
Citation: Dmitrenko, A.V. Stochastic

Equations of Hydrodynamic Theory

of Plasma. Fluids 2024, 9, 139.

https://doi.org/10.3390/

fluids9060139

Academic Editor: D. Andrew S. Rees

Received: 11 April 2024

Revised: 3 June 2024

Accepted: 4 June 2024

Published: 7 June 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Stochastic Equations of Hydrodynamic Theory of Plasma
Artur V. Dmitrenko

Department of Thermal Engineering, Russian University of Transport «MIIT», Obraztsova Street 9,
Moscow 127994, Russia; ammsv@yandex.ru or AVDmitrenko@mephi.ru

Abstract: Stochastic equations of the hydrodynamic theory of plasma are presented in relation to
strong external fields. It is shown that the use of these stochastic equations makes it possible to
obtain new theoretical solutions for plasma as a result of its heating in a strong external electric field.
Theoretical solutions for the conductivity of turbulent plasma when heated in an external electric
field of 100 V/cm are considered. Calculated values for the electron drift velocity, electron mobility,
electron collision frequency, and the Coulomb logarithm in the region of strong electric fields are
obtained. Here we consider experiments on turbulent heating of hydrogen plasma in the range of
electric field strength of 100 < E < 1000. The calculated dependences of plasma conductivity are
in satisfactory agreement with experimental data for heating plasma in a strong electric field. It is
shown that the plasma turbulence in the region of strong electric fields E ~1000 V/cm is close to
100%. For the first time, it is confirmed that the derived dependences for collision frequency, drift
velocity, and other values include the degree of turbulence of plasma, which makes it possible to
correctly describe experimental data for heating plasma even with strong electric fields. In addition,
it was determined that the scatter of experimental data may be associated with the variability of the
function in the expression for the heat flux density. For the first time, it is shown theoretically that
the experimentally determined fact of the possibility of the existence of an approximate constancy of
plasma conductivity in the region E = 100–1000 V/cm can occur with an error of ~30%. The results
show significant advantages of the stochastic hydrodynamic plasma theory over other methods
that are not yet able to satisfactorily as well as qualitatively and quantitatively predict long-known
experimental data while taking into account the degree of turbulence.

Keywords: stochastic equations; equivalence of measures; hydrodynamic theory of plasma

1. Introduction

The stochastic equations of the hydrodynamic theory of plasma are presented in relation
to strong external fields. The system of stochastic plasma equations is used for calculating
the heating of turbulent hydrogen plasma in strong external electric fields. The problem of
finding equations for solving the turbulence [1–4] is an important theoretical problem. The
phenomenon of turbulence was tried to be solved using different ideas: (1) using the theory
of attractors [5–11]; (2) on the basis of chaos theory [12,13]; (3) on the basis of the physics
of nonlinear phenomena [14,15]; (4) on the basis of statistic theory [16–24]; (5) the theory of
solitons [1]; (6) a quasi-periodic process [25–28]; (7) using the theory of self-organization [29,30].
Attempts to find solutions to this problem by numerical methods were made using DNS [31–45],
LES, and RANS codes [46–51].

The processes of heating plasma by an electric field are connected with the turbulence
in plasma [52–63]. The statistical theory of plasma physics [64–70] is used for describing
these processes. But these processes can be determined using the theory of stochastic
equations and equivalent measures [71–73]. In [74–80], the possibility of calculating crit-
ical Reynolds numbers was shown for isothermal flows [81–86] and for non-isothermal
flows [87–90]. The profiles of averaged velocity and temperature were also determined
in [91–93].The friction coefficients and heat transfer coefficients were obtained in [84,85].
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Also, the second-order correlations were presented in [91,93–98]. The correlation dimen-
sion of the attractor in the boundary layer was calculated in [99,100]. The equation for the
spectral function was shown in [101–106]. For non-isothermal flows, the Reynolds analogy
was obtained in [104]. Then the formulas for friction coefficients on the wall of a flat plate
and in a round tube during a laminar–turbulent transition [107,108] were derived.

2. Definition of Equivalence of Measures between Deterministic and Random Motions

It should be noted that the problem of transition from laminar to turbulent flow was
discussed in [71–74,81–108]. As a result, fluid and gas flows around a cylinder, as well
as in the boundary layer on a sphere, on a flat plate, in a pipe, and in a jet, were studied
on the basis of stochastic theory. It is also known that a statistical apparatus developed
for a continuous medium [32–35] is used for the hydrodynamic description of the turbu-
lent plasma motion [32–35]. Here, on the basis of stochastic equations and equivalence
relations of measures [71–73] developed for the continuum, the new results for turbu-
lent plasma motion are presented. The correlator DN,M was derived in [71–74,99–104];
see also [105,108] as the definition of equivalence of measures between laminar (deter-
ministic) and turbulent (random) motions. The application of the correlator DN,M for
solving equations for mass, motion, and energy leads to sets of stochastic equations for
four space–time areas: (1) the onset of generation (subscript 1, 0, or 1); (2) the gener-
ation (subscript 1, 1); (3) the diffusion (subscript 1, 1, 1) and (4) the dissipation of the
turbulent fields. In the critical point ri → rc; ∆τi → τc for the parameter mi → mc, and
for each of four space–time regions of the correlator. The correlator DM,N

(
rc; mcj; τc

)
=

D1,0
(
rc; mcj; τc

)
[72–75,100–105] for the pair (M,N) = (1,0) gives the following equations

(d(Φ)colst )1,0 = −R1,0(Φst);
(

d(Φ)colst
dτ

)
1,0

= −R1,0

(
Φst
τcor

)
, here“d” is the full differential.

