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Abstract: In this paper, the entire downhole fluid-sucker rod-pump system is replaced with a
viscoelastic vibration model, namely a third-order differential equation with an inhomogeneous
forcing term. Both Kelvin’s and Maxwell’s viscoelastic models can be implemented along with
the dynamic behaviors of a mass point attached to the viscoelastic model. By employing the time-
dependent polished rod force measured with a dynamometer as the input to the viscoelastic dynamic
model, we have obtained the displacement responses, which match closely with the experimental
measurements in actual operations, through an iterative process. The key discovery of this work
is the feasibility of the so-called inverse optimization procedure, which can be utilized to identify
the equivalent scaling factor and viscoelastic system parameters. The proposed Newton–Raphson
iterative method, with some terms in the Jacobian matrix expressed with averaged rates of changes
based on perturbations of up to two independent parameters, provides a feasible tool for optimization
issues related to complex engineering problems with mere information of input and output data from
either experiments or comprehensive simulations. The same inverse optimization procedure is also
implemented to model the entire fluid delivery system of a very viscous non-Newtonian polymer
modeled as a first-order ordinary differential equation (ODE) system similar to the transient entrance
developing flow. The convergent parameter reproduces transient solutions that match very well with
those from fully fledged computational fluid dynamics models with the required inlet volume flow
rate and outlet pressure conditions.

Keywords: inverse; optimization; viscoelastic; computation

1. Introduction

Towards the end of an oil and gas reservoir’s productive life, natural lift forces due
to fluid pressure gradually decay and diminish. Thus, it is common to use artificial lift
methods to transfer the oil and gas from the underground formation to the surface [1–3]. In
practice, sucker rod pumping units, as illustrated in Figure 1, are the most popular artificial
lift means and are still widely utilized along with hydraulic and electric submersible
pumping systems [4–7]. Teaming with such pumping systems, various four-bar linkage-
based horse-head pump jacks have also been invented to support and drive the entire
artificial lift system [8]. As one of the earliest inventions for oil industries, these sucker rod-
pump systems have been proven to be efficient and adaptable [9–13]. Over 80% of the wells
worldwide still depend on this traditional and most extensively used mechanism [14,15].
Nevertheless, contemporary computational tools have been introduced in recent research
efforts on leakage, safety, and reliability and shed light on these popular artificial lift
systems [16–19].
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Figure 1. Surface and downhole sucker rod-pump system models.

The fluid mechanics aspect of the sucker rod-pump unit, such as the leakage, has
been discussed and presented in refs. [20,21]. The so-called relaxation time, which can be
derived numerically based on the Bessel functions for cylindrical coordinates and Fourier
series for Cartesian coordinates is calculated and confirmed to be less than a tenth of the
typical sampling period, which corresponds to a sampling frequency, normally ranging
from 30 to 60 samples per second, currently used in oil industries with comparable physical
dimensions [22–24]. The issues related to the leakage also exposed an imminent desire
and need in engineering practice that sophisticated perturbation methods and analytical
approaches continue to be essential to derive information from fully fledged computational
simulations and, in some cases, to help the establishment of viable and more insightful
simulation setups [25–28].

As the traveling unit, the plunger consists of a so-called traveling valve fixed at its
bottom and is moving within a barrel or a chamber with a so-called standing valve fixed
at the bottom [29,30]. Overall, the sucker rod pumping unit involves very complicated
four strokes with respect to the open and closed positions of the traveling valve and the
standing valve, as illustrated in Figure 1. In fact, through the exercises of applying fully
fledged computational fluid dynamics (CFD) and finite element method (FEM) to sucker
rod-pump systems, it is becoming clear that even for a simple developing viscous fluid
within sucker rod-pump systems, engineers must learn how to handle extreme aspect
ratios. For example, the so-called clearance C, namely the difference between the plunger
outer diameter Do and the barrel inner diameter Di, or the gap between the plunger and
the barrel δ, namely C = 2δ = Di − Do, is often measured in mills, one-thousandth of
an inch, whereas, the plunger system length Lp is often measured in feet [31,32]. This
extreme aspect ratio renders the fluid mechanics studies of sucker rod-pump systems very
challenging. It is more so when we must consider the difference between concentric and
eccentric situations [33]. However, through our previous works [34], we have identified
the possibilities of using a simple viscoelastic model to represent the entire complicated
pumping strokes. The measured data at the surface are the sucker rod displacement as well
as the dynamometer force measurements. We are encouraged by the very first confirmation
of the Inversed Optimization method. This success might be a new beginning in using
measured data to help the construction of mathematical and physical models when the
engineering fluid system is very complicated. The structural and mechanisms aspects of
this work have already been published in refs. [8,32].

