zξ zη zζ

∣∣∣∣∣∣ . (13)
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and the necessary metrics are computed usingξx ξy ξz
ηx ηy ηz
ζx ζy ζz

 = J

 yη zζ − yζ zη −(xη zζ − xζ zη) xη yζ − xζ yη

−(yξ zζ − yζ zξ) xξ zζ − xζ zξ −(xξ yζ − xζ yξ)
yξ zη − yη zξ −(xξ zη − xη zξ) xξ yη − xη yξ

 , (14)

leading to the transformed conservative variables and fluxes

q = J−1Q ,

ei = J−1
(

Eiξx + Fiξy + Giξz

)
, f i = J−1

(
Eiηx + Fiηy + Giηz

)
,

gi = J−1
(

Eiζx + Fiζy + Giζz

)
, ev = J−1(Evξx + Fvξy + Gvξz

)
,

f v = J−1(Evηx + Fvηy + Gvηz
)

and gv = J−1(Evζx + Fvζy + Gvζz
)

.

(15)

2.2. Grid Generation

All spatial discretization schemes described so far are implemented on a generalized
coordinate framework using uniformly distributed points between 0 and 1 in all directions.
Hence, the physical domain of interest must be mapped into this computational domain
for all simulations. Analytical transformations are employed whenever they are available.
If this is not the case, grid-generation tools are required. This is an important issue because
grid quality is directly related to solution accuracy. For example, lack of convergence can
be a consequence of poor grid quality [2].

There are two fundamental types of grids for multidimensional regions: structured
and unstructured. They differ by the way in which the grid points are locally organized.
Structured grids have regular connectivity, which is implicitly taken into account. They
have quadrilateral elements in two-dimensional domains or hexahedron elements in three-
dimensional ones. On the other hand, unstructured grids can be identified by irregular
connectivity that must be explicitly described and stored. This type of grid quite often
employs triangles and tetrahedral elements, respectively, in two- and three-dimensional
problems [57]. Besides that, they also differ in the type of method that can use them. While
finite difference methods require structured grids, finite volume and finite element methods
allow both types of grids. Since 3D4S is based on finite differences schemes, this brief
review focuses only on structured grid generation tools.

Since elliptic partial differential equations were introduced for grid generation [58],
this approach has established itself as the one that arguably produces the best grids in
terms of smoothness and grid point distribution. When these elliptic differential equations
are homogeneous, the smoothness of the Laplace operator makes the grid evenly spaced
throughout the domain. This makes grid refinement at specific locations, such as the
wall for boundary-layer problems, more difficult. Hence, grids based solely on Laplace
equations are unusable in practice. However, Poisson equations can be used instead
so that control functions can be introduced through their source terms. The quality of
an elliptic grid now depends on how well these control functions can be tailored [59].
They are usually employed to control grid clustering [60] as well as enforce orthogonality
at boundaries [61]. The latter is essential to avoid coupling between wall grid points
when wall-normal derivatives are required. The particular grid-generation procedure
used in 3D4S [62] introduces an intermediate step between physical and computational
spaces [63] so that both grid clustering and orthogonality can be enforced. Figure 1 shows
an illustration of its mapping procedure.
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Figure 1. Transformation from computational (ξ, η) space to a physical domain in Cartesian (x, y)
space going through a parametric (s, t) space.

2.3. Numerical Methods
2.3.1. Viscous Flux Discretization

In the 3D4S implementation, standard central differences are applied to discretize the
viscous fluxes. To illustrate this approach, consider the scalar viscous flux

∂ f
∂x

=
∂

∂x

(
µ

∂u
∂x

)
, (16)

which can be approximated using a generic central difference scheme,

∂ f
∂x

∣∣∣∣
i
= δ̄

(p)
x fi + O(∆xp) , (17)

also applied to its scalar flux, i.e.,

fi = µi δ̄
(p)
x ui + O(∆xp) , (18)

where p is the scheme accuracy order and δx is the central-difference operator, which can
be developed for any order p. For instance, the second-order (p = 2) operator is

δ̄
(2)
x fi =

fi+1 − fi−1

2 ∆x
, (19)

the fourth-order (p = 4) operator is

δ̄
(4)
x fi =

fi−2 − 8 fi−1 + 8 fi+1 − fi+2

12 ∆x
, (20)

and the sixth-order (p = 6) operator is

δ̄
(6)
x fi =

− fi−3 + 9 fi−2 − 45 fi−1 + 45 fi+1 − 9 fi+2 + fi+3

12 ∆x
. (21)

Introducing Equation (18) into Equation (17) yields

∂ f
∂x

∣∣∣∣
i
= δx(µiδxui + O(∆xq)) + O(∆xp) = δx(µiδxui) + O(∆xp , ∆xq−1) , (22)

which means that the latter operation in Equation (22) can lead to odd–even decoupling
as well as order loss whenever µ is not a smooth enough function [9]. Hence, high-order
operators, such as the one in Equation (21), must be used with care.