Then the correlator for the pair (M,N) = (1,1), DM,N
(
rc; mcj; τc

)
= D1,1

(
rc; mcj; τc

)
gives the

following equations: (d(Φ)colst )1,1 = −R1,1d(Φst),
(

d(Φ)colst
dτ

)
1,1

= −R1,1

(
dΦst
dτ

)
. Here Φ is

the substantial quantity {mass (density ρ), momentum (ρU), and energy (E)}. Here (Φ)colst
is the deterministic component (subscript cost) having the zero stochastic component of
measure, (Φst) is the stochastic component (subscript st), τcor =

(Ust)
L is the lifetime of Φst,

L = 2π/k, and k is the wave number. The subscripts “cr” or “c” refer to the critical point
r (xcr, τcr) or rc. The critical point is the space–time point of the onset of the interaction
between the deterministic and random motions, which leads to the turbulence. It is impor-
tant to emphasize that one of the main differences between statistical and stochastic theory
is the number of regions inspace–time. The statistic theory envelops only three space–time
areas: (2) the generation; (3) the diffusion; and (4) the dissipation of turbulent fields [16–24].

3. Stochastic Equations for Plasma

In accordance with [71–73,83–108], the stochastic equations were obtained without
external and internal forces. These forces are taken into account for the stochastic plasma
equations in accordance with [52–58]:

d(mαnα)col
dτ

= − (mαnα)st

tcor
− d(mαnα)st

dt
, (1)

d(mαnαuiα)col
dτ = − ∂

∂xj
(ταij)col − ∂

∂xj
(ταij)st + (Fint(α,β) + Fk(αi))col

+(Fint(α,β) + Fk(αi))st − (mαnαuiα)st
tcor

− d(mαnαuiα)st
dt ,

(2)

d(mαnαeα)col
dτ = − ∂

∂xj
(qαi + uαiταij)col − ∂

∂xj
(qαi + uαiταij)st + (uαi[Fint(α,β) + Fk(αi)])col

+(uαi[Fint(α,β) + Fk(αi)])st − (mαnαeαi)st
tcor

− d(mαnαeαi)st
dt ±

(
qjα,Vrad

)
col,1

.
(3)
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α is the component of plasma (particles of class α, electron–ion liquid). The forces
resulting from the action of normal Pα stresses (pressure) and tangential stresses παij are
written as ταij = Pα + παij and, then, it is possible to write that

− ∂

∂xj

(
ταij
)
= −∂Pα

∂xi
+

∂

∂xj

[
µα

(
∂uiα
∂xj

+
∂ujα

∂xi

)
− δijµα

2
3

∂ulα
∂xl

]
. (4)

Here, i, j, l = 1, 2, 3, the coefficients µ and ξ are the dynamic and second viscosities,
respectively. The values ui, uj, ul,xi, xj, xl are the velocities and coordinates corresponding to
i, j, l. The Kronecker delta is δij = 1 for i = j, and δij = 0 for i ̸= j. Fk(αi) is the sum of k external

forces acting on particles of class «α» in the «i» direction. Fk(αi) =
3
∑

i=1

n
∑

k=1
(Fk)i, k = 1, 2, . . ., n;

i = 1, 2, 3. For an electromagnetic field Fk(αi) = (j{E + [u × B]})αi = (Zαenα){E + [u × B]}αi .
In addition, Fint(α,β) are the internal (intercomponent or interphase) forces caused

by the interaction of liquid components with each other. In the case of a heterogeneous
mixture, these are the interphase forces; in the case of plasma, these are the forces caused
by the collision of particles of various kinds with each other (subscript int): Fint(α,β) =

mαnα(δuα\δτ) = nα∑β

(
Rαβ + RT

αβ

)
[53–57,65,69]. The force of relative friction, depending

on the relative velocity of electrons and ions is Riαβ= µαβναβ

(
uiα − uiβ

)
and the thermal

force: RT
αβi = µαβ(uiα)

(
δναβ

)
=

Tαβ

ναβ

δναβ

δTαβ
gradTαβ. Here µαβ, Tαβ , ναβ are the reduced particle

mass, the effective temperature, and the collision frequency. The equation for the energy
(m αnαeα

)
per unit volume of the plasma grade α components (mα and nα are the mass

and concentration of particles).