To follow up with the ideas reported in ref. [34], the entire downhole sucker rod-pump
systems are modeled with Kelvin or Maxwell viscoelastic systems, as illustrated in Figure 2.
In this paper, we focus more on the iterative procedure to identify the optimal choice of
needed parameters in these models with a so-called Inverse Optimization Method. The
preliminary results do confirm that the parameters derived with the Inverse Optimization
Method yield virtually identical results in comparison with the dynamometer measure-
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ments of the polished rod load and the displacement in the field [12]. In fact, the same
inverse optimization procedure is also implemented to model the entire fluid delivery
system of a very viscous non-Newtonian polymer as a mere first-order ordinary differential
system. The convergent parameter matches very well with that identified with the fully
fledged computational fluid dynamics model, with the required inlet and outlet pressure
drop as the input and the flow rate as the output.

Figure 2. Typical viscoelastic models.

2. Theory and Modeling

Let us consider a lumped mass linked with either Maxwell or Kelvin models as
illustrated in Figure 2. A sudden displacement is applied to the Maxwell model, whereas
a sudden load is introduced to the Kelvin model [34]. Consequently, the Maxwell model
will yield a stiffness function or relaxation function to relate the responding force with
the sudden imposed displacement uo as shown in Figure 3. Likewise, the Kelvin model
will produce a compliance function or creep function to relate the resulting displacement
with the suddenly imposed force fo, also shown in Figure 3. For the Maxwell model,
we also introduce the displacement u(t) = uo H(t) where H(t) is the Heaviside function.
The total force function f (t) can be expressed as the combination of the location force
fo(t) = Kou(t) and f1(t) for the stiffness and dashpot couple (K1, C1) with the relaxation
time τ1 = C1/K1. Furthermore, using the same force or stress for the series component
and the same displacement or strain for the parallel component, we obtain the following
governing equations for the Maxwell model:

fo = Kou(t), (1)

u̇(t) =
f1

C1
+

ḟ1

K1
. (2)

Hence, using the concepts we have been discussing for the first-order ODE, we obtain:

et/τ1 f1(t)− 0 =
∫ t

−∞
K1et/τ1 u̇(t)dt, (3)

namely using integration by parts,

et/τ1 f1(t) = K1et/τ1 u(t)−
∫ t

−∞
K1/τ1u(t)et/τ1 dt = K1et/τ1 uo −

∫ t

0
K1/τ1uoet/τ1 dt. (4)
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Finally, we have f1(t) = K1uoe−t/τ1 and the total force f (t) = f1(t) + fo(t) =
(Ko + K1e−t/τ1)uo for the Maxwell model. Likewise, denote the sudden load as f (t) = foH(t)
where H(t) is a Heaviside function, the total displacement function u(t) can be expressed
as the combination of the location displacement uo(t) = f (t)/Ko and u1(t) for the stiffness
and dashpot couple (K1, C1) with the relaxation time τ1 = C1/K1. Using the same force
or stress for the series component and the same displacement or strain for the parallel
component, we obtain the following governing equations for the Kelvin model:

f (t) = Kouo(t), (5)

f (t) = C1u̇1 + K1u1, 1 ≤ i ≤ n. (6)

Thus, using the concepts we have been discussing for the first-order ODE, we obtain:

et/τ1 u1(t)− 0 =
∫ t

−∞
et/τ1 f /C1dt =

∫ t

0
et/τ1 fo/C1dt. (7)

Finally, we have the local displacement u1(t) = fo/K1(1 − e−t/τ1) and the total dis-
placement function can be expressed as u(t) = uo + u1 = fo/Ko + fo/K1(1 − e−t/τ1) for
the Kelvin model. To further the discussion with relaxation and creep functions, we can
also introduce a general Kelvin viscoelastic model as elaborated in ref. [35]. Similar ap-
proaches are also implemented for the viscoelastic vibration model with a mass m and a
concentrated load F(t). We first introduce the Kelvin viscoelastic model in a dynamic case
as shown in Figure 2, essentially a typical Kelvin viscoelastic setup for creep test combined
in series with a spring with a stiffness ko and a mass m. The displacement of the parallel
section of the stiffness k1 and the dashpot c1 share the same displacement u2(t), whereas
the displacement of the stiffness ko is denoted as u1(t). Since the mass m is connected with
the stiffness ko in series, the total displacement of the mass u(t) is a combination of the
two displacements u1(t) and u2(t). In general, the external load F(t) is applied to the mass
m. We can imagine that in the creep test, we can add a dead weight Wo in addition to the
weight of the mass mg.

