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Abstract: The phenotyping of field crops quantifies a plant’s structural and physiological charac-
teristics to facilitate crop breeding. High-throughput unmanned aerial vehicle (UAV)-based remote
sensing platforms have been extensively researched as replacements for more laborious and time-
consuming manual field phenotyping. This review aims to elucidate the advantages and challenges
of UAV-based phenotyping techniques. This is a comprehensive overview summarizing the UAV
platforms, sensors, and data processing while also introducing recent technological developments.
Recently developed software and sensors greatly enhance the accessibility of UAV-based phenotyp-
ing, and a summary of recent research (publications 2019–2024) provides implications for future
research. Researchers have focused on integrating multiple sensing data or utilizing machine learning
algorithms, such as ensemble learning and deep learning, to enhance the prediction accuracies of crop
physiological traits. However, this approach will require big data alongside laborious destructive
measurements in the fields. Future research directions will involve standardizing the process of
merging data from multiple field experiments and data repositories. Previous studies have focused
mainly on UAV technology in major crops, but there is a high potential in minor crops or cropping
systems for future sustainable crop production. This review can guide new practitioners who aim to
implement and utilize UAV-based phenotyping.

Keywords: agriculture; algorithms; breeding; crop phenotyping; remote sensing

1. Introduction

With the global population steadily rising, there is a rising demand for enhanced crop
production while ensuring environmental sustainability [1]. To support the sustainable
intensification of agricultural production systems, high-throughput field phenotyping
is used, which quantitatively assesses crop biophysical and biochemical characteristics.
This process is crucial for accelerating crop breeding and improving agricultural produc-
tion [2]. Field crop phenotyping is also highly needed for understanding crop growth and
development, to support the identification of cultivars or genotypes for climate change
adaptation [3]. Despite the high importance of phenotyping, traditional methods of field
crop phenotyping often involve labor-intensive and time-consuming field surveys, limiting
the scale and efficiency of data collection [4]. Unmanned aerial vehicles (UAVs), commonly
known as drones or Unmanned Aerial Systems (UASs), have emerged as transformative
tools with the potential to revolutionize crop phenotyping. UAVs equipped with an array
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of sensors and imaging technologies can offer nondestructive, high-resolution, and rapid
approaches for acquiring critical spatial and temporal information on crop characteristics,
growth, and stress [5]. The integration of UAVs into phenotyping practices holds great
promise for unlocking insights into plant responses to environmental stressors, diseases,
and nutrient deficiencies.

To date, UAV-based phenotyping using different sensors has been comprehensively
reviewed in previous studies [6–9]. For instance, UAV platforms can be equipped with
imaging or non-imaging sensors to collect RGB, multispectral, hyperspectral, light detection
and ranging (LiDAR), and thermal infrared signals for crop phenotyping. However, those
review papers were based on publications primarily from 2000 to 2020. Meanwhile, the
most recently published review papers have focused only on a specific topic such as
UAV image quality standardization [10], thermal sensing [11,12], deep learning [13], and
biomass prediction [14]. Most research has focused on the development of data processing
algorithms and analytics (machine learning and deep learning), but there has also been a
big movement in commercially available cameras and software for UAVs over the past few
years. Therefore, it is necessary to review recent publications including various practical
applications to provide new insights into the advantages, limitations, and challenges of
UAV-based phenotyping. Furthermore, it is also important to prompt the principal and
theoretical explanations for the mechanisms of how crop physiological parameters can
be quantified using UAV-based phenotyping technologies to develop further research
directions and guide new practitioners who focus on crop breeding and have no or very
limited knowledge within UAV-based crop sensing.

Given the recent rapid progress in UAV-based phenotyping, this review paper aims to
provide a comprehensive overview of the UAV platforms and sensors, data processing algo-
rithms, and UAV applications in crop phenotyping. The ultimate goal of the current paper
is to guide new practitioners who aim to implement and utilize UAV-based phenotyping.
Furthermore, this review aims to elucidate the strengths and challenges associated with
UAV-based crop phenotyping, including data processing complexities, data analytics, and
the need for standardization. By evaluating current research findings, we aim to provide
insights into the pathway for further advancements in UAV-based phenotyping research,
fostering a more sustainable and efficient approach to agricultural practices in the face of
global food security challenges.