Here − ∂
∂xj

(
uiαταij

)
= − ∂

∂xj

[
−uiαPα + uiαµα

((
∂uiα
∂xj

+
∂ujα
∂xi

)
− δijµα

2
3

∂ulα
∂xl

)]
. In addition,

the work caused by the collision of particles of different sorts with each other is deter-
mined by the dependence uiαFint(α,β) = uiαmαnα(δuα\δτ) = uiαnα∑β

(
Rαβ + RT

αβ

)
[52–

56,64,68]. The work of relative friction forces depending on the relative velocity of electrons
and ions is uiαRiαβ = uiαµαβναβ

(
uiα − uiβ

)
. The work of the thermal force is uiαRT

αβ =

uiα
[
µαβ(uiα)

(
δναβ

)]
= uiα

Tαβ

ναβ

δναβ

δTαβ
gradTαβ [52–56,64,68]. The work of external forces act-

ing on particles of class «α» in the «i» direction is uiαFk(αi) = uiα(j{E + [u × B]})αi =

uiα(Zαenα){E + [u × B]}αi = uiα(Zαenα)E,
(

qjα,Vrad

)
is the braking radiation power per

unit volume, Tα= mαeα is the particle energy. The written equations are defined as instanta-
neous provided that the hypothesis of plasma continuity is observed. At the same time, the
direct consideration of equation for the collision frequencies of particles of the same grade
and different grades among themselves determines, as is known, the limits of the hypothesis
of continuity and the dualism when describing the motion of charged particles in plasma
as a multicomponent fluid. This important aspect seems substantial for writing down the
stochastic equations of conservation of plasma motion in an external electromagnetic field.

4. Equivalent Measures and Excitation of Plasma Turbulence by an Electric Field

In accordance with [72–75,100–109], for space–time area (1) of the onset of genera-
tion for a pair (N, M)(1, 0)rc0(xc + ∆x0, τc + ∆τ0)− rc , the set of Equations (1)–(3) can be
written as follows (see also [105,108]):

d(mαnα)col
dτ

= − (mαnα)st

tcor
(5)
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

d(mαnαuiα)col,1,0
dτ = − ∂

∂xj
(−ταij)col,1 + (Fint(α,β) + Fk(αi))col,1 −

(mαnαuiα)st
(τu

cor)1,0

or
d(mαnαuiα)col,1,0

dτ = − (mαnαuiα)st
(τu

cor)1,0
∂

∂xj
(−ταij)col,1 = (Fint(α,β) + Fk(αi))col,1

, (6)



d(mαnαeα)col,1,0
dτ = − ∂

∂xj
(qαi + uαiταij)col,1 + (uαi[Fint(α,β) + Fk(αi)])col,1 ± ∂

∂xj

(
qjαЛУЧ

)
col,1

− (mαnαeαi)st
(τe

cor)1,0

or
d(mαnαeα)col,1,0

dτ = − (mαnαeα)st
(τe

cor)1,0
∂

∂xj
(qαi + uαiταij)col,1 = (uαi[Fint(α,β) + Fk(αi)])col,1 ±

(
qjα,Vrad

)
col,1

(7)

For the case under consideration, the expression for the stress tensor of the flow of
electrons and ions is determined as well as the expression for the relative friction force
between electrons and ions and the equations for thermal forces for each plasma component
(electrons and ions [53–57]).

(a) The stress tensor for the flow of electrons and ions [53–57,65,69]

− ∂
∂xj

(
ταij
)
= − ∂(Pα +παij)

∂xi
; − ∂Pα

∂xi
= − ∂nαTα

∂xi
;
[
π
(e)
i,j

]
= −0.73 neTe

νe
ω
(e)
i,j = −0.73 neTe

νe

[(
∂ui(e)

∂xj
+

∂uj(e)
∂xi

)
− δij

2
3

∂ul(e)
∂xl

]
[
π
(e)
i,j

]
= −0.96 niTi

νi
ω
(i)
i,j = −0.96 niTi

νi

[(
∂ui(i)
∂xj

+
∂uj(i)
∂xi

)
− δij

2
3

∂ul(i)
∂xl

] (8)

(b) The friction forces [53–57,65,69]:

(c) Riαβ = µαβναβ

(
uiα − uiβ

)
= −nemeνe

(
ui(e) − ui(i)

)
for ωpe≫ νe,

Riαβ = µαβναβ

(
uiα − uiβ

)
= −0, 51nemeνe

(
ui(e) − ui(i)) for ωpe << νe. (9)

The thermal forces [53–57] are

RT
αβ = −0.71ne

∂

∂xl
Te. (10)

The external forces are Fk(ei) =
[
eZn(ei)E

]
, where e is the elementary charge of electron,

Z is the element number, and n(ei) is the concentration of negative and positive particles.

Here νe = Λ ωpe

3(2π)1,5n0

(
ωpe
υTe

)3
is the electron collision frequency,

(
ωpe

)2
= ne2

ε0me
is the

plasma frequency of electron oscillations taking into account the thermal motion (ω)2 =(
ωpe

)2
+ k2υpe

2, the thermal velocity of electrons is υTe =
√
(Te/me), Te is the termal

energy and Coulomb logarithm is Λ = Ln
[

4πn0

(
ωpe
υTe

)−3
]

, rd =
υpe
ωpe

, Λ = Ln
[(

rd
rs

)]
;

rs =

[(
e2

υpe2meε0

)]
[109–118].

(d) For the energy equation, respectively, the work caused by the collision of particles of

different sorts is uiαFint(α,β) = uiαnα∑β

(
Rαβ + RT

αβ

)
and

uiαFint(α,β) = uiene

(
Rei + RT

ei

)
= −nemeνeui(e)

(
ui(e) − ui(i)

)
− 0.71ui(e)ne

∂

∂xl
Te, (11)

The work caused by the external forces is

u(e)iFk(ei) = u(e)i

[[
eZein(ei)E

]]
, here Zei = 1 (12)
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The equation for the heat flux is qαi = −δ neT
νme

gradTαβ. For the flow electrons ∂
∂xj
(−qαi) =

∂
∂xj

[
−δ neTe

νeme
gradTe

]
, δ= (2.5− 3.91) [52–56,64,68]. The equation for the braking radiation power(

qjα,Vrad

)
col,1

= 1.5 ∗ 10−40neniZ2
eiT

0.5
e [J/(c·m3)] [52–56,117].