Figure 2 illustrates the stencil dependence associated with the central-difference
schemes discussed previously. It is important to recognize that, as the order of the scheme
increases, so does the number of points required for the approximation. Near boundary
schemes must be biased upwind near the inlet and downwind near the outlet due to the
lack of external grid points. Generally, the scheme’s accuracy near boundaries is reduced
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to maintain numerical stability. Nevertheless, the overall accuracy can be preserved by
ensuring that the boundary order is one less than the inner domain order [64].

f ′
i

δ̄(2)x

δ̄(4)x

δ̄(6)x

∆x

≈≈
j = 0 j = Nj = i j = i+ 1 j = i+ 2 j = i+ 3j = i− 1j = i− 2j = i− 3

xi xi+1 xi+2 xi+3xi−1xi−2xi−3

Figure 2. Stencil dependence of central-difference operators.

2.3.2. Inviscid Flux Discretization

The discretization of inviscid fluxes in 3D4S is significantly more complex. It is
described using the scalar hyperbolic conservation law

∂u
∂t

+
∂ f
∂x

= 0 , (23)

where x is the position in a one-dimensional space, t is time, and u = u(x, t) and f =
f (u(x, t)) are the conservative variable and the conservative flux function, respectively.
The goal is to describe the evolution of u within t ∈ [0, ∞] and x ∈ [x0, xN ].

Conservative Schemes

A numerical scheme used to solve Equation (23) is called conservative if it ensures that
u is conserved across all cells. Thus, numerical conservation is achieved using a single flux
function that describes the flow of u between neighboring cells. Using a semi-discretized
form of Equation (23), namely

du
dt

∣∣∣∣
i
= − ∂ f

∂x

∣∣∣∣
i

, (24)

a conservative finite-difference scheme used to approximate the right-hand-side term of
Equation (24) must be written as

d f
dx

∣∣∣∣
i
=

hi+ 1
2
− hi− 1

2

∆x
, (25)

where hi+1/2 = h(x = xi+1/2) is a numerical flux function describing the flux crossing the
interface xi+1/2 between xi and xi+1. This can be visualized in Figure 3, which shows an
illustration of a typical computational grid. The numerical flux function is defined such that
Equation (25) involves no truncation error. Traditionally [31], the numerical flux function
has been implicitly defined as
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∆x

≈≈

j = 0 j = Ni i+ 1 i+ 2 i+ 3i− 1i− 2i− 3

i+ 1
2i− 1

2

- Cell boundary - Node

Figure 3. Illustration of a typical computational grid.

f (x) =
1

∆x

∫ x+ ∆x
2

x− ∆x
2

h(ξ)dξ , (26)

which leads, after integration, to

f (x) =
H(x + ∆x

2 )− H(x + ∆x
2 )

∆x
, (27)

where H(x) is the primitive of h(ξ), i.e., H(x) =
∫ x
−∞ h(ξ) dξ. Furthermore, taking the

derivative of Equation (27) and evaluating it at xi results in Equation (25). One must note
that the numerical flux function is not a numerical approximation of the flux function, even
though the flux function derivative is exactly equal to a finite difference approximation of
the numerical flux function. Unfortunately, it is not possible to obtain the exact numerical
flux function, and, hence, a numerical approximation must be used. High-order conserva-
tive numerical schemes can be constructed by employing high-order approximations of
the numerical flux function. Defining f̂ (x) as this arbitrary polynomial approximation of
h(x), its coefficients can be determined from the flux function by replacing h(ξ) by f̂ (ξ) in
Equation (26). Hence, a numerical approximation of Equation (25) can be written as

d f
dx

∣∣∣∣
i
≈

f̂i+ 1
2
− f̂i− 1

2

∆x
. (28)