This review is divided into eight sections. Section 1 provides background information
for this review. Section 2 describes an overview of the relationships between breeding and
field phenotyping. Section 3 covers different types of UAV platforms and sensors. Section 4
provides a theoretical description of crop reflectance and chemical characteristics. Section 5
describes the process of analyzing UAV image data to extract crop physiological traits.
Recent case studies on UAV phenotyping are summarized in Section 6. Section 7 discusses
the recent development of UAV phenotyping, limitations, and future implications, and
conclusions are presented in Section 8.

2. Breeding and Field Phenotyping

The main goal of plant breeding is to develop new plant varieties or cultivars with
desirable traits, such as increased yield, improved quality, pest and disease resistance, and
tolerance to environmental stresses. Field phenotyping can be used to evaluate a wide
range of traits in the plant breeding of crops. This review focuses on cereal and forage
crops. These traits can be broadly categorized into three categories: yield-related traits [15],
abiotic stress tolerance traits [2], and biotic stress tolerance traits.

Yield-related traits include germination rate, grain yield, yield component, biomass,
harvest index, and grain quality such as protein content, starch content, moisture content,
and damaged kernels. Traits providing tolerance to abiotic stress can be assessed by
water use efficiency, leaf rolling and wilting as indicators of the plant’s response to water
stress, and canopy temperature as an indicator of the plant’s response to heat stress. Traits
providing tolerance to biotic stress indicate disease severity and pest resistance. Plant
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architecture, which refers to the arrangement of leaves and branches, can represent both
yield-related traits and biotic stress tolerance [16]. Furthermore, phenology, the timing of
key developmental stages such as flowering, affects the plant’s susceptibility to pests and
diseases such as ergot infection.

In breeding fields, phenotyping can be used by the measurement and analysis of
various plant characteristics, including growth parameters, and physiological traits in large-
scale field trials, where plants are exposed to natural environmental variations, including
soil types, climate conditions, and biotic stresses. As manual measurement is laborious and
time-consuming, high-throughput phenotyping enabled by UAV platforms can facilitate a
better understanding of crop physiological traits, which further allows for the more efficient
progress of breeding programs.

3. UAV and Sensors

UAV platforms have proven to be a promising tool for the high-throughput phenotyp-
ing of crop growth traits. A UAV platform consists of a UAV controlled by an operator on
the ground, a controller, sensors, and a global navigation satellite system (GNSS), allowing
for high-resolution images of the crop in the field (Figure 1). Sensors are normally equipped
with a gimbal to keep the sensors steady during flight. There are several different types of
UAVs used in agriculture such as rotary-wing, fixed-wing, gas helicopters, and hybrids
(Table 1). The most used platform for field phenotyping includes the rotary-wing and
the fixed-wing UAV, while the gas helicopter is generally used for other purposes such as
spraying. The choice of UAV and sensor type for a specific task depends on parameters
like stability, safety, flight duration, altitude, range, purpose, and cost.

Sensors such as RGB (red, green, and blue) cameras, multispectral cameras, hyper-
spectral cameras, thermal cameras, and LiDAR systems are used to measure crop growth
and development [6,17]. The resulting images and point clouds obtained from these types
of sensors are subsequently processed to obtain the information required to determine crop
traits. Detailed information on each sensor is described in the following sections.

Table 1. The advantages and limitations of the most used UAVs for field phenotyping.

Type of UAV Advantages Limitations References

Rotary-wing Highly maneuverable, suitable for
small or irregularly shaped fields,
high-resolution imaging, detailed

mapping of crops

Limited flight time, less efficient for
large-scale mapping, vulnerable to

windy conditions
[9,18,19]

Fixed-wing
Speed, long flight time, ideal for

covering large areas quickly
Inability to hover in place, need a

large open space [20,21]

Gas helicopter
Stable in windy conditions, able to

be used for long periods of time,
can carry a heavier payload

High cost, complexity, loud noise [6,22]

Hybrid Integrates the advantages of
rotary-wing and fixed-wing UAVs.