It should be noted here that the speed of sound in plasma, as is known, is determined

by the formula Cs =
(

Te
me

+ 5Ti
3mi

)0.5
. Now it is possible to obtain theoretical equations for

the critical value of external electrical field substituting the received expressions into the
set of equations for the region of onset of turbulence. Here tcor = (τu

cor)1.0 = (τe
cor)1.0.

d(mαnα)col
dτ

= − (mαnα)st

tcor
, (13)


d(mαnαuiα)col,1,0

dτ = − (mαnαuiα)st
(τu

cor)1.0
∂

∂xj
(ταij)col,1 = (Fint(α,β) + Fk(αi))col,1

, (14)


d(mαnαeα)col,1,0

dτ = − (mαnαeα)st
(τe

cor)10
∂

∂xj
(qαi + uαiταij)col,1 − (uαi[Fint(α,β)])col,1 ±

(
qjα,Vrad

)
col,1

= (uαi[Fk(αi)])col,1
. (15)

5. Plasma Conductivity

In accordance with the last set of Equation (15), for the electron flow with Zei = 1, it
can be written that

∂ui(e)neTe
∂xi

− ∂
∂xj

(
−3.16 neT

νme
gradTαβ − 0.73ui(e)

neTe
νe

{(
∂ui(e)

∂xj
− ∂uj(e)

∂xi

)
− 2

3
∂ul(e)

∂xl
δij
})

−ui(e)e
neνe

(
ui(e) − ui(i)

)
+ 0.71ui(e)ne

∂
∂xl

Te − 1.5 ∗ 10−40neni12
eiT

0.5
e = ui(e)[eneE]

(16)

In the case of a plane directional motion Te = T0exp(−iwt + k T r); ue = u0exp(−iwt + kr);
ne = n0exp(−iwt + knr); and d(q)/dx = −3.16(n/mνe)Te

2k2
T, we have a parabolic equation,

and for ui(e) >> ui(i), the last equation can be written as

[E] =
1

u(e)i(ene)
|

 −u(e)ineTe(kxT + kx,u + kxn)−
(

0.73ui(e)
neTe

νe

)
ky,u
(
kyT + ky,u + kyn

)
−

−0.71ui(e)neTekyT − nemeνeui(e)

(
ui(e) − ui(i)

)
− 3.16 ·

(
k2

yT

)
ne

mνe
T2

e − 1.5 ∗ 10−40neniZ2
eiT

0.5
e

. (17)

Let us consider two cases when: (1) the wave numbers ky= kyT = kyn

[E] =
[
|E *

1 + E*
2+E*

3+E*
4

∣∣∣] = me
e νeu1(e)−

(
Te
e

)[
−3kx + 0.73

(
ky
)(

3 ky
νe

u1(e)

)
− 0.71

(
ky
)

+3.16
(

k2
yT

)
ne

mνe
T2

e

]
− 1.5∗10−40neniZ2

eiT
0.5
e

u(e)i(ene)
; (2)

u1(e)
u2(e)

=
ky
kx

, so u1e≫ u2e; ky >> kx, and

[E] =
[∣∣∣E*

1 + E*
2+E*

3 + E
*
4

∣∣∣]
= me

e νeu1(e) −
(

Te
e

)[
0.73

(
ky
)(

3 ky
νe

u1(e)

)
− 0.71

(
ky
)
+ 3.16

(
k2

yT

)
ne

mνe
T2

e

]
− 1.5∗10−40neniZ2

eiT
0.5
e

u(e)i(ene)

(18)

Substituting the expression νe = Λ ωpe

3(2π)1,5n0

(
ωpe
υTe

)3
, we obtain:

E*
1 =

me

e
νeu1(e) = Λu1(e)

me

e
ωpe

2(2π)1.5n0

(
ωpe

υTe

)3
(19)

Considering that Λ = Ln
[

4πn0

(
ωpe
υTe

)−3
]
= Ln

[
4πn0

(
υTe
ωpe

)3
]

, and u1(e) = ue ≈

{υTe;υdr}.
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Here, υTe;υdr are the electron thermal speed and electron drift speed

E*
1 =

(
8

7(2π)0,5

)
meυTeωpe

e
Λ

[
1

4πn0

(
ωpe

υTe

)3
]
=

(
8

7(2π)0,5

)
meυTeωpe

e

(
Λ
eΛ .
)

(20)

Here
(
ωpe

)2
= ne2

ε0me
, ε0 = 8.85*10−12 (C2/(N*m2)).