Flux Function Splitting

The previous discussion did not take into account the propagation direction, i.e., ∂ f /∂u,
of variable u. In the particular case of a nonlinear flux function, the variable u can propagate
both downstream, where ∂ f /∂u > 0, and upstream, where ∂ f /∂u < 0, simultaneously.
Hence, the flux function must be split into positive and negative parts, since they require
different spatial discretization techniques. In other words,

f = f+ + f− with
∂ f+

∂u
≥ 0 and

∂ f−

∂u
≤ 0 , (29)

which allows the numerical flux function to be computed as

f̂ = f̂+ + f̂− . (30)

The Lax–Friedrichs flux splitting is a simple and inexpensive example of flux splitting. It
splits the fluxes according to

f± =
1
2
( f ± αu) with α = max

u

∣∣∣∣ ∂ f
∂u

∣∣∣∣ . (31)

WENO Schemes

In the vicinity of discontinuities, high-order polynomial interpolations inherently
exhibit oscillatory behavior. This is illustrated in Figure 4, which shows spurious oscillations
from high-order polynomial fits across a step function discontinuity. Shock waves present
in high-speed compressible flows are an example of such a discontinuity, which leads to
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spurious oscillations in simulations employing high-order schemes. They not only lead to
accuracy loss but also negatively impact the numerical stability of said schemes.

Sample Data

1st order

3rd order

5th order

7th order

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

x

f(
x)

0.42 0.43 0.44 0.45 0.46 0.47 0.48
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Figure 4. Polynomial interpolations of data taken from a step function.

Weighted Essentially Non-Oscillatory (WENO) schemes were developed to prevent
such oscillations while preserving the high-order accuracy of the approximation. The foun-
dational principle of a WENO scheme is its use of a convex combination of numerical flux
approximations from lower-order polynomials to construct a high-order approximation.
In smooth regions, WENO schemes become upstream central schemes. Near disconti-
nuities, on the other hand, the stencil that includes the discontinuity is assigned a lower
weight in the convex combination, minimizing its impact.

The WENO reconstruction [33] can be written as

f̂i+1/2 =
r−1

∑
k=0

ωk f̂ k
i+ 1

2
, (32)

where r is the number of stencils candidates, f̂ k
i+1/2 is the numerical flux approximation

using the kth stencil, and ωk is the nonlinear weight given to the kth stencil. Figure 5
illustrates the classical fifth-order WENO-JS [33], where each f̂ k

i+1/2 is formulated as a third-
order polynomial approximation of the numerical flux function using different stencils.
Following this approach, the numerical flux approximations based on upstream central
schemes are given by

f̂ 0
i+ 1

2
=

1
6
(2 fi−2 − 7 fi−1 + 11 fi) ,

f̂ 1
i+ 1

2
=

1
6
(− fi−1 + 5 fi + 2 fi+1) and

f̂ 2
i+ 1

2
=

1
6
(2 fi + 5 fi+1 − 1 fi+2) ,

(33)

and the weights ωk in WENO-JS are given by

ω
(JS)
k =

αk

∑r−1
n=0 αn

with αk =
ω̄k

(ε + ISk)
p , (34)

where ϵ = 10−6 is used to prevent division by zero, ISk is the indicator of smoothness
for the kth stencil, ω̄k is the linear weight, and p is a constant used to accelerate the rate
at which ω

(JS)
k goes to zero in non-smooth regions. On one hand, the linear weighted
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combination of numerical flux approximations must yield a fifth-order upstream central
scheme, i.e.,

ω̄0 f̂ 0
i+ 1

2
+ ω̄1 f̂ 1

i+ 1
2
+ ω̄2 f̂ 2

i+ 1
2
=

1
60

(2 fi−2 − 13 fi−1 + 47 fi + 27 fi+1 − 3 fi+2) , (35)

∆x

≈≈
j = 0 j = Ni i+ 1 i+ 2 i+ 3i− 1i− 2i− 3

f̂i+ 1
2

k = 0

k = 1

k = 2

Figure 5. Fifth-Order WENO-JS scheme stencil dependence.

and, hence, the linear weights must be

ω̄0 =
1

10
, ω̄1 =

6
10

and ω̄2 =
3

10
. (36)

On the other hand, the smoothness indicator should converge to one, making the linear
and nonlinear weights equivalent. This can be achieved using the following definition [33]:

ISk =
2

∑
j=1

∆x2j−1
∫ x

i+ 1
2

x
i− 1

2

(
dj f̂ k

dxj

)2

dx , (37)

which depends on the polynomial approximations employed. In the particular case of the
WENO-JS scheme, these indicators of smoothness become

IS0 =
13
12
(

f j−2 − 2 f j−1 + f j
)2

+
1
4
(

f j−2 − 4 f j−1 + 3 f j
)2 ,

IS1 =
13
12
(

f j−1 − 2 f j + f j+1
)2

+
1
4
(
− f j−1 + f j+1

)2 and

IS2 =
13
12
(

f j − 2 f j+1 + f j+2
)2

+
1
4
(
3 f j − 4 f j+1 + f j+2

)2 .