(a) Maxwell (b) Kelvin

Figure 3. Typical responses for Maxwell and Kelvin models.

Using the same procedure and considering each section in series and the consequent
continuity of axial forces, we have

kou1(t) = k1u2 + c1u̇2,

kou1(t) = F(t)− mü.
(8)
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Using the kinematic relationship u(t) = u1(t) + u2(t), we obtain the following third-
order governing equation for u2(t),

mc1

ko

...
u 2 +

m
ko
(ko + k1)ü2 + c1u̇2 + k1u2 = F(t). (9)

In this paper, for simplicity, in the implementation of the inverse optimization ap-
proaches, Equation (9) is directly applied with adjusted parameters ko, m, c1, and k1.
The measured force F(t) is introduced to derive the closest u2(t) which matches with
the measured displacement. As validated in ref. [34], with no dashpot, namely c1 = 0,
Equation (8) yields

k1u2 = kou1,

hence
u = u1 + u2 =

ko + k1

ko
u2.

Finally, the governing Equation (9) yields the familiar spring-mass vibration system

mü +
kok1

ko + k1
u = F(t). (10)

Notice the effective stiffness of two springs in series. Moreover, the infinitely stiff
spring ko, namely ko → +∞, consequently, u2 → 0 and u(t) = u2(t). Finally, we recover
the familiar spring-mass-dashpot vibration system

mü + c1u̇ + k1u = F(t).

Finally, in order to facilitate the solution, introduce the state variable y =< u2, u̇2, ü2 >,
we can rewrite the third-order viscoelastic vibration system with a dynamical system format,

A =


0 1 0
0 0 1

− kok1

mc1
− ko

m
− ko + k1

c1

 and f =


0
0

koF
mc1

.

Consider the Maxwell viscoelastic model in a dynamic case as shown in Figure 2,
essentially a Maxwell viscoelastic setup for relaxation test in combination with a mass m
connecting in series with two parallel branches, one with a stiffness ko and another one
with a stiffness k1 and a dashpot c1 in series. The displacement of the parallel section shares
the same displacement u(t), whereas the displacement of the stiffness k1 is denoted as u2(t)
and the dashpot c1 as u1(t). Please note that the displacement of the stiffness ko is u(t).
Thus, the total displacement of the mass u(t) is a combination of the two displacements
u1(t) and u2(t) within one of the parallel branches. In general, the external load F(t) is
applied to the mass m. In a relaxation test, we can simply add a dead weight Wo in addition
to the weight of the mass mg. Similarly, assuming the force in the dashpot and stiffness
series as Fo, and considering each section in series and the consequent continuity of axial
forces, we have

F − mü = kou + Fo,

u̇ =
Ḟo

k1
+

Fo

c1
.

(11)

Using the kinematic relationship u(t) = u1(t) + u2(t) as well as u̇(t) = u̇1(t) + u̇2(t),
we obtain the following third-order governing equation for u(t),

m
k1

...
u 2 +

m
c1

ü2 +
ko + k1

k1
u̇2 +

ko

c1
u =

Ḟ
k1

+
F
c1

. (12)
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Again, with no dashpot, namely c1 = 0. Equation (8) yields Fo = 0, hence the
governing Equation (12) yields the familiar spring-mass vibration system

mü + ku = F(t).

Likewise, as the infinitely stiff spring k1, namely k1 → +∞, consequently, u2 → 0 and
u(t) = u1(t), we recover the familiar spring-mass-dashpot vibration system

mü + c1u̇ + kou = F(t).

As presented in ref. [34], in numerical solutions, we rewrite the third-order viscoelastic
vibration system with a dynamical system format,

ẏ = Ay + f, (13)

with the state variable y =< u2, u̇2, ü2 >, and

A =


0 1 0
0 0 1

− kok1

mc1
− ko + k1

m
− k1

c1

 and f =


0
0

Ḟ
m

+
k1F
mc1

.