E*
2 = 0.72

(
ky
)(Te

e

)(
4.3kx/ky + 1 + 3

ky

νe
u1(e)

)
, (21)

Let us introduce the notation

E*
2T = 0.72ky

(
Te

e

)
; (22)

E*
2P = 3kx

(
Te

e

)
; (23)

E*
2,e−i = 0.72k2

y

(
Te

e

)
υTe

ωpe

7
(
2π)0.5

8
eΛ

Λ
= 1.57 · k2

y · rd ·
(

Te

e

)
· eΛ

Λ
. (24)

The third term is

E∗
3 = −3.16

(
k2

T

) ne

mνe

1
u(e)1(ene)

T2
(e)1 = −3.16

(
k2

T

) T(e)

(e)
T(e)

υ(e)1mνe
(25)

E*
4 = −

1.5 ∗ 10−40neniZ2
eiT

0,5
e

u(e)i(ene)
= −

1.5 ∗ 10−40neniZ2
eiT

0.5
e

u(e)i(ene)
(26)

Further, the value determined by Equation (24) is not taken into account due to
Equation (17).

Thus, the first relation is obtained from the second equation of set (15){
∂

∂xj

(
qαi + uαiταij)col,1 −

(
uαi

[
Fint(α,β)

]
)col,1 =

(
uαi

[
Fk(αi)

]
)col,1 .

Then, from the first equation of set (15)
{

d(mαnαeαi)col,1,0
dτ = − (mαnαeαi)st

(τe
cor)10

, we obtain

the following relations (Eth = Te is the electron termal energy):

ne

(
meu2

e
2 + Eth

)
νT = − Est

τst
= −Est(ust)

L = −Est

(
Est

neme

)0.5
· ky/2π∆; L = 2π

ky
· ∆; ∆ is

taking in accordance with [102] for the region of generation of turbulence:

∆ ≃
(

Est

neTe

)l
, l =

(
7
2
− 9

2

)
. (27)

Then, ne

(
meu2

e
2 + Eth

)
=
(

Est
neme

)0.5
· [Estky/(ν T2π∆)] and, finally,

(
u2

e
)

+ Te
me

=−2
(

Est
neme

)0.5

[ Est
neme

· ky
νT

1/2π∆].

Also, from the first equation of set (15)
{

d(mαnαuiα)col,1,0
dτ = − (mαnαuiα)st

(τu
cor)10

, it is possible

to obtain the following relations

ne(meue)νT = −neme
−(ust)

0.5

τst
= −neme

(
Est

neme

)0.5( Est
neme

)0.5

L
= −Est · ky/2π∆ or (ue) =

Est

neme
·

ky

νT

1
2π∆

.
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Then, using Equation (27), it is possible to obtain the following relations:(
Est

neme
·

ky

νT

1
2π∆

)2

−2
(

Est

neme

)0.5( Est

neme
·

ky

νT

1
2π∆

)
+

Te

me
= 0, (28)

υdr ≈
(

Est

neme
·

ky

νT
1/2π∆

)
=

(
Est

neme

)0.5
−
(

Est

neme
− Te

me

)0.5
. (29)

It is easy to see that when Est = Eth, the stochastic energy equals to the thermal energy;
then, v2

pe =
Te
me

≈ Est
neme

and ue ≈ υdr ≈ vpe. For the wave number, we obtain

ky = 2π∆
(υdr)νT(

Est
neme

) . (30)

In Equations (17)–(29), u1(e) = υdr. Here, νT = νe[(Λ)dr/Λ)](υpe/υdr)
3;

(Λ)dr = Ln
(
(rd)dr

rs

)
; (rd)

dr
= υdr/ωpe; Λ = Ln

[
4πn0

(
ωpe
υpe

)−3
]

; rd =
υpe
ωpe

; Λ = Ln
[(

rd
rs

)]
;

rs =
[(

e2

υpemeε0

)]
.

The value of critical electrical strength [67–70] may be obtained from Equation (17) as

[E] ≈ 1.5
1

u(e)i(ene)

[
3.16 ·

(
k2

yT

) ne

mνe
T2

e

]
≈15π

(
Est

neTe

)l−1(
kyT
)(Te

e

)
[V/m] (31)

[E]cr ≈15π
(

Est

neTe

)l−1(
kyT
)(Te

e

)
≈ 44, 2

(
kyT
)(Te

e

)
[V/m]. (32)

Then, in according to Ohm’s law γ = j/E given that j = enυdr in the general case, the
conductivity is

γ =
j
[E]

=
enυdr[∣∣∣E*

1 + E*
2+E*

3 + E
*
4

∣∣∣] . (33)

Let us estimate an effect of E*
4 on the electron conductivity. From data [119]: Te = 100 Ev,

n = 1018, Z2
ei = 1.

E*
4 =

1.5 ∗ 10−40neniZ2
eiT

0.5
e

u(e)i(ene)
=

1.5 ∗ 10−40neniZ2
eiT

0.5
e

υdr(ene)
∼

1.5 ∗ 10−40neniZ2
eiT

0.5
e

υdr(ene)
∼ 10−3 ∗ T0.5

e
υdr

∼ 1.2
υdr

∼ 10−6

Therefore, this value is neglected further for the conditions of hydrogen plasma [118].