(38)

After the early seminal contributions [32,33], a diverse spectrum of WENO schemes
has emerged. For instance, the WENO-Z scheme [35] introduces a new procedure for the
calculation of the nonlinear weights, i.e.,

ω
(Z)
k =

αz
k

∑r−1
n=0 αz

n
with αz

k = ω̄k

[
1 +

(
τ

ε + ISk

)p]
, (39)

where τ = |IS0 − IS2|. Another example is the WENO-ZP [36], which proposes a different
formulation for the weights, namely

α
zp
k = ω̄k

[
1 +

(
τ + ε

ε + ISk

)p
+ λ

(
ISk,+ε

τ + ε

)]
, (40)
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noting that it reduces to the WENO-Z scheme when λ = 0, although λ = ∆x2/3 is suggested
instead. For the sake of simplicity, the variants that modify the reconstruction polynomials
are omitted. Nevertheless, their derivation can be found elsewhere [37,39,56].

Extension to a System of Equations

In the case of a system of hyperbolic equations, i.e.,

∂q
∂t

+
∂ f
∂x

= 0 , (41)

q = q(x, t) is the vector of conservative variables and f = f (q(x, t)) is the vector of
conservative fluxes. It is possible rewrite this equation as

∂q
∂t

+
∂ f
∂q

∂q
∂x

= 0 , (42)

using the chain rule. Solving Equation (42) is known as the component-wise approach. A
different approach, known as the characteristic-wise approach, can be pursued by taking
advantage of Equation (41)’s hyperbolicity. As a consequence, ∂ f /∂q has a complete set of
real eigenvalues, and also, Equation (42) can be decoupled.

When using a high-order discretization, the characteristic-wise approach has provided
more accurate results than its component-wise counterpart. It can be implemented by first
defining R(q) and L(q) = R−1, which are the right and left eigenvector matrixes of ∂ f /∂q,
respectively. Hence, the Lax–Friedrichs flux split for systems of equations is written as

f±j =
1
2

(
f j ± Ri+ 1

2
Λi+ 1

2
Li+ 1

2
qj

)
with j ∈ [i − l, i + l] , (43)

where l is the stencil width. Furthermore, Ri+1/2 = R(qi+1/2) and Li+1/2 = L(qi+1/2),
where qi+1/2 is an average state between i and i + 1, such as the Roe average [12], and

Λi+ 1
2
= Diag

[
λ(0), λ(1), . . . , λ(m)

]
with λ(p) = max

q

∣∣∣λ(p)(qi+ 1
2
)
∣∣∣ , (44)

where m is the number of equations and λ(p) is the pth eigenvalue of ∂ f /∂q. Multiplying
Equation (43) by Li+ 1

2
as well as denoting f̄ j = Li+ 1

2
f j and wj = Li+ 1

2
qj, yields

f̄±j =
1
2

(
f̄ j ± Λi+ 1

2
wj

)
, (45)

which is the projection of positive and negative fluxes into the characteristic space. A WENO

reconstruction of f̄±j generates the numerical flux function approximation ̂̄f±i+ 1
2
. Projecting

back to the physical space with f̂
±
i+ 1

2
= Ri+ 1

2

̂̄f±i+ 1
2
, it is possible to build the scheme using

Equation (28). Multi-dimensional problems are built in the same way, one dimension at a
time. The eigenvalues and eigenvectors can be found elsewhere [65].