As shown in Figures 4 and 5, for such a viscoelastic model representing the downhole
sucker rod system and starting from the reference position with no initial velocity and accel-
eration, we employ ko = 4 N/m, m = 1 kg, c1 = 0.2 Ns/m, k1 = 4 N/m, and Wo = 10 N.
The external force F(t) is a deadweight Wo. Based on the Matlab simulation, the vibration
eventually settles down to an equilibrium position due to the dashpot damping. Of course,
the deadweight will be replaced with the actual dynamometer load measurements, and
the actual polish rod displacements will be compared with the displacement solutions.
As shown in Figure 6, even with a very preliminary Kelvin model, we can still recreate
the hysteresis loop of load and displacement for the sucker rod-pump system. In the
simulation, the magnification factor is 85 for both Maxwell and Kelvin models to match
the actual motion of the sucker rod with the viscoelastic model in the simulation. Notice
that the load F(t) used in the viscoelastic model is the exact load measurement recorded
in TAM software 1.6 examples. In general, by reducing the parameter m, the peak of the
displacement will decrease and shift to the left, which corresponds to the increase of the
natural frequency. In addition, the endpoint will also decrease accordingly. Moreover, by
reducing the parameter ko, the peak of the displacement will increase, and the endpoint
will also be elevated accordingly. By increasing the parameter c1, the viscous damping
is increased, and both the displacement peak and the ending points will be increased.
Finally, by increasing the stiffness parameter k1, both the displacement peak and the end
displacement tend to decrease. Notice that here, the magnification factor C, along with
the parameters m, c1, and k1, are chosen with intuition through trial-and-error methods
and human interventions, as reported in ref. [34]. However, in this paper, with the initial
guesses of these parameters, we will implement a so-called Inversed Optimization Method
to identify the optimal set of parameters with iterations in the steepest descents. With
this Newton–Raphson iteration-based approach, these parameters will be searched and
improved automatically. A subsequent Kelvin viscoelastic vibration system with adjusted
parameters m, c1, and k1 demonstrates a much closer displacement response with the mea-
sured force F(t) as shown in Figure 6, which confirms the potential of inverse optimization
approaches with the Newton–Raphson iterations.
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(a) (b) (c) (d)

Figure 4. Kelvin viscoelastic vibration system response. (a) Phase Diagram; (b) Displacement;
(c) Velocity; (d) Acceleration.

(a) (b) (c) (d)

Figure 5. Maxwell viscoelastic vibration system response. (a) Phase Diagram; (b) Displacement;
(c) Velocity; (d) Acceleration.

(a) Displacement (b) Force/Displacement Loop

Figure 6. A Kelvin viscoelastic vibration system with the converged parameters.

3. Inverse Optimization

In engineering practice, many complex systems are impossible to characterize with a
simple physical and mathematical model; therefore, an implicit matrix-free iterative method
is very useful in providing better guidance to the optimum operation conditions with only
the availability of the input and output data [36]. In operation research, to accomplish an
optimal route or desired outcome, so-called inverse optimization approaches are introduced
to identify provided key parameters [37]. Similarly, in robotics, to reach a particular position,
multiple joint angles can be identified with the same Newton–Raphson iterative schemes
for the solution of nonlinear position equations governing the desirable positions of the
robotic arm along with the unknown joint angles [38]. The inverse optimization is based
on the Newton–Raphson iterations, which can be used to search more strategically for the
optimal system parameters. Since engineers function within an approximated reality, this
inverse optimization approach can be used to search without knowing the true relationship
between the optimal material compositions to achieve the best mechanical properties or
any type of property. Of course, similar acceleration methods commonly employed in
the Newton–Raphson iterations can also be available for the design of more efficient and
purposeful search processes.

In the inverse optimization approaches introduced in this paper, in order to identify
these intrinsic viscoelastic properties by considering different physical units, we also
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introduce a scaling factor C. We set up an inverse engineering problem to minimize the
difference measured by the following variational indicator

E =
N

∑
n=1

1
2
(un − ūn)

2, (14)

where N represents the number of time stations, un is the displacement evaluated with
the viscoelastic model with the stiffness k, m, co, and ko, whereas ūn is the experimental
measurement of the displacement in question at the same time intervals. For the minimized
error, cost function, or variational indicator E, we have

∂E
∂ko

= 0,
∂E
∂m

= 0,
∂E
∂c1

= 0,
∂E
∂k1

= 0. (15)

This estimate evaluated with finite difference schemes will be directly coupled with
the system parameters, for example, k, m, co, and ko,

f1 =
∂E
∂x1

=
∂E
∂ko

=
N

∑
n=1

(un − ūn)
∂un

∂ko
= 0,

f2 =
∂E
∂x2

=
∂E
∂m

=
N

∑
n=1

(un − ūn)
∂un

∂m
= 0,

f3 =
∂E
∂x3

=
∂E
∂c1

=
N

∑
n=1

(un − ūn)
∂un

∂c1
= 0,

f4 =
∂E
∂x4

=
∂E
∂k1

=
N

∑
n=1

(un − ūn)
∂un

∂k1
= 0.