6. Comparison of Calculation Results with Experiments

Here, we present below the calculations for conductivity in plasma and for the value
of the critical electrical field using the theory of stochastic equations and equivalence of
measure. In Tables 1–4, the results of the calculation are presented for the energy of elec-
trons with densities n = 1018 m−3 and Te = 100–10,000 eV; ∆ is taken in accordance with
Equation (27). For calculating the drift speed of electrons, we used Equations (28) and (29),
for the wave number, Equation (25); for E*

1, E*
2, E*

3, E*
4, Equations (17)–(26); and for conduc-

tivity, Equation (33) are used. Tables 3 and 4 show the results of calculations according to
the initial data indicated above in the tables and the sequence of calculations according
to points (1)–(9).The presented algorithm for calculating the electronic conductivity for
hydrogen-plasma experiments is based on the theoretical solution of stochastic equations
for turbulent plasma.
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Table 1.
(
ωpe

)2
= ne2

ε0me
= n ∗ (3178, 7).

n ωpe c−1

1011cm−3 (1017m−3) 0.178 × 1011

1012cm−3 (1018m−3) 0.561 × 1011

1013cm−3 (1019m−3) 1.78 × 1011

Table 2. υTe =
√
(Te/me); rs =

[(
e2

υpe
2meε0

)]
=
(

3178,7
υpe

2

)
.

Te υpe rs

100 Ev (160 × 10−19 J) 4.193 × 106 0.18 × 10−9

200 Ev (320 × 10−19 J) 5.929 × 106 0.09 × 10−9

104Ev (16,000 × 10−19 J) 4.193 × 107 0.18 × 10−11

Table 3. Results of calculation of the electronic conductivity for data [118]: n = 1018 [m−3];

(
Est

neme

)0.5

vpe
= 1.3;

Te = 100 Ev(160−19 J) ; rd = υ
pe/ωpe; rs = 0.18*10−9 [m]; υpe = 4.193*106 [m/c], ∆ =

(
Est

neTe

)3.9
= 7.74.

ωpe
[c−1]

υdr
[m/c] rd*10−5[m]

(rd)dr*10−5

[m]
Λ =

Ln(rd/rs) (Λ)dr
νe

[c−1]
νT

[c−1]
ky[

m−1
] E*

1
[V/m]

|E*
2|

[V/m]
|E*

3|
[V/m]

[E]
[V/m]

γ [c−1]
CGSE

0.561*1011 1.967·106 7.474 3.506 12.94 12.18 3.5841 × 104 3.272·105 1.05842 3.67 1374.8 9669.56 11,044.4 0.26·1012

Table 4. Results of calculation of the electronic conductivity for data [118]: n = 1018 [m−3];

(
Est

neme

)0.5

vpe
= 2; Te

= 10,000 Ev(160−19 J); rd = υ
pe/ωpe; rs = 0.18× 10−11 [m]; υpe = 4.193× 107 [m/c], ∆ =

(
Est

neTe

)3.9
= 222.86.

ωpe [c−1] υdr
[m/c] rd × 10−4 [m]

(rd)dr × 10−4

[m]
Λ =

Ln(rd/rs) (Λ)dr
νe

[c−1]
νT

[c−1]
ky[

m−1
] E*

1
[V/m]

|E*
2|

[V/m]
|E*

3|
[V/m]

[E]
[V/m]

γ
[c−1]
CGSE

0.561 × 1011 1.12 × 107 7.474 1.996 19,843 18.52 56.65 2.748·103 0.00606 0.187 1033.87 66,050.8 67,084.08 0.24·1012

(1)
(

Est
neme

)0.5
≈ 1.3vpe and

(
Est

neme

)
= 1.69v2

pe

(2) υdr ≈
(

Est
neme

· ky
νT

1/2π∆
)
=
(

Est
neme

)0.5
−
(

Est
neme

− Te
me

)0.5
·υpe = 0.469·υpe = 1.967·106 [m/c]

(3) ∆ ≃
(

Est
neTe

)l
= (1.69)3.9 = 7.74; (rd)dr = υdr/ωpe = 3.506*10−5; rd/rs = 41.52*104; (r d)dr

rs =

194, 791; νT = νe[(Λ)dr/Λ)] (υpe/υdr)3 = 3.58·104·0.943·9.69 = 3.272·105 [c−1]

(4) ky = 2π∆ (υdr)νT(
Est

neme

) = 2π∆ (υdr)νT(
Est

neme

) ≈ 1.058
[

1
m

]
; → ky

2 = 1.12
[
1/m2]

(5) E*
1 = me

e νtu1e; E*
2 = 0.72

(
ky
)(Te

e

)(
4.3kx

ky
+ 1 − ky

νe
u1€

)
; E*

3 = 3.16
(

k2
yT

)
ne

mνe
T2

e

(6)
[
E∗

1 + E∗
2
]
= me

e νtu1(e) + 0.72
(
ky
)(Te

e

)[(
1− 3 ky

νe
u1(e)

)]
= 3.67 + 76.176 − 76.176∗19.0964

= 3.67+ 76.176− 1454.6873664 = 1374.84 [B/m]
(7) E∗

3 = −3.16 ·
(

k2
y

)
ne

mνe
1

u(e)1(ene)
T2
(e)1 = −3.16

(
k2

y

)
1

mνe
1

υ(e)1(e)
T2
(e)1 =

− 3.16
(

k2
y

)
1

9.1∗10−31∗3.272∗105∗1.967∗106∗1.6∗10−19 T2
(e)1 = −3.16 ∗ 1.12 ∗ 1

9.37∗10−38(
25, 600 ∗ 10−38) = −3.91∗0.8573∗2,56∗104

9.37 = −3.16∗1.1200008573∗2.56∗104

9.37 = 9669.56 [V/m]
(8) [E] =

[
E∗

1 + E∗
2 + E∗

3
]
= 1374.6 + 9669.56 = 11,044.19 [V/m] = [110.44] [V/cm]