2.3.3. Temporal Integration

The spatial discretization of both viscous and inviscid terms present in Equation (10)
leads to the system of ordinary differential equations

dq
dt

= F (q) , (46)
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where F (q) represents discrete residue obtained after spatial discretization. Following the
method of lines, the time integration of Equation (46) can be now discussed. The simplest
way of marching it forward in time is

qn+1 = qn + ∆tF (qn) + O(∆t) , (47)

known as the explicit Euler method, which is first-order-accurate in time. Higher-order
time integration schemes also exist. They are designed to increase scheme accuracy in time,
reducing the CPU time required to generate highly accurate solutions. Runge–Kutta (RK)
schemes are arguably the most used multi-stage high-order marching schemes. However,
classical schemes [5] that do not satisfy the nonlinear proprieties required by a WENO
discretization lead to spurious oscillations near discontinuities.

Strong-Stability-Preserving (SSP) RK schemes [47] ensure the preservation of these
nonlinear stability proprieties. They can be written as

k(0) = qn ,

k(i) =
i−1

∑
k=0

(
αi,k k(k) + βi,k ∆tF (k(k))

)
with 1 ≤ i ≤ s ,

qn+1 = k(s) , (48)

where s is the number of stages and k(i) is the intermediate stage variable vector. It is
important to note that SSPRK schemes are subject to a nonlinear time-step restriction that
is more stringent than its linear counterpart. In other words, the aforementioned nonlinear
stability properties will only be preserved when ∆t ≤ C∆tEEmax , for a given C constant.

Both the optimal second-order SSPRK scheme, given by

k(1) = qn + ∆tF (qn) and

qn+1 =
1
2

qn +
1
2

k(1) +
∆t
2

F (k(1)) , (49)

and the optimal third-order SSPRK scheme, given by

k(1) = qn + ∆tF (qn) ,

k(2) =
3
4

qn +
1
4

k(1) +
∆t
4

F (k(1)) and

qn+1 =
1
3

qn +
2
3

k(2) +
2 ∆t

3
F (k(2)) , (50)

are currently implemented in 3D4S [49].

3. Results

Three different test cases are presented to analyze the ability of high-order schemes to
achieve accurate steady states when simulating the Navier–Stokes equations. First, a Mach
3 flow over a compression ramp is discussed. The importance of such problem comes
from the preponderance of corners in high-speed flows. The adverse (favorable) pressure
gradient upstream (downstream) of the corner separates (reattaches) the boundary layer.
At these same regions of the flow, compression fans appear and lead to the formation of
separation and reattachment shocks. Hence, the main goal here is to evaluate steady-state
convergence in the presence of shock boundary layer interactions (SBLIs). Subsequently,
a Mach 6 flow over a blunt body is discussed. The body geometry is constructed by
connecting a cylinder to a wedge through a C1 curve. A bow shock appears near the leading
edge and propagates away from the body. The relevance of this geometry arises from the
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effects that blunted noses have in the laminar–turbulent boundary layer transition. Finally,
a Mach 6 flow upstream of a cylinder is discussed. This case is employed here to highlight
the difference between different WENO schemes regarding steady-state convergence. 3D4S
code verification can be found elsewhere in the literature [66–68].

3.1. Compression Ramp

The first attempts to obtain such steady states used low-order schemes, which are here
based on the explicit Euler scheme for time integration and a second-order accurate spatial
discretization, which employed a TVD scheme with the Roe flux-difference splitting and the
SuperBee fluxn limiter for inviscid fluxes as well as a conservative central-difference scheme
for the viscous fluxes. No slip and isothermal walls are considered with Tw = T∞ = 216.67.
Figure 6 presents a sketch of the analytic grid used in these simulations, and a complete
discussion of grid generation can be found elsewhere [6]. The density wall-normal profile
at the corner (left) and density-maximum residue convergence in time (right) obtained for
three different free stream Reynolds numbers, namely Re∞ = 2× 103 (top), 5× 103 (middle),
and 10 × 103 (bottom), are show in Figure 7 for the isotherm wall under different grid sizes.
Simulations require an increasingly larger number of grid points for their spatial profiles
to converge towards the same tolerances as the free stream Reynolds number increases.
Nevertheless, the number of grid points used in this figure shows spatial profiles that are
grid-converged for graphical accuracy. On the other hand, residue convergence in time has a
much stronger dependence on the free-stream Reynolds number. Residue converges in time
for all grids employed when Re∞ = 2 × 103, for only the four largest grids employed when
Re∞ = 5 × 103, and for none of the grids employed when Re∞ = 10 × 103. Convergence is
quantified here by how much the maximum density residue decreases in time. It does so by
approximately 10 orders of magnitude in the former two cases. In the latter case, however,
it does so by only approximately four orders of magnitude, suggesting a six-digit accuracy
loss. These low-order trends were also observed when using OpenFOAM, even though its
second-order accurate finite-volume solver used approximately 16 million grid points to
simulate the Re∞ = 104 case [66].