Taking off and landing use
rotary-wing mode, and

long-distance surveys use
fixed-wing mode.

High cost, complexity, requires
professional pilots [23]
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Figure 1. The UAV set up for field phenotyping. The UAV platform can be represented by a
commercial off-the-shelf drone already set up with the different components or a custom-built UAV
specifically designed for field phenotyping. UAVs equipped with GNSS receivers and sensors are
controlled by a radio controller or ground station.

3.1. RGB Camera

RGB cameras represent the most used sensors in UAV-based field phenotyping, due
to their low price, light weight, work flexibility, easy operation, and easy data analysis [8].
RGB cameras mimic the human eye by sensing visible light wavelengths from 400 to 700 nm.
In this range, the reflectance is predominantly influenced by the plant pigment chlorophyll
(Chl) [16]. This allows for the calculation of different vegetation indices by computing the
reflectance of a certain band of the green and red zone of the electromagnetic spectrum [24].
Therefore, RGB image analysis can serve as a valuable tool for crop monitoring [25]. Several
studies report that RGB cameras can successfully be used for assessing crop height [26,27],
texture [28], crop biomass [29,30], leaf area index (LAI) [31], yield [30,32], lodging [27,28],
and to obtain other parameters related to the active photosynthetic canopy and senescence
such as green area (GA), greener green area (GGA), and the crop senescence index (CSI) [33].
However, RGB cameras can only provide information in the visual spectral bands, which
are limited compared to multispectral or hyperspectral cameras [6]. Moreover, they do
not have continuous spectrum information [9]. The RGB camera has a limitation in that it
can only provide the digital number (DN) recorded by the image sensors, which hinders a
direct comparison of images taken in different illumination conditions.

3.2. Multispectral Camera

Multispectral imaging sensors capture images using several narrow spectral bands
(10–57 nm) within the electromagnetic spectrum (Figure 2). The resulting images can
provide information about the chemical and physiological properties of crops [6]. The
wider range of useful wavebands in both visible and near-infrared (NIR) spectral regions
compared to RGB cameras make them valuable tools for calculating several vegetation
indices, such as the normalized difference vegetation index (NDVI) [34], green normalized
difference vegetation index (GNDVI) [35], and normalized difference red edge index
(NDRE) [36], which are then used to predict traits like yield, biomass, nitrogen (N) content,
Chl content, and other relevant parameters [9,37,38]. However, multispectral cameras are
limited by the low spectrum resolution, which could limit their ability to detect subtle
differences in plant traits, and discontinuous spectrum, which means that they cannot
provide continuous spectrum information [39].
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Figure 2. The crop reflectance curve and individual bands from different satellite sensors and
commercial UAV multispectral cameras. Vertical lines indicate the center wavelength of the individual
bands. Gradient colors correspond to the wavelength of the visible RGB colors, and black color
represents the NIR.

3.3. Hyperspectral Camera

Hyperspectral cameras are commonly divided into spectral regions, including VIS
(400–700 nm), NIR (700–1100 nm), and SWIR (1100–2500 nm). In contrast to multispectral
cameras, they capture images with very narrow (<10 nm) and continuous wavelengths.
They represent a promising technology as continuous spectral images allow for a more
comprehensive understanding of plant performance and environmental interactions [40].
Over the past few years, the use of hyperspectral imaging cameras has emerged as a
method for obtaining crop traits, including crop water content, leaf N concentration, Chl
content, LAI, and other physical and chemical parameters, to predict yield [8]. However,
the application of this type of sensor in agriculture is still marginal due to its high cost, the
large volume of data, the high dimensionality of the data, and the complex analysis of the
information. Therefore, the acquisition, processing, and analysis of hyperspectral images
remain a challenging research topic [41].