(9) γ = j
E = enυdr

E = 1,6∗10−19∗1018∗1,96715∗106env
11.044∗103 = 0.288 ∗ 102 [1/(Om*m)]

In CGSE γ = j
E = j

E = env
E = 0.388 ∗ 102∗9 * 109 = 0.26 * 1012 [c−1]

(1)
(

Est
neme

)0.5
≈ 2.vpe and

(
Est

neme

)
= 4.v2

pe
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(2) υdr ≈
(

Est
neme

· ky
νT

1/2π∆
)

=
(

Est
neme

)0.5
−
(

Est
neme

− Te
me

)0.5
·υpe = 0.268·υpe = 1.12·107

[m/c]

νe =
Λωpe

3(2π)1.5n0

(
1
rd

)3
= 19.843∗0.561∗(2.39506)

47.21 1011−18+(9) = 56.68 ∗ 100

(3) ∆ ≃
(

Est
neTe

)l
= (4)3.9 = 222, 86; (rd)dr = υdr/ωpe = 1.996*10−4; rd/rs = 4.149*108;

(r d)dr
rs = 1.11∗ (10)8; νT = νe[(Λ)dr/Λ)](υpe/υdr)3 = 56.65∗0.93·51.98 = 2.7489431852·103

[c−1]
(4) ky = 2π∆ (υdr)νT(

Est
neme

) = 2π∆ (υdr)νT(
Est

neme

) ≈ 6.28 ∗ 222.86 (1.12·10∗∗7)2.7489431852·10∗∗3
(4∗17.5810∗∗14) ≈ 0.006104

[
1
m

]
;

ky
2 = 3.72∗10−5[1/m2]

(5) E*
1 = me

e νeu1e; E*
2 = 0.72

(
ky
)(Te

e

)(
4.3kx

ky
+ 1 + ky

νe
u1€

)
; E*

3 = −3.16
(
k2

T
) T(e)

(e)
T(e)

υ(e)1mνe

(6)
[
E∗

1 + E∗
2
]
=
∣∣∣me

e νeu1(e) + 0.72
(
ky
)(Te

e

)[(
1− 3 ky

νe
u1(e)

)]∣∣∣ = |0.187 + 43.63 + 43.63 ∗ 24.7|
=|0.187+ 43.63− 1077.6873664|= 1121.28 * 1.018 = 1033.87 [B/m]

(7) E∗
3 = −3.16 ·

(
k2

y

)
ne

mνe
1

u(e)1(ene)
T

2

(e)1
= −3.16

(
k2

y

)
1

mνe
1

υ(e)1(e)
T

2

(e)1
= −3.16(

k2
y

)
1

9.1∗10−31∗2.7489∗103∗1.12∗107∗1.6∗10−19 T2
(e)1 = −3.16 ∗ 3.66(3.72) ∗ 1∗10−5

44.826∗10−40(
2.56∗108 ∗ 10−38

)
= 29.607∗105

44.826 = 0.660508 ∗ 105 = 66,050.8 [V/m]

(8) [E] =
[
E∗

1 + E∗
2 + E∗

3
]
= 1033.87 + 66,050.8 = 67,084.6703 [V/m] = [671.72] [V/cm]

(9) γ = j
E = enυdr

E = 1,6∗10−19∗1018∗1,1296715∗107

6.7172∗104 = 0.256 ∗ 102 [1/(Om*m)]

In CGSE γ = j
E = j

E = env
E = 0.256 ∗ 102∗9 * 109 = 0.24 * 1012 [c−1]

7. Discussion

The authors of [118] showed the results for strong electric fields E from 100 to 700 V/cm.
As can be seen, the predicted results presented in Figure 1 are consistent with experimental
data [118] for this electric field region.

Also, the presented results of calculations based on the stochastic equations confirm
that there is an electric-field region with approximately constant conductivity of ~30%. That
is, in the equivalence region, there is a distribution corresponding to the experimentally
determined in [118] for 100 < E < 700 V/cm.

This is the second region with approximately constant conductivity. This region was first
experimentally determined in [118]. In this study, the measurements were carried out in a wide
range of electric-field strength of 0.5 < E < 700 V/cm, while, in the region of 0.5 < E < 90 V/cm,
there were only three measurements. Nevertheless, the authors of [118] confirmed the presence
of a region with a constant conductivity in the range of 0.2 < E < 20 V/cm with a subsequent
decrease in conductivity down to the voltage E = 100, which was first determined in [119].

The conductivity and current of a non-turbulent plasma are determined by well-
known ratios: j = eneυTe = eneµTeE = γE; γ = j

[E] = eneυTe
[E] , υTe = µTeE; the formula

for the conductivity is γ = eneµTe = nee2

νeme
. The mobility of electrons is µTe = e

νeme
. The

known formula for the collision frequency νe = Λ ωpe

3(2π)1,5n0

(
ωpe
υTe

)3
includes υTe. The

calculations show that the value of the thermal velocity υTe in the case of the plasma
turbulence gives no correct magnitudes of electrical conductivity of the turbulent plasma.
Thus, it is important to calculate the effective collision frequency νT . The solutions of
stochastic equations enabled us to derive the formula for the drift velocity (see Equation (24))

υdr ≈ [( Est
neme

) · ( ky
νT
)
(

Est
nTe

)3.9
1/2π]]. Then it is possible writing j = eneυdr = eneµdrE = γE;

γ = j
[E] =

eneυdr
[E] , υdr = µdrE; here, the mobility of electrons is µdr = e

νTme
, and the formula

for the conductivity is nγ = eneµdr = nee2

νTme
. It is easy to see that, now, the drift velocity of

a turbulent plasma depends also on the intensity of plasma turbulence, its temperature
(thermal energy), and the scale of turbulence of the turbulent plasma flow, instead of only
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on the frequency of collisions of electrons νe. New Formulas (29) and (30) may be converted
into Equation (33) for a classical neutral plasma with Langrumov inhomogeneity. The
calculations of each of the motion components depending on the external field are presented
as [E] =

∣∣E∗
1 + E∗

2 ++E∗
3
∣∣. Here E*

1 is the value of the electric-field strength corresponding
to the force of relative friction dependent on the relative velocity of electrons and ions
E*

2 = E*
2T+E*

2P ++E*
2,e−i. E*

2P is the value of the electric field strength, corresponding to
the gas pressure of telectrons and ions. Here E*

2,e−i is the value of the electric field strength
corresponding to the voltage tensor caused by the viscosity of the flow of electrons and
plasma ions. The value of E*

2T is the electric-field strength corresponding to the thermal
force, and E*

3 is the electric-field strength corresponding to the heat flow. Tables 3 and 4
show that

∣∣E∗
1

∣∣<∣∣E∗
2

∣∣<∣∣E∗
3

∣∣. The obtained Formulas (17)–(33) for the Coulomb logarithm,
the wave number (turbulence scale), the collision frequency, the current, and the drift
velocity enable us to achieve agreement between the predicted and experimental data for
the conductivity j of turbulent plasma in a strong electric field of 100 < E < 1000 V/cm. The
development of the theory for calculating plasma heating was undertaken in [120–128].
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Figure 1. Plasma conductivity as a function of electric-field strength for hydrogen according to
data [118].

It should be noted that, for the data of the experiments [118], no calculations with
using the theory of ion-sound instability are known in the literature. Nevertheless, even if
there are results of prediction using the theory of ion–sound instability, it only means that
there are currently several theoretical tools, one of which is presented in this article and
represents the stochastic theory of turbulent plasma.

It should also be noted that, usually, the Boltzmann equation with the Fokker–Planck
collision term takes into consideration only a dynamical frictional force coming from the
many-body collisions through the Coulomb force [128]. In [129], the electron transport
under the effect of two kinds of friction in an electron–deuteron plasma was discussed.
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Equations (31) and (32) present new formulas for the value of the critical electric field
strength. We also mention data from [130–132].

The presented theory and obtained results of calculations show that, for high level

of turbulence of plasma,

(
Est

neme

)0.5

vpe
> 1.3, the conductivity is ⋎ = 0.26·1012 [c−1]. For(

Est
neme

)0.5

vpe
= 2, the conductivity is ⋎ = 0.22·1012 [c−1], see Tables 3 and 4. However, the

spread of experimental data for 100 < E < 700 V/cm is ~30%.

8. Conclusions

The obtained results show that the stochastic turbulence theory based on stochastic differ-
ential equations and equivalence of measures between deterministic and random fields is valid
also for the turbulent plasma during heating by the strong electric field {Equations (1)–(15)}. It is
shown that, after the onset of plasma turbulence, the existing experimental data have a certain
spread of ~30% for a strong electric field of 100 < E < 1000 V/cm; see data in [118] and Figure 1.
The energy balance was discussed for the plasma with the temperature Te~10,000 Ev in the
region of the external strong electric field of 100 < E < 1000 V/cm. It is theoretically shown
that the energy of the external electric field compensates also the energy costs due to heat flux
E3 and the total shear-stress tensor of the plasma particles E2, which are the functions of the
collision integral, instead of only the energy costs due to the forces between the particles E1.
Thus, the plasma becomes more turbulent with constant conductivity, and a plateau is formed
even in the region of the external strong electric field of 100 < E < 1000 V/cm. It is theoretically
determined that, starting from a voltage of about 100 V/cm, the plateau exists, and the energy
of the deterministic field continues to pass mainly only into a random turbulent field.

In addition, on the basis of stochastic equations for the experimental values of
electron density and temperature, the plasma current, and conductivity, we theoreti-
cally determined also the drift velocity, collision frequency, Coulomb interval, and the
wave number (turbulence scale). Besides, we determined theoretically the level of tur-

bulence of plasma

(
Est

neme

)0.5
−vpe

vpe
∗ 100% = 30% for electrical field E = 100 V/cm and(

Est
neme

)0.5
−vpe

vpe
∗ 100% ∼ 100% for electric field E = 700 V/cm.

As a result, the correct application of stochastic theory in the range of 100–1000 V/cm
was confirmed. It should be noted that both the development of stochastic theory for plasma
and the theoretical tool is proposed for the calculation of turbulent heating by the strong
electric field in the range of 100 < E < 1000 V/cm. Stochastic theory for plasma processes can
apparently lead to the development of tools for the numerical methodology [102,106,107]
of direct theoretical–numerical simulation.
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