In order to emphasize the impact of higher-order schemes in such a steady-state
simulation, Figure 8 (left) shows the convergence history for Re∞ = 10 × 103 considering
an adiabatic wall when a fifth-order WENO-JS and a fourth-order central difference scheme
are applied to inviscid and viscous flux discretizations, respectively. Unlike the low-order
simulations, a 10-orders-of-magnitude residue decrease in time is observed when using
a Nx = 2401, Ny = 801 grid, while temporal content is still present in the residue when
using a Nx = 1801, Ny = 601 grid. Figure 8 (right) shows the residue convergence in time
for both grids. One can note in the latter case that numerical oscillations are generated at
the leading-edge shock and propagate downstream, preventing residue convergence in
the time-to-machine precision. Furthermore, wall-properties of case Re∞ = 10 × 103 are
presented in Appendix A.1.

Figure 6. Compression ramp grid using Nx = 61 and Ny = 21 points.
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Figure 7. Density wall-normal profile at the corner (left) and density maximum residue convergence
in time (right) obtained with Re∞ = 2 × 103 (top), 5 × 103 (middle), and 10 × 103 (bottom) from
low-order 3D4S for the isothermal wall case under different grid sizes.
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Figure 8. Convergence history (right) for the compression ramp simulation using different grid
sizes, as well as the steady-state residue of mass conservation equation using (left top) Nx = 1801,
Ny = 601 and (left bottom) Nx = 2401, Ny = 801.

3.2. Blunt Wedge

WENO schemes developed for unsteady simulations are known to introduce post-
shock oscillations, with a magnitude proportional to the local truncation error, that prevent
residue convergence in time toward machine zero [38]. This issue was overcome with
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the development of WENO5-ZQ for steady simulations [37,39–41]. Its ability to do so is
verified here by simulating the hypersonic flow over a blunt wedge.

Flow conditions are set by imposing the free stream Mach number Ma∞ = 6, the Reynolds
number based on the nose radius ReR = 1.5 × 103, the free stream Prandtl number
Pr∞ = 0.72, the ratio between constant specific heats γ = 1.4, the free stream temper-
ature T∞ = 200 K, the dynamic viscosity defined by Sutherland’s law, and the thermal
conductivity defined by the constant Prandtl assumption. Furthermore, a no-slip and
isothermal wall with Tw = T0 is considered. Grid-converged simulations were achieved
with (Nx, Ny) = (1201, 801) using a time step of ∆t = 5 × 10−6. Time integration was per-
formed using the third-order accurate and three-stage ERK scheme, and the viscous fluxes
were discretized with the fourth-order accurate conservative central-difference scheme.
Figure 9 shows a sketch of the elliptic grid used in these simulations. A complete discussion
of grid generation can be found elsewhere [63].

Figure 9. Blunt-body grid using Nx = 51 and Ny = 51 points.

Figure 10 (right) shows the convergence in time of the L∞ norm of the residue for
the mass, momentum and energy conservation equations using WENO5-JS (dashed) and
WENO5-ZQ (solid) schemes. As already expected, post-shock oscillations prevent the
maximum residue calculated with the former from converging in time to machine zero.
Maximum residues calculated with the latter, on the other hand, decrease by approximately
10 orders of magnitude in time. Figure 10 (left) shows the spatial distribution of the steady
mass conservation equation residue obtained while using WENO-JS (top) and WENO-ZQ
(bottom) schemes. One can note that the maximum residues are, in fact, located at the
shock. Elsewhere, these residues are two to five orders of magnitude smaller. There was
no need to either align the grid and the shock or cluster grid points around the shock
whenever using WENO. This is in contrast with said literature, which simulated this flow
using a second-order TVD-type scheme instead. They spent a large amount of effort trying
to improve the alignment between the grid and steady shock, as well as clustering grid
points around this shock due to the strong gradients in the stagnation region. Moreover,
wall-properties of case Re∞ = 1.5 × 103 are presented in Appendix A.2.
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Figure 10. Instantaneous spatial distribution of the mass conservation residue obtained while using
WENO-JS (left top) and WENO-ZQ (left bottom). Residue time convergence to the steady state
(right) for the blunt-body simulation using WENO5-JS (dashed) and WENO5-ZQ (solid) schemes.