(16)

We must introduce the Newton–Raphson iterative procedures to obtain the solution
of the nonlinear and implicit set of equations. In general, the Newton–Raphson itera-
tive method should be used for this type of nonlinear set of equations. The nonlinear
and implicit governing equation about the unknown vector x =< ko, m, c1, k1 >, can be
rewritten as

f(x) = R, (17)

where the given right-hand side vector R =< 0, 0, 0, 0 >.
It is very important to point out that the initial guess must be fairly close to the

actual solution for the unknown x to ensure the convergence of the Newton–Raphson
iteration scheme. In practice, we often start with a few tryouts and narrow down the
true solution neighborhood. With an educated guess of the initial set of parameters
xo =< ko

o, mo, co
1, ko

1 >, not too far from the converged solution, the Jacobian matrix can
be defined and evaluated. Assume we have all the information before the kth iteration,
namely xk and the corresponding f(xk−1) as well as the so-called Jacobian matrix J(xk−1)
with all entities Jij defined as

J11 =
∂ f1

∂x1
=

N

∑
n=1

(un − ūn)
∂2un

∂k2
o
+

N

∑
n=1

∂un

∂ko

∂un

∂ko
,

J22 =
∂ f2

∂x2
=

N

∑
n=1

(un − ūn)
∂2un

∂m2 +
N

∑
n=1

∂un

∂m
∂un

∂m
,

J33 =
∂ f3

∂x3
=

N

∑
n=1

(un − ūn)
∂2un

∂c2
1

+
N

∑
n=1

∂un

∂c1

∂un

∂c1
,

J44 =
∂ f4

∂x4
=

N

∑
n=1

(un − ūn)
∂2un

∂k2
1

+
N

∑
n=1

∂un

∂k1

∂un

∂k1
.
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Furthermore, the off-diagonal terms for the Jacobian matrix with i ̸= j can also be
elaborated as

Jij =
∂ fi
∂xj

=
N

∑
n=1

(un − ūn)
∂2un

∂xi∂xj
+

N

∑
n=1

∂un

∂xi

∂un

∂xj
. (18)

It is straightforward to confirm that the Jacobian matrix is indeed symmetric. After
the solution of the following incremental linear system of equations for the unknown ∆xk

J(xk−1)∆xk = −f(xk−1), (19)

with the following update,
xk = xk−1 + ∆xk. (20)

The iteration identified in Equation (20) will stop with the relative incremental error ϵ
smaller than prescribed small number ϵo,

∥∆xk∥
∥xo∥ = ϵ ≤ ϵo. (21)

In the actual implementation, since we do not have the analytical expressions for
∂un

∂xi
,

∂un

∂xi

∂un

∂xj
,

∂2un

∂x2
i

, and
∂2un

∂xi∂xj
, a central-difference-based numerical scheme is introduced.

Assuming the increment ∆x, we will complete the numerical integration of the dynamic
response of the viscoelastic model for three sets of parameters, namely x − ∆x, x, x + ∆x,
and obtain the numerically the approximations as follows

∂un

∂xi
=

un(xi + ∆xi)− un(xi − ∆xi)

2∆xi
,

∂un

∂xi

∂un

∂xj
=

un(xi + ∆xi)− un(xi − ∆xi)

2∆xi

un(xj + ∆xj)− un(xj − ∆xj)

2∆xj
,

∂2un

∂x2
i

=
un(xi + ∆xi)− 2un(xi) + un(xi − ∆xi)

∆x2
i

.

(22)

As the most complicated term, the second partial derivative with respect to xi and xj

with i ̸= j, namely
∂2g

∂xixj
is evaluated as follows

g(xi + ∆xi, xj + ∆xj) + g(xi − ∆xi, xj − ∆xj)− g(xi − ∆xi, xj + ∆xj)− g(xi + ∆xi, xj − ∆xj)

4∆xi∆xj

In the implementation, we can always use a sufficiently small increment ∆x for the
partial derivatives of un as a function of x.

4. Implementation and Improvement

To verify this proposed inverse optimization procedure, we start with a simple first-
order differential equation with one parameter, a so-called relaxation time τ, expressed as

du
dt

+
u
τ
= f , (23)

where f (t) is a time-dependent inhomogeneous term.
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Instead of the actual experimental measurement, in the validation process, we employ
the actual analytical solution ū, expressed as

ū(t) = uoe−t/τ +
∫ t

0
e−(t−s)/τ f (s)ds, (24)

with the initial solution u(0) = uo and the convolution term with the so-called Green’s
function for impulse e−t/τ .