3.4. Thermal Camera

Thermal imaging cameras capture images containing information about the energy
emitted from body surfaces, such as the plant canopy [25]. Canopy temperature measure-
ment is valuable information for detecting changes in stomal conductance and transpiration
rates in response to plant water status. Since stomal conductance, photosynthetic, and tran-
spiration rates are closely correlated with canopy temperature, thermal infrared technology
can be effectively utilized to assess the response of crops under stress conditions [37,42].

Several studies report how thermal imaging cameras can successfully be used to
estimate crop water status, using canopy temperature as a suitable phenotypic trait for
describing the plant response to water deficit [33,43]. Other studies have revealed the
potential of remote sensing methods in detecting and assessing plant diseases. For exam-
ple, Francesconi et al. [25] report the potential application of a thermal imaging camera,
combined with an RGB camera, for detecting Fusarium head blight in wheat, by detecting
changes in the temperature and color of spikes as a result of the crop’s physiological re-
sponse. However, the low resolution of the imaging (current cameras are in the range of
640 × 500 pixels) may limit the use of such cameras from aerial platforms [2].

3.5. LiDAR

LiDAR is a form of remote sensing technology that measures distance using the time
of flight by emitting a narrow light beam and analyzing the returned signal when the light
beam hits an object. Firing multiple light beams in quick succession at different angles
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allows LiDAR to build a 3D point cloud of the surrounding environment. It represents a
promising technique for precision agriculture and forestry applications, thanks to its high
accuracy, fast reading rates, and flexibility. Additionally, the ability of LiDAR technology
to work in a wide range of light conditions makes this technology highly favorable for
outdoor use [44]. UAVs equipped with LiDAR sensors can map the overflown environment
in point clouds. The authors of [45] successfully explored the capability of UAV-based
LiDAR to collect spatial data from crop fields, to estimate height, canopy volume, and a
textural analysis of individual crop parcels. Moreover, the authors of [46] reported the
potential application of UAV LiDAR to estimate plant phenotypes, such as biomass and
plant height. However, the use of LiDAR for field phenotyping is limited by several factors
such as high cost, narrow beam width, requiring high accuracy in the UAV position and
orientation measurements, and large data processing.

3.6. Microwave Sensors

There are passive and active microwave sensors. Passive sensors, for example, GNSS
reflectometry, measure the natural thermal emission from land surfaces using a radiometer
to determine surface reflectivity. Meanwhile, active microwave sensors emit their own
microwave radiation which has a higher potential for agricultural applications. An im-
portant example is ground-penetrating radar (GPR) which emits high-frequency radio
waves. UAV-based GPR is used for high-resolution soil moisture mapping in hydrological
studies [47]. Synthetic Aperture Radar (SAR) is also an active microwave sensor, capable
of deriving high-resolution crop and field physical characteristics (i.e., dielectric constant,
roughness, orientation). Croplands could be accurately classified using the time series
L-band information captured by UAV-based SAR and machine learning models [48]. Al-
though there is a great potential of SAR which differs from those derived from optical
sensors, studies on agricultural applications are limited. Microwave sensors were ini-
tially developed for satellite platforms, and few microwave sensors are implemented with
small-sized UAV platforms. It is required to develop commercially available microwave
sensors with different wavelengths and polarizations for further research on UAV-based
phenotyping applications.

4. Crop Reflectance and Chemical Information

It is a crucial step to understand the mechanism of how UAV phenotyping can quantify
crop physiological traits, including chlorophylls and N contents. This section provides
basic knowledge of the relationships between crop reflectance, chlorophylls, and N contents
in terms of the chemometrics.

4.1. Crop Reflectance Figure

The presence of chlorophylls or N in plant tissues is often used as an indicator of crop
health. Healthier crops contain more chlorophylls and N and reflect more energy in the
green (550 nm) [49] and NIR (700 to 2500 nm) spectrum (Figure 3) [9]. The reflectance in NIR
is attributed to the fact that, in this region of light, it easily interacts with different