3.3. Quarter Cylinder

WENO-ZQ, which is especially designed for steady simulations, has shown better
results than the classical WENO-JS scheme so far. This is also true for other WENO schemes
as well; i.e., they also have a worse performance for steady simulations when compared
to WENO-ZQ. In order illustrate this, a set of simulation results is presented for a Mach 6
flow upstream of a cylinder using four different WENO schemes, namely WENO-JS [33],
WENO-ZP [36], WENO-ZPs [36,56] and WENO-ZQ [37]. The reference Reynolds number
is ReD = 1 × 104 and the free-stream temperature T∞ = 271.155 K. Furthermore, a no-slip
and adiabatic wall is considered. Figure 11 shows a sketch of the analytic grid used in these
simulations, where the grid generation formulas can be found elsewhere [33].

Figure 11. Cylinder grid using Nx = 31 and Ny = 31 points.

Figure 12 shows the mass conservation equation’s maximum residue convergence in
time obtained while employing WENO-JS (top left), WENO-ZP (top right), WENO-ZPs
(bottom left), and WENO-ZQ (bottom right). For each case, a grid-independence study
was performed. While the former three schemes were only able to reduce this residue
in time by approximately 3 orders of magnitude, WENO-ZQ was able to do so for 12
orders of magnitude, essentially reaching machine precision. Figure 13 presents the spatial
distribution of the steady density field obtained for these four cases. One can note that slight
post-shock oscillations prevent the residue convergence to machine precision in the three
leftmost plots, as occurred in the compression ramp and blunt-wedge cases. Furthermore,
wall-properties of case Re∞ = 10 × 103 are presented in Appendix A.3.
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Figure 12. Density maximum residue convergence in time obtained with WENO-JS (top left), WENO-
ZP (top right), WENO-ZPs (bottom left), and WENO-ZQ (bottom right) for different grid sizes.

Figure 13. Steady-state density residue spatial distribution obtained using WENO-JS (first column),
WENO-ZP (second colomn), WENO-ZPs (third column), and WENO-ZQ (fourth column). The results
were obtained considering the (Nx, Ny) = (801, 1201) grid.
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4. Conclusions

The ability of high-order shock-capturing schemes to achieve residue convergence in
time and, hence, generate accurate steady-states was discussed in the present work. A care-
fully analysis of three different supersonic flows showed the benefits of using higher-order
schemes. They are more efficient when compared to their lower-order counterparts. As the
Reynolds number increases, the high grid resolution required to achieve machine precision
steady-states when using lower-order schemes makes them unfeasible. A considerably
smaller grid resolution is required to do so when using high-order schemes. However,
this is not true of all high-order schemes. Only the WENO-ZQ scheme, which is specially
designed for steady-state simulations, was able to achieve machine precision residues
in all test cases explored in this study. It is important to highlight that, even though a
double-precision floating point was used, machine precision for the computation of residue
F was greater than O(10−16). This is expected since the increment per time step ∆t for the
conservative variables is O(∆tF ), which leads to an increment of O(10−16).

Funding: This research was funded by the US grants FA9550-18-1-0419, FA9550-22-1-0033 and FA8655-
23-1-7031 under SOARD/AFOSR as well as the Brazilian agencies CAPES (graduate fellowships),
FAPERJ (CNE and Bolsa Nota 10 SEI E-26/204.043/2022) and CNPq (PQ1D).

Acknowledgments: The authors would like to acknowledge Pedro Paredes (NIA/NASA LaRC) and
Vassilis Theofilis (Technion) for their support during the development of this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Wall Properties

Appendix A.1. Compression Ramp
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Figure A1. Dimensionless wall temperature (left) and pressure (right). In both figures, the vertical
dashed black line marks the corner position. The solid red line represents the adiabatic wall tempera-
ture using the theoretical recovery temperature for laminar boundary layers. The leading edge is
placed at x/LR = 0.1, and the reference length is the distance from the leading edge to the corner.
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Appendix A.2. Blunt Body
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Figure A2. Dimensionless wall heat flux (left) and pressure (right). The reference length LR is the
nose radius and x/LR measures the distance along the wall.

Appendix A.3. Cylinder
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Figure A3. Dimensionless wall temperature (left) and pressure (right). θ = 0 corresponds to the
stagnation point. Due to symmetry, only the upper half of the solution is presented.
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