Please note that although we have the analytical solution as a continuous function, in
engineering practice, the experimental measurements often exist in discrete form. Therefore,
a proper number of time steps N must be taken before we start the inverse optimization pro-
cess for the search of the system parameter, which yields the solution ūn with n = 1, · · · , N.
In the initial implementation, the maximum number of iterations is set to be 200, and the
time station number is 2001. In addition, the finite difference approximation of some of the
implicit terms of the Jacobian matrix is based on the 0.1% perturbation of the parameter τ
and the scaling factor C. The analytical solution is based on the relaxation time τ = 5. As
shown in Table 1, the only system parameter, namely the relaxation time τ, does converge
to a value very close to 5 within approximately 0.1% range. Moreover, the scaling factor C
is also simultaneously converged to 1. The quadratic convergence rate towards the end of
the iteration processes is evident in Table 1.

Table 1. Newton–Raphson iteration convergence of the relaxation time τ, the scaling factor C, and
the relative incremental error ϵ as defined in Equation (21) with the logarithmic modification.

No. τ C ϵ

24 4.113353577899 1.108643414669 0.8481099309715
25 4.808147443754 1.012180228335 0.3507291199584
26 4.991132754710 1.001324920436 0.0916535074825
27 5.004938782496 1.000004471816 0.0069345149036
28 5.005001665203 1.000000000128 0.0000315207506
29 5.005001666667 1.000000000000 0.0000000007343

It is well accepted that there is no guarantee for the Newton–Raphson iteration to
converge, particularly when the initial guess is very far from the desired solution. More-
over, it is often possible that different initial solutions will lead to different branches of
solutions [35,39]. Different acceleration procedures have been proposed to improve the
convergence behaviors of these nonlinear iterative solution procedures, such as line search
methods [40]. In this paper, based on the understanding of the possible solution key fea-
tures, we can also start the optimization procedure from the very beginning. For example,
for the first-order ordinary differential equation (ODE) exponential solutions, rather than
connecting with the solution itself, we can choose to connect with the logarithmic of the
solution. In this way, the nonlinear system can be less challenging, which can fundamen-
tally change the basin of convergence in the Newton–Raphson iterative procedures. Hence,
we set up an inverse engineering problem to minimize the difference measured by the
following variational indicator

Ē =
N

∑
n=1

1
2
(D + ln un − ln ūn)

2, (25)

where N represents the number of time stations, un is the displacement evaluated with the
system parameter, in this case, the relaxation time τ, ūn is the experimental measurement of
the displacement in question at the same time intervals, and D stands for the new constant
which is related to the initial scaling factor C with D = ln C.
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Similarly, to the minimized error, cost function, or variational indicator E, we have

∂Ē
∂D

= 0,
∂Ē
∂τ

= 0. (26)

Please note that the scaling constant D still has an explicit expression. The derivative
with respect to D will be evaluated directly, unlike the system parameter τ, which must be
evaluated with finite difference schemes. This estimate of the scaling factor D will be di-
rectly coupled with the system parameter and form the unknown vector with x =< τ, D >,
with the nonlinear set of equations expressed as

f̄1 =
∂Ē
∂x1

=
∂Ē
∂τ

=
N

∑
n=1

(D + ln un − ln ūn)
∂ ln un

∂τ
= 0,

f̄2 =
∂Ē
∂x2

=
∂Ē
∂D

=
N

∑
n=1

(D + ln un − ln ūn) = 0.

(27)

To effectively carry out the Newton–Raphson iterative procedures for the nonlinear
and implicit governing equation about the unknown vector x, the so-called Jacobian matrix
J must be properly evaluated,

J̄11 =
∂ f̄1

∂x1
=

N

∑
n=1

(D + ln un − ln ūn)
∂2 ln un

∂τ2 +
N

∑
n=1

∂ ln un

∂τ

∂ ln un

∂τ
,

J̄22 =
∂ f̄2

∂x2
=

N

∑
n=1

1.

Furthermore, the off-diagonal terms for the Jacobian matrix can also be elaborated as

J̄12 =
∂ f̄1

∂x2
=

N

∑
n=1

∂ ln un

∂τ
=

∂ f̄2

∂x1
= J̄21.

Again, it is straightforward to confirm that the Jacobian matrix is indeed symmet-

ric. In the actual implementation, since we do not the analytical expressions for
∂ ln un

∂τ
,

∂ ln un

∂τ

∂ ln un

∂τ
, and

∂2 ln un

∂τ2 , central difference schemes similar to Equation (22) will be

employed by replacing un with ln un. It has been discovered that the range of the system
parameter τ is much wider for the Newton–Raphson iteration procedures with the loga-
rithmic modification. In Table 2, the converged solutions for the parameter τ = 6 and the
scaling factor D = 0, which is equivalent to C = 1 are listed with a similar quadratic rate
near the solution and 0.1% system error due to the finite difference approximations with
the perturbation of about 0.1% of the system parameter.

Table 2. Newton–Raphson iteration convergence of the relaxation time τ, the scaling factor D, and
the relative incremental error ϵ as defined in Equation (21) with the logarithmic modification.

No. τ D ϵ

7 5.3502492856171 0.1709734105086 0.3327036938013
8 5.7906235191341 0.0500242875435 0.2283408394767
9 5.9764971771645 0.0062271928244 0.0954819384169

10 6.0044277938157 0.0001228805887 0.0142949464357
11 6.0050011491776 0.0000000513466 0.0002931822785
12 6.0050013888888 0.0000000000000 0.0000001225744



Fluids 2024, 9, 136 12 of 16

The same implementation has also been extended to a more complicated second-order
differential equation with three parameters, namely the mass m, the damping c, and the
stiffness k, expressed as

m
d2u
dt2 + c

du
dt

+ ku = f , (28)

where f (t) is again a time-dependent inhomogeneous term.
Denote the natural frequency ωo with ω2

o = k/m, the damping ratio ζ with c/m = 2ζωo,

and the damped natural frequency ωd =
√

1 − ζ2ωo. Instead of the actual experimental
measurement, in the validation process, we employ the actual analytical solution ū, ex-
pressed as

ū(t) = e−ζωot(uo cos ωdt +
vo + ζωouo

ωd
sin ωdt) +

∫ t

0
e−ζωo(t−s) f (s)

mωd
sin ωd(t − s)ds, (29)

with the initial displacement u(0) = uo and the initial velocity v(0) = vo along with the
convolution term with the so-called Green’s function for impulse e−ζωt 1

mωd
sin ωdt.

In the second implementation, the maximum number of iterations is again set to be
200, and the time station number is 2001. In addition, the finite difference approximation
of some of the implicit terms of the Jacobian matrix is based on the 0.1% perturbation
of the parameters m, c, and k along with the scaling factor C. The analytical solution is
based on the set of parameters m = 9.88, c = 4.94, and k = 247. As shown in Table 3, the
system parameters, namely m, c, and k, do converge to the set of values very close to the
true system parameters, again within approximately 0.1% range. Moreover, the scaling
factor C is also simultaneously converged to 1. The quadratic convergence rate towards
the end of the iteration processes, when the solutions are very close to the targets, is again
evident in Table 3, which also indicates proper programming and implementation of the
Newton–Raphson iteration procedures.

Table 3. Newton–Raphson iteration convergence of the system parameters m, c, and k, the scaling
factor C, and the relative incremental error ϵ as defined in Equation (21).

No. m c k C ϵ

2 14.0088697014 38.8505562741 252.2630700 4.4695001143 7.5404751904
3 9.8962841404 14.3998130515 260.9769377 1.4358822096 0.8809455612
4 9.8402652289 7.0242940976 247.2775516 1.0914951778 0.5182224546
5 9.8739033983 5.2106554463 247.1593685 1.0123649473 0.0605886943
6 9.8798105710 4.9450642071 246.9998836 1.0002193760 0.0103258241
7 9.8799373442 4.9399706629 246.9979158 1.0000000949 0.0001820245
8 9.8799373906 4.9399686098 246.9979147 1.0000000016 0.0000000768

Finally, we use the experimentally measured data from V11, which is well documented
in Echometer Co and utilized in ref. [34] as the analytical solution of the equivalent viscoelas-
tic vibration system modeled with the Kelvin model. With the same inverse optimization
procedures, we obtain the system parameters with ko = 4.4668 lbf/in, m = 3.3063 lbf·s/in2,
c1 = 2.4585 lbf·s/in, and k1 = 3.4181 lbf/in, and the scaling factor C = 12.0113. The
displacement and force/displacement loop match very well with the experimental data
documented by Echometer Co., as shown in Figures 6–9.

To validate the inverse optimization approach further and to test our hypothesis that
the entire downhole sucker rod-pump system can be approximated with the viscoelastic
model, we employ the same procedures for another set of dynamometer measurements
taken from the same V11 well at 7:14:19 a.m. on 7 August 2019 Stroke 17, the exact load
measurement recorded in TAM software examples, and obtain a different but similar set of
system parameters with ko = 4.9006 lbf/in, m = 3.7094 lbf·s/in2, c1 = 2.8966 lbf·s/in, and
k1 = 3.9594 lbf/in, and the scaling factor C = 10.8569.
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(a) Stroke 17 (b) Stroke 18

Figure 7. V11 well dynamometer measurement at 7:14:19 a.m. on 7 August 2019 Stroke 17 and 18.

(a) Displacement (b) Force/Displacement Loop

Figure 8. Kelvin model analytical solutions with converged parameters in comparison with experi-
mental measurements for Stroke 17.

(a) Displacement (b) Force/Displacement Loop

Figure 9. Kelvin model analytical solutions with converged parameters in comparison with experi-
mental measurements for Stroke 18.

The convergence information is listed in Table 4. The viscoelastic model does not
match exactly with the sucker rod-pump system. In addition, unlike the previous math-
ematical models from which the numerical or analytical solutions are derived, the data
from the experiments are heuristic. Thus, the quadratic convergence properties of the
Newton–Raphson iterative procedures are replaced with an oscillatory convergence with a
rate much slower than the typical quadratic one observed for the Newton–Raphson itera-
tion when the iterative solutions are within the neighborhood. Again, since the numerical
evaluation of some of the Jacobian matrix entities has a truncation error around O(10−3),
the converged system parameters will hover around that relative error range.
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Again, the displacement and force/displacement loop match very well with the
experimental data documented by Echometer Co, as shown in Figure 6. Interestingly, the
same system parameters have been applied to Stroke 18 and demonstrate a remarkable
match with the actual experimental measurement.

Table 4. Newton–Raphson iteration convergence of the system parameters ko, m, c1, and k1, the
scaling factor C, and the relative incremental error ϵ as defined in Equation (21).

No. ko m c1 k1 C ϵ

10 4.8145200 3.7227113 3.0371959 4.0113022 9.9459747 0.0583832
11 4.8157944 3.7250974 3.0323557 4.0186058 9.9727830 0.0336033
12 4.8769304 3.71661320 2.9368406 3.9800812 10.5630007 0.0518076
13 4.8762824 3.7159651 2.9388687 3.9795838 10.5762036 0.0011525
14 4.8948972 3.7115266 2.9074872 3.9649666 10.7825937 0.0180758
15 4.8951385 3.7107580 2.9057328 3.9636912 10.7948712 0.0010746
16 4.8989279 3.7098281 2.8993963 3.9606940 10.8378530 0.0037609
17 4.8999700 3.7095979 2.8977176 3.9599161 10.8495151 0.0010198
18 4.9004231 3.7094863 2.8969610 3.9595585 10.8546888 0.0004526
19 4.9005655 3.7094541 2.8967290 3.9594508 10.8562851 0.0001396
20 4.9006119 3.7094470 2.8966611 3.9594212 10.8567655 0.0000420
21 4.9006292 3.7094476 2.8966428 3.9594152 10.8569094 0.0000126

5. Conclusions

In the petroleum industry, it is very difficult to quantify the dynamical behaviors of the
downhole sucker rod-pump systems. The proposed inverse optimization method and the
viscoelastic vibration model shed light on the understanding of the reciprocal nature of the
intricate relationship between the displacement of the polish rod and the total force exerted
through the pump jack. The optimal parameters of the proposed viscoelastic model for the
downhole sucker rod-pump system yield almost identical results in comparison with the
experimental measurements in the oil field. With this confirmation, the same approach
will be implemented for the delivery system of a very viscous non-Newtonian fluid in EV
manufacturing, as well as other complex engineering systems. It is promising that even one
or two parameters can be utilized to approximate the complicated relationship between the
required pressure drop and the flow rate with non-Newtonian internal fluid modeled with
a power law distribution and bypass fully fledge computational models, which normally
require a lot of resources and experience.
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Nomenclature

Di plunger outer diameter
Do barrel inner diameter
H(t) Heaviside function
C plunger and barrel clearance
δ plunger and barrel gap with C = 2δ

Lp plunger length
Up plunger displacement
U bridle displacement
m lumped mass attached to the viscoelastic model
F(t) bridle force measured at the surface
ph top plunger pressure
pl bottom plunger pressure
k1 stiffness in viscoelastic stiffness and dashpot couple
c1 dashpot in viscoelastic stiffness and dashpot couple
uo imposed displacement
fo imposed force
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