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Abstract: Lithium-ion batteries, as the main energy storage component of electric vehicles (EVs), play
a crucial role in ensuring the safe and reliable operation of the battery systems through monitoring
their state of health (SOH). However, temperature variations and battery aging have significant
impacts on the internal parameters of lithium-ion batteries, and these changes directly correlate with
the accuracy of battery SOH estimation. To address these issues, this paper proposes an estimation
method for lithium-ion battery SOH that considers the impact of temperature. The method begins
with reconstructing a second-order hybrid equivalent circuit model for lithium-ion batteries, through
which an adaptive update rate for battery model parameters is designed. On this basis, a nonlinear
observer for battery states is introduced by integrating filters to estimate SOH. The proposed method
considers the impact of capacity in the design of the parameter adaptive update rate, enabling
the capacity to be dynamically adjusted based on the actual state of the batteries. This reduces
the cumulative error in the SOC observer and improves the modeling accuracy of battery models.
Experimental results demonstrate that the method proposed in this paper exhibits exceptional
performance in SOH estimation under different temperature conditions. The mean absolute error for
SOH estimation does not exceed 0.5%, and the root mean square error does not exceed 0.2%. This
method can significantly improve the estimation accuracy of SOH, providing a more efficient and
accurate solution for battery management systems in EVs.

Keywords: lithium-ion battery; state of health; state of charge; parameter estimation

1. Introduction

Lithium-ion batteries, as an indispensable energy storage component in electric ve-
hicles (EVs), have a direct impact on the overall performance of products [1]. With the
widespread application of lithium-ion batteries, the issue of battery aging has gradually
become prominent. Battery aging not only leads to a decrease in battery capacity and an in-
crease in internal resistance, but also may trigger safety issues such as thermal runaway [2].
The state of health (SOH) of lithium-ion batteries describes the current degree of battery
aging, which is of great significance for the safe use, performance optimization, and life
extension of batteries [3]. Therefore, accurately estimating the SOH of batteries is crucial for
ensuring the safe and reliable operation of battery systems. Generally, SOH is defined as the
ratio of the current battery capacity to the new battery capacity, but this requires knowing
the initial capacity of the battery [4], which is often difficult to accurately obtain in practice.
The aging process of batteries has nonlinear characteristics, meaning that the rate of battery
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capacity decay is not constant but varies with time and usage conditions. This makes it
difficult for traditional linear estimation methods to accurately describe the battery aging
process. Moreover, the complex electrochemical processes inside lithium-ion batteries and
external environmental factors make the precise estimation of SOH a challenging issue [5].

Estimation methods for SOH range from experimental estimation techniques to model-
based approaches. Experimental estimation techniques evaluate battery degradation
states through laboratory tests such as capacity testing [6], internal resistance testing [7],
electrochemical impedance spectroscopy (EIS) [8], charge curve analysis [9], ultrasonic
analysis [10], incremental capacity analysis (ICA) [11], and differential voltage analysis
(DVA) [12]. Although experimental estimation techniques can provide rich degradation
information and accurate SOH estimation results, practical applications prefer online,
real-time, and reliable SOH monitoring. Model-based estimation methods, especially data-
driven algorithms and adaptive filtering techniques, provide effective solutions for this
demand [13]. Data-driven techniques utilize machine learning algorithms and vast amounts
of historical data to train models, thereby predicting the SOH of batteries. Optimization
algorithms [14], empirical and fitting techniques [15], sample entropy techniques [16],
and machine learning techniques [17] are typical representatives of data-driven methods.
Among them, support vector machines (SVMs) [18], neural networks (NNs) [19], physics-
informed neural networks (PINNs) [20], and fuzzy logic (FL) [21] can automatically learn
patterns of battery aging from large amounts of data and make SOH predictions accordingly.
These methods can handle complex battery dynamics and uncertain operating environ-
ments, but they usually require significant training data and computational resources,
which may be limited in real-time applications.

Adaptive filtering or observer methods estimate the SOH by establishing physical or
statistical models of batteries and combining real-time measured current and voltage data.
This approach is better at capturing changes in the battery system’s state, demonstrating
excellent performance in dynamic adjustment and real-time response. Among them,
electrochemical models (EMs) provide in-depth understanding and accurate predictions
of battery behavior based on the chemical reaction kinetics within the battery, but they
are characterized by complex modeling and high computational costs [22]. In contrast,
equivalent circuit models (ECMs) describe batteries through simplified circuit elements,
offering advantages such as a simple structure and fast solution speed, making them the
most widely used models [23]. Kalman filtering and its derivative algorithms, such as
the extended Kalman filter (EKF) [24], the unscented Kalman filter (UKF) [25], and the
particle filter (PF) [26], provide powerful tools for handling battery’s nonlinear dynamic
characteristics and uncertainties. Plett [27] introduced a dual extended Kalman filter
(DEKF) to simultaneously update battery SOC estimation and capacity. Considering
the inconsistency between the rapid changes in SOC and the gradual changes in battery
capacity, a multi-timescale DEKF was designed by separating the time scales of the state
estimation filter and the parameter estimation filter [28]. Since EKF may perform poorly
in highly nonlinear systems, Xiong et al. [29] proposed a DUKF method to enhance the
estimation accuracy of SOC and parameters.

It is worth noting that a battery’s SOH directly impacts its available energy and charg-
ing capacity, thereby further influencing its state of charge (SOC). Therefore, there exists
a circular dependency between these two states. In addition, battery model parameters
are influenced by multiple factors such as battery type, operating temperature, cycling
history, and SOC. Ignoring the time-varying parameters in the battery model can lead to
a decrease in modeling accuracy, which subsequently affects estimation precision. SOH
estimation, considering the changes in battery model parameters, can more accurately
assess the overall performance and remaining lifespan of the battery. Yu et al. [30] proposed
an online capacity estimation method based on the recursive least squares and adaptive
H∞ filter (RLS-AHIF) joint estimation filter. A RLS algorithm was used to realize the online
parameter identification of the battery model, and then an adaptive H∞ filter was used
to estimate the SOH of the battery. To address the issue of RLS’s insensitivity to sudden
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changes in battery states, the forgetting factor recursive least squares (FFRLS) method
was employed to update model parameters in real time [31]. The total least squares (TLS)
method was adopted to estimate battery capacitance, improving the prior estimation ac-
curacy of SOC. Finally, the UKF was utilized to estimate the precision of SOC, resulting
in a more accurate SOH estimation. Nonlinear observers have also been applied for SOH
estimation. Zhou et al. [32] proposed a cascaded fractional-order sliding mode observer
(FOSMO) for estimating the SOC and SOH of lithium-ion batteries. They utilized the termi-
nal voltage, polarization voltage, and open-circuit voltage to estimate the SOC. Moreover,
two FOSMOs were developed to estimate the capacity and internal resistance of lithium-ion
batteries for estimating the SOH.

Current model-based SOH estimation frameworks separate the design of battery
model parameter identification and state estimation. The parameters of the model are
updated in real time by the least squares method or sliding mode observer, and then the
existing state estimation method is introduced to estimate the SOH. These approaches
require multiple transformations of the battery model, introducing a certain level of com-
plexity. To address these issues, we refer to the observer design of [33] and propose a joint
SOC and SOH estimation method that can realize both parameter identification and state
estimation [34]. However, this method sets the battery capacity to a fixed value, resulting
in a small cumulative error in the SOC observer.

Considering that capacity is also included in the parameter adaptive update rate
design, a filter-based SOH estimation method for lithium-ion batteries is proposed. Firstly,
the chosen second-order mixed equivalent circuit model for lithium-ion batteries was
reconstructed, transforming the expression of terminal voltage derivative into the product
of measurable variables, non-measurable variables, and an unknown parameter matrix.
This unknown parameter matrix encompasses all time-varying parameters of the battery
model, and a parameter adaptive update rate was designed to achieve online updates of
the battery model. Subsequently, a cascaded estimator for SOC, short-term and long-term
transient response voltages of the battery, and the terminal voltage were designed to realize
SOH estimation. Traditional methods lack experimental validation and comparison under
different temperatures and operating conditions. We designed lithium-ion battery experi-
ments at different temperatures and compared them with the DEKF and DUKF methods.
The experimental results show that the proposed method exhibits better performance and
effectiveness under various operating conditions. The main contributions of this paper are
as follows: (1) The proposed method improves the accuracy and real-time performance of
SOH estimation through the online updating of the battery model. (2) The multi-cascade
design can more accurately capture changes in the battery status, improving the accuracy of
SOH estimation. (3) By considering the dynamic changes in capacity, the cumulative error
in the SOC observer is reduced, and the battery model modeling accuracy is improved.

The following parts of this paper are organized as follows: Section 2 describes the
second-order hybrid equivalent circuit model of lithium-ion battery and the proposed
reconstruction method of the battery model. Section 3 describes the filter-based estima-
tion method of SOH and the adaptive update rate design of battery model parameters.
The stability analysis of the algorithm is shown in Section 4. Section 5 introduces the
experimental platform and analyzes the experimental results. Finally, Section 6 summarizes
the conclusions of this paper.

2. Mathematical Modeling of Lithium-Ion Batteries

A second-order hybrid equivalent circuit model of a lithium-ion battery was employed
to simulate the battery’s structure [35,36], as depicted in Figure 1. In contrast to conven-
tional equivalent models, it possesses the capability to precisely anticipate both the steady
state and transient response behaviors of the battery by leveraging its distinctive array
of components and interdependencies. This model comprehensively encapsulates the
dynamic circuit attributes of the battery, encompassing the open circuit voltage, terminal
voltage, transient response, and self-discharge phenomena.



Batteries 2024, 10, 219 4 of 17

+

-

U0

R2R1

R0

Uoc
(SOC)

+

- C1 C2

U1 U2

I0I0

C0Rd

Usoc
+ - -+

Figure 1. Second–order hybrid equivalent circuit model for lithium–ion batteries (The orange box
indicates the SOC characteristics of the lithium-ion battery, and the green box indicates the transient
response characteristics of the voltage and current of the lithium-ion battery).

The subcircuits on the left side of Figure 1 represent lithium-ion battery SOC tracking
and the runtime prediction. A self-discharge resistor Rd is used to characterize the self-
discharge energy loss of the battery. The current control current source I0 charges and
discharges C0 are used to characterize the total amount of electricity stored in the battery, so
that the dynamic change of SOC ∈ [0%, 100%] is represented by USOC ∈ [0 V, 1 V]. Thus,
the USOC expression is given by

U̇SOC = − η0

RdC0
USOC − η0

C0
I0 (1)

where η0 is the Cullen efficiency. The subcircuit on the right side of Figure 1 represents the
transient response characteristics of the voltage and current. The voltage source UOC(USOC)
is applied to connect the open-circuit voltage UOC to the SOC of the battery, and the
nonlinear relationship between the open-circuit voltage UOC and the SOC is expressed as
UOC = φ(USOC). U0 is the terminal voltage of the battery, and R0 is the internal resistance,
which is used to characterize the energy loss of the battery in charging and discharging.
R1, C1, R2, and C2 denote the short-term and long-term transient responses of the battery,
and the mathematical relationships of the short-term and long-term transient response
voltages U1 and U2 are as follows:

U̇1 = − 1
R1C1

U1 +
1

C1
I0 (2)

U̇2 = − 1
R2C2

U2 +
1

C2
I0. (3)

According to Kirchhoff’s voltage law, the battery terminal voltage can be written as:

U0 = UOC − R0 I0 − U1 − U2. (4)

Combining the SOC characteristics and the transient response characteristics of the
battery voltage and current, the derivative expression for the battery terminal voltage U0 is
given by:

U̇0 = U̇OC − R0 İ0 − U̇1 − U̇2

= φ̇(USOC)U̇SOC − R0 İ0 −
U1

R1C1
− U2

R2C2
+

(
1

C1
+

1
C2

)
I0.

(5)
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Adding or subtracting one term U0
R1C1

+ U0
R2C2

from Equation (5) gives:

U̇0 = − U0

R1C1
− U0

R2C2
+ φ̇(USOC)

(
η0

RdC0
USOC − η0

C0
I0

)
− R0 İ0

−
(
− 1

R1C1
U1 +

1
C1

I0

)
−
(
− 1

R2C2
U2 +

1
C2

I0

)
+

U0

R1C1
+

U0

R2C2

= −(
1

R1C1
+

1
R2C2

)U0 + φ̇(USOC)
η0

RdC0
USOC + (

1
R1C1

+
1

R2C2
)φ(USOC)

− R0 İ0 −
U2

R1C1
− U1

R2C2
− (φ̇(USOC)

η0

C0
+

1
C1

+
1

C2
+

R0

R1C1
+

R0

R2C2
))I0.

(6)

The state variables SOC, U1, and U2 within the lithium-ion battery model are in-
herently non-measurable, while the parameters of the battery model remain unknown
and are influenced by factors such as battery SOC and temperature. Various techniques
exist for identifying the parameters of the battery equivalent model, including recursive
least squares (RLS) [37], genetic algorithms (GAs) [14], and particle swarm optimization
(PSO) [38]. However, these methods primarily focus on enhancing modeling accuracy
through adaptive battery models rather than directly estimating battery capacity. Achiev-
ing SOH estimation necessitates integrating additional algorithms into this framework.
Consequently, algorithm design for parameter and state estimation mandates separate
mathematical transformations of the battery model, inevitably amplifying complexity.

To facilitate the integration of parameter estimation and state estimation within the
algorithmic framework, the expression for the derivative of the battery terminal voltage is re-
formulated as the product of the measurable variable matrix Y ∈ R1×5, the non-measurable
variable matrix W ∈ R5×8, and the unknown parameter matrix θ ∈ R8. Moreover, the USOC
is replaced by the SOC. Unlike the battery model described in [34], which assumes a fixed
battery capacity, the capacity is also included in the unknown parameter matrix. Thus,
the mathematical depiction of the second-order hybrid equivalent circuit model of the
lithium-ion battery illustrated in Figure 1 can be succinctly represented as:

ẋ1 = −ax1 − bu

ẋ2 = −θ1x2 + θ5u

ẋ3 = −θ2x3 + θ6u

ẋ4 = YWθ

(7)

where x1 ≜ SOC ∈ R, x2 ≜ U1 ∈ R, x3 ≜ U2 ∈ R, x4 ≜ U0 ∈ R, and u ≜ I0 ∈ R.
The matrices Y, W, and θ are expressed as

Y =
[
x4 1 1 u u̇

]

V =


−1 −1 0 0 0 0 0 0

φ(x1) φ(x1) −aφ̇(x1)x1 0 0 0 0 0
−x3 −x2 0 0 0 0 0 0

0 0 −bφ̇(x1) 0 −1 −1 −1 −1
0 0 0 −1 0 0 0 0


θ =

[
θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

]T

with
a =

η0

Rd
, b = η0,

θ1 =
1

R1C1
, θ2 =

1
R2C2

, θ3 =
1

C0
, θ4 = R0,

θ5 =
1

C1
, θ6 =

1
C2

, θ7 =
R0

R1C1
, θ8 =

R0

R2C2
.
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Remark 1. According to the analysis of Remark 1 in [34,36], it is assumed that under the stable
condition of the battery system, the current and voltage of the battery are within the bounded range,
so the state of the battery equivalent model is bounded, and the battery model parameters are positive
and bounded. Therefore, xi(t)(i = 1, 2, 3, 4), u(t) , Y(t), and W(t) are bounded and θ(t) is positive
and bounded.

3. Filter-Based Co-Estimation Method of SOH

Generally, the SOH of a new power battery is set to 100%, and with the use of the
battery, the battery is aging and the SOH gradually decreases. When the capacity capability
of a power battery decreases to 80% of its initial capacity, the battery is designated end of
life (EOL) [4]. Therefore, the battery SOH is usually defined as follows:

SOH =
C0

C0BOL
(8)

where C0 is the current capacity of the battery and C0BOL indicates the initial capacity of the
battery. To identify the unknown parameter matrix in the battery model for the adaptive
updating of the battery parameters and estimating the battery capacity to calculate the
SOH, the unknown parameter matrix estimation error signal θ̃ ∈ R8 is defined as follows:

θ̃(t) ≜ θ − θ̂(t) (9)

where θ̂(t) ∈ R8 denotes the estimated value of the unknown parameter matrix. When
designing the θ̂(t) adaptive update rate for estimating the unknown parameter matrix
using the least squares approach, we encounter the product term of the measurable variable
matrix Y and the non-measurable variable matrix W. To address this challenge, we reference
the design of filters in [33] and introduce a measurable filter Yf (t) ∈ R1×8 and a non-
measurable filter η(t) ∈ R, which are designed as follows:{

Ẏf = −β4Yf + YŴ

η̇ = −β4η + YW̃θ
(10)

where β4 ∈ R is the positive gain, and YŴ and YW̃θ denote the intermediate variables of
the filtered signal. Refer to the algorithm designed in [34], the filter-based observer for the
SOH estimation is designed as:

˙̂x1 = −ax̂1 − bu + β1 x̃4

˙̂x2 = −θ̂1 x̂2 + θ̂5u + β2 x̃4

˙̂x3 = −θ̂2 x̂3 + θ̂6u + β3 x̃4

˙̂x4 = YŴ θ̂ + Yf
˙̂θ + β4 x̃4

(11)

where x̂ ≜
[
x̂1 x̂2 x̂3 x̂4

]T ∈ R4 is the state estimate, x̃i ≜ xi − x̂i(i = 1, 2, 3, 4) ∈ R
denotes the state estimation error, and βi(i = 1, 2, 3, 4) ∈ R represents the designed
observer gain.

Based on Equations (7) and (11), the state estimation error is obtained as:

˙̃x1 = −ax̃1 − β1 x̃4

˙̃x2 = h1(x2)− θ̂1 x̃2 − β2 x̃4

˙̃x3 = h2(x3)− θ̂2 x̃3 − β3 x̃4

˙̃x4 = YWθ − YŴ θ̂ − Yf
˙̂θ − β4 x̃4

(12)
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where h1 ≜ −θ̃1x2 + θ̃5u and h2 ≜ −θ̃2x3 + θ̃6u are bounded functions. The adaptive
estimation update law for the unknown parameter matrix is designed as:

˙̂θ ≜ LYf
T x̃4 (13)

where L is the parameter adaptive estimation gain and the recursive computation satisfies:

d
dt

(
L−1

)
= Yf

TYf . (14)

In the subsequent analysis, L−1(0) is required to be positive definite. This requirement can
be met by selecting an appropriate non-zero initial value.

Assumption 1. According to the analysis of Assumption 1 in [34], there are known constants M1
and M2 ∈ R>0, such that the functions h1(·), h2(·) have upper bounds and satisfy |h1(·)| ≤ M1,
|h2(·)| ≤ M2. Since the parameters of the battery model are all positive, there are constants d1 and
d2 greater than 0, such that

∣∣θ̂1
∣∣ ≥ d1,

∣∣θ̂3
∣∣ ≥ d2.

The simultaneous addition of an YŴθ to Equation (12) can be rewritten as follows:

˙̃x4 = YW̃θ + YŴ θ̃ − Yf
˙̂θ − β4 x̃4. (15)

Combining Equations (10) and (15), the state error of x4 can be expressed as:

x̃4 = Yf θ̃ + η + µe−β4t (16)

where µ ≜ x̃4(0) − Yf (0)θ̃(0) − η(0) ∈ R is an unknown constant based on the initial
conditions.

The flow chart of the estimation algorithm for the SOH of lithium-ion batteries based
on filters is shown in Figure 2.

Battery



Load

Noise









Noise

SOC 
Observer

U1 
Observer

U2 
Observer

U0 
Observer

θ 
Parameter 
estimator

Yf Measurable filter

η Non-measurable filter
 

0U

 
0I

ˆSOC 1Û
2Û 0Û

̂

fY

Figure 2. Flow chart of the estimation algorithm for SOH.

4. Stability Analysis

The stability of the nonlinear observer for the estimation of the SOH of lithium-ion
batteries is analyzed according to the following theorem.

Theorem 1. For a nonlinear observer in Equation (11) using the parameter update rates defined
in Equation (13), consider the equivalent model of the battery in Equation (7) and satisfy As-
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sumption 1 to ensure that the state errors are consistently and ultimately bounded, and the gain
condition satisfies:

β4 > m +
γβ2

1
2a1

+
3β2

2
4d1

+
3β2

3
4d2

− Yf LYT
f (17)

with
k1 > 4, k2 > 2, k3 > 4,

m >
k1 +

1
k2
+ (k4 + k7)∥Y∥2

∞

1 − 2
k2

+

1
k1
+ (k6 + k9)∥Y∥2

∞

1 − 2
k3
− 2

k1

+ k2 + k3 + (k5 + k8)∥Y∥2
∞.

To demonstrate the convergence of the designed nonlinear observer, a Lyapunov
function V(t) ∈ R is chosen as follows:

V ≜
1
2

αx̃2
1 +

1
2

x̃2
2 +

1
2

x̃2
3 +

1
2

x̃2
4 +

1
2

η2 +
1
2

θ̃T L−1θ̃ (18)

where α is a positive constant, and L−1 is the inverse matrix of L and is positive definite.
For subsequent calculations, the two nonlinear functions V1 and V2 are denoted as:

V1 =
1
2

αx̃2
1 +

1
2

x̃2
2 +

1
2

x̃2
3 (19)

V2 =
1
2

x̃2
4 +

1
2

η2 +
1
2

θ̃T L−1θ̃. (20)

According to the stability analysis of [34] and Assumption 1, it can be obtained:

V̇1 ≤ −αa
2

x̃2
1 −

d1

3
x̃2

2 −
d2

3
x̃2

3 +

(
αβ2

1
2a1

+
3β2

2
4d1

+
3β2

3
4d2

)
x̃2

4 +
3M2

1
4d1

+
3M2

2
4d2

. (21)

And, the time derivative of V2 yields:

V̇2 ≤ −
[

m + 1 − k1 −
2m + 1

k2
− (k4 + k7)∥Y∥2

∞

]∥∥∥Yf θ̃
∥∥∥2

−
[

β4 + m − k2 − k3 − (k5 + k8)∥Y∥2
∞

]
∥η∥2

−
[

m − 2m + 1
k1

− 2m
k3

− (k6 + k9)∥Y∥2
∞

]
µ2e−2β4t

+

(
1
k4

+
1
k5

+
1
k6

)(∥∥W̃
∥∥

∞∥θ∥
)2

+

(
1
k7

+
1
k8

+
1
k9

)(∥∥Ŵ
∥∥

∞

∥∥θ̃
∥∥)2

(22)

where m < β4 + Yf LYT
f is a positive constant and ki(i = 1, 2, . . . , 9) ∈ R is the positive

constant described by the gain condition in Theorem 1.
According to Remark 1, the parameter estimates and the filter definition show that

W(t), W̃(t), θ(t), and θ̃(t) ∈ L∞, which yields
(∥∥W̃

∥∥
∞∥θ∥

)2 and
(∥∥Ŵ

∥∥
∞

∥∥θ̃
∥∥)2 ∈ L∞.

Therefore, the last two terms of the above equation can be considered to have upper
bounds. Finally, combining Equations (21) and (22) yields:

V̇1 ≤ −αa
2

x̃2
1 −

d1

3
x̃2

2 −
d2

3
x̃2

3 − γx̃2
4 − λ1

∥∥∥Yf θ̃
∥∥∥2

− λ2∥η∥2 − λ3µ2e−2β4t + M (23)

with

λ1 =

(
1 − 2

k2

)
m + 1 − k1 −

1
k2

− (k4 + k7)∥Y∥2
∞,

λ2 = β4 + m − k2 − k3 − (k5 + k8)∥Y∥2
∞,
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λ3 =

(
1 − 2

k3
− 2

k1

)
m − 1

k1
− (k6 + k9)∥Y∥2

∞,

γ = β4 + Yf LYT
f − m −

αβ2
1

2a1
−

3β2
2

4d1
−

3β2
3

4d2
,

M =
3M2

1
4d1

+
3M2

2
4d2

+

(
1
k4

+
1
k5

+
1
k6

)(∥∥W̃
∥∥

∞∥θ∥
)2

+

(
1
k7

+
1
k8

+
1
k9

)(∥∥Ŵ
∥∥

∞

∥∥θ̃
∥∥)2.

Combining Assumption 1 shows that M is positively bounded. When γ and λi

(i = 1, 2, 3) satisfy the gain condition in Theorem 1, for any |x̃1| >
√

2M
αa , it follows

that V̇1 < 0. Since the initial value of the Liapunov function V1(0) ∈ L∞, it follows that the
state estimation error of the battery model is uniformly ultimately bounded. And, |x̃1| ≤ δ,

where δ satisfies
√

2M
αa < δ.

5. Simulation Analysis and Experimental Results
5.1. Experimental Setup

To verify the estimation ability of the algorithm, an experimental platform was es-
tablished to obtain the required data, as shown in Figure 3. The experimental platform
consisted of a computer, a NEWARE CT-8008 battery testing system (NEWARE, Shenzhen,
China), a RIUKAI R-TH-50 LKF programmable constant temperature and humidity test
chamber (RIUKAI, Guangdong, China), and lithium-ion batteries. The control computer
was equipped with a BTS 8.0.0 upper computer system, which can control the BTS to charge
and discharge the battery in real time and record the battery data. The temperature test
chamber ensured that the battery ambient temperature was within the set range. The model
number of lithium-ion batteries used in experiments was INR18650 MH1, and the basic
specifications of batteries are shown in Table 1.

Figure 3. Experimental platform.

Table 1. Basic specifications of lithium–ion batteries.

Parameters Specification

Rated capacity 3200 mAh
Nominal voltage 3.63 V
Maximum charge voltage 4.2 V
Discharge cut-off voltage 2.5 V
Working temperature 0∼45 ◦C
Battery weight 49 g
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Dynamic stress testing (DST) [39] and the Federal City Driving Schedule (FUDS) [40]
were used to evaluate the battery algorithm performance. The former was primarily used
to test the battery’s charge and discharge power capabilities, which helped to verify the
adaptability of battery model parameters under variable current conditions. The latter,
based on actual vehicle driving patterns, speeds, accelerations, and other parameters in
urban environments, aims to provide a testing condition that is closer to real-world usage
scenarios, enabling the assessment of battery performance under actual urban driving
conditions. Figure 4 demonstrates the current and voltage profiles of the DST and FUDS
tests at 25 ◦C.

Basic performance tests under dynamic operating conditions were conducted on
four groups of battery samples at 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C. Each group contained
two batteries for subsequent dynamic operating tests. The operating temperature was
adjusted to 25 ◦C, and the battery underwent a capacity test and a rapid test procedure
for identifying model parameters to obtain the initial battery parameters. The battery was
then charged and discharged under DST and FUDS conditions until its SOC reached 0.
The batteries were fully charged again, and the operating temperature was adjusted to 0 ◦C,
10 ◦C, and 45 ◦C, repeating the aforementioned experimental steps. The battery testing
procedure is illustrated in Figure 5.
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Figure 4. The current and voltage of DST and FUDS tests at 25 ◦C. (a) Terminal voltage under the
DST condition; (b) current under the DST condition; (c) terminal voltage under the FUDS condition;
(d) current under the FUDS condition.
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Temperature Adjustment 
(25℃) 

Basic Performance Tests
（ CAP and Rapid Test-procedure ）

Experiments Under Dynamic Operating 
Conditions

(DST and FUDS ）

Constant Current Charging 
（ SOC=100% ）

Temperature Adjustment 
(0℃, 10℃, 45℃) 

Figure 5. Flow chart of battery test procedure.

5.2. Lithium-Ion Battery Basic Performance Test

In order to obtain the relationship between the open-circuit voltage UOC and the SOC
of lithium-ion batteries at different temperatures, the experiments refer to the rapid test
method in [16]. Firstly, the lithium-ion battery was charged to a SOC of 100%. The lithium-
ion battery was then discharged to 10% of the rated capacity with a constant current of
rated current (0.2 C), left to stand for 20 min, and then the above discharging operation was
repeated until the SOC was 0. The battery current curve is shown in Figure 6.
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Figure 6. The current of rapid test procedure.

The open-circuit voltage UOC corresponding to different SOCs was obtained exper-
imentally, and an OCV model consisting of an exponential function and a polynomial
was used to fit the function between the open-circuit voltage and the SOC of the battery.
The chosen fitting model is as follows:

OCV = K0 + K1SOC + K2SOC2 + K3SOC3 + K4SOC4 + K5SOC5 + K6SOC6.

The relationship curve between the SOC and VOC at different temperatures is shown in
Figure 7. The internal resistance of the second-order hybrid equivalent circuit model of the
lithium-ion battery could be obtained by calculating the ratio of the transient voltage drop
to the current; Moreover, the capacitance and resistance, which represent the long-term and
short-term transient responses, could be obtained by utilizing the voltage-current response
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curve fitting. The initial values of the battery model parameters at different temperatures
are shown in Table 2.

0 10 20 30 40 50 60 70 80 90 100

SOC[%]

2.5

3

3.5

4

4.5

V
oc

[V
]

0 oC 10 oC 25 oC 40 oC

5 10 15 20 25

3

3.5

4

Figure 7. The open circuit voltage versus SOC of the battery at different temperatures.

Table 2. The initial values of the battery model parameters at different temperatures.

Temperature R0 (Ω) Rs (Ω) R f (Ω) C0 (F) Cs (F) C f (F)

0 ◦C 0.053 0.022 0.034 2.764 46.429 9263.228

10 ◦C 0.042 0.099 0.043 2.970 5.482 2747.428

25 ◦C 0.029 0.056 0.054 3.047 12.443 2462.632

40 ◦C 0.013 0.077 0.041 3.179 6.99 3905.739

5.3. Experiment under Dynamic Operating Conditions

In order to highlight the estimation superiority of the developed algorithm, the pro-
posed method was tested under DST and FUDS conditions, and the DEKF [27,41] and
DUKF [29,42] methods were introduced to compare the results under 25 ◦C. Assuming
that the initial SOC value was 0.9, the real SOC value, the estimation results using this
method, the estimation results with the DEKF and DUKF methods, and the correspond-
ing errors are shown in Figure 8. The real reference value of SOC was obtained by the
CCM. The DUKF method is capable of resolving the potential issues of the DEKF in highly
nonlinear systems. However, while the DUKF method exhibited improved algorithmic
performance compared to the DEKF, it still failed to take into account all parameters of the
battery model. On the other hand, the filter-based observer estimated the battery model
parameters, enhancing modeling accuracy. It can be seen from Figure 8 that, compared
with the DEKF and DUKF, the filter-based observer had a better estimation accuracy and
faster dynamic response speed.

The SOH value was determined by substituting the estimated capacity C0 and the
initial capacity C0BOL into Equation (8), and the reference value of the true SOH value was
obtained by fitting the capacity obtained from the capacity test before and after the cycle.
Figure 9 shows the true value of the SOH, the estimation results of the SOH using this
method, and the estimation results of the DEKF and DUKF. It can be seen that the filter-
based observer had a better applicability than the DEKF for different working conditions
and had a better estimation accuracy.

Tests based on DST and FUDS conditions at 0 ◦C, 10 ◦C, and 45 ◦C were added to
better verify the robustness of the algorithm at different temperatures. In order to analyze
the superiority of the filter-based observer in estimation performance, it was compared
with the DEKF and DUKF. The maximum absolute error (MAE) and the root mean square
error (RMSE) were selected as evaluation indicators, and the estimated results at different
temperatures are shown in Tables 3 and 4.
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Figure 8. SOC estimation results under 25 ◦C. (a) Estimation results under the DST condition.
(b) Estimation errors under the DST condition. (c) Estimation results under the FUDS condition.
(d) Estimation errors under the FUDS condition.
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Figure 9. SOH estimation results under 25 ◦C. (a) Estimation results under the DST condition.
(b) Estimation errors under the DST condition. (c) Estimation results under the FUDS condition.
(d) Estimation errors under the FUDS condition.
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Table 3. SOC estimation error results.

Temperature Algorithm Type DST Condition FUDS Condition

0 ◦C

Filter-Based Observer MAE: 1.1296% MAE: 1.5110%
RMSE: 0.5123% RMSE: 0.8781%

DUKF MAE: 9.0690% MAE: 6.0277%
RMSE: 3.2567% RMSE: 2.6664%

DEKF MAE: 8.4087% MAE: 6.1495%
RMSE: 2.3025% RMSE: 3.2103%

10 ◦C

Filter-Based Observer MAE: 1.4766% MAE: 1.0435%
RMSE: 0.8685% RMSE: 0.7620%

DUKF MAE: 9.6849% MAE: 9.5598%
RMSE: 4.0638% RMSE: 3.9750%

DEKF MAE: 9.1705% MAE: 5.8272%
RMSE: 5.3467% RMSE: 3.6444%

25 ◦C

Filter-Based Observer MAE: 1.2475% MAE: 1.7281%
RMSE: 0.5517% RMSE: 0.4770%

DUKF MAE: 3.2238% MAE: 3.5548%
RMSE: 0.8014% RMSE: 1.1321%

DEKF MAE: 3.2698% MAE: 4.1347%
RMSE: 1.6472% RMSE: 2.1402%

40 ◦C

Filter-Based Observer MAE: 1.2621% MAE: 0.3129%
RMSE: 0.7205% RMSE: 0.0975%

DUKF MAE: 2.3814% MAE: 3.4679%
RMSE: 0.9114% RMSE: 0.9373%

DEKF MAE: 2.9840% MAE: 3.2516%
RMSE: 1.8293% RMSE: 0.7150%

Table 4. SOH estimation error results.

Temperature Algorithm Type DST Condition FUDS Condition

0 ◦C

Filter-Based Observer MAE: 0.0360% MAE: 0.0112%
RMSE: 0.0196% RMSE:0.0085%

DUKF MAE:0.0788% MAE: 0.0478%
RMSE: 0.0372% RMSE: 0.0246%

DEKF MAE: 0.0732% MAE:0.0705%
RMSE: 0.0278% RMSE:0.0325%

10 ◦C

Filter-Based Observer MAE: 0.0239% MAE: 0.0345%
RMSE: 0.0183% RMSE: 0.0054%

DUKF MAE: 0.0292% MAE: 0.0457%
RMSE: 0.0200% RMSE: 0.0098%

DEKF MAE: 0.0350% MAE: 0.1429%
RMSE:0.0207% RMSE: 0.0215%

25 ◦C

Filter-Based Observer MAE: 0.0099% MAE: 0.0078%
RMSE: 0.0024% RMSE: 0.0061%

DUKF MAE: 0.0104% MAE: 0.0186%
RMSE: 0.0046% RMSE: 0.0089%

DEKF MAE: 0.0109% MAE: 0.0213%
RMSE: 0.0057% RMSE: 0.0103%

40 ◦C

Filter-Based Observer MAE: 0.0383% MAE: 0.0311%
RMSE: 0.0116% RMSE: 0.0168%

DUKF MAE: 0.0227% MAE: 0.0424%
RMSE: 0.0119% RMSE: 0.0196%

DEKF MAE: 0.0540% MAE: 0.0499%
RMSE: 0.0184% RMSE: 0.0225%
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For lithium-ion batteries, under low-temperature conditions, the internal resistance of
the battery increases, the electrochemical reaction speed slows down, the internal resistance
of polarization rapidly increases, and the capacity rapidly decreases. In the case of high
temperatures, the battery capacity is not equal to that at room temperature, but due to the
acceleration of the side reaction, the capacity attenuation is also accelerated. Tables 3 and 4
show that at 0 ◦C, 10 ◦C, 25 ◦C, and 45 ◦C, the filter-based observer performed well in the
two error indexes of SOC and SOH estimation. The MAE and RMSE of the filter-based
observer for SOC estimation were no more than 2% and 1%, and the MAE and RMSE for
SOH estimation were no more than 0.5% and 0.2%.

At room temperature, the filter-based observer exhibited the best SOH estimation
performance, with MAE and RMSE for SOH estimation not exceeding 0.1% and 0.1%.
In high- and low-temperature environments, compared to the DEKF, the DUKF did not
exhibit a significant advantage. This was due to the variations in battery model parameters
caused by temperature changes, which affected the modeling accuracy. However, the filter-
based method demonstrated superior estimation performance across different operating
conditions under varying temperatures. It is evident that the accuracy of battery SOH
estimation depends not only on algorithmic performance but also on the modeling accuracy
of the battery model.

Although this paper uses fitting curves of SOC and VOC at different temperatures to re-
duce the impact of temperature on the algorithm, the temperature during battery operation
did not change linearly. The segmented selection mode of the SOC and VOC fitting curves
could not fully adapt to the effects of battery temperature changes. Therefore, the SOH
estimation error increased at low and high temperatures, but the magnitude of the increase
was significantly lower compared to the DEKF and DUKF methods, verifying that the
filter-based algorithm exhibits good environmental adaptability at different temperatures.
In the future, this method can be further optimized and improved. For instance, more
advanced algorithms and technologies, such as machine learning and deep learning, can
be introduced to enhance estimation accuracy and robustness.

6. Conclusions

In this paper, a filter-based method for estimating the SOH of lithium-ion batteries is
proposed. First, the hybrid model of the battery was reconstructed to describe the terminal
voltage derivatives in terms of the product of the measurable variable matrix, the non-
measurable variable matrix, and the unknown parameter matrix. In order to obtain an
adaptive battery model, the unknown parameter matrix was designed using an adaptive
update rate utilizing signal filters. On this basis, a nonlinear observer with non-measurable
variables is proposed to realize SOH estimation. Under conditions of 0 °C, 10 °C, 25 °C,
and 45 °C, the MAE and RMSE of SOC estimation were less than 2% and 1%, while the
MAE and RMSE of SOH estimation were less than 0.5% and 0.2%. The experimental results
demonstrate that this method exhibits high estimation accuracy under various temperature
conditions, providing a more efficient and accurate solution for electric vehicle battery
management. Additionally, this method can be applied to more types of batteries and EVs
to promote the continuous development of EVs technology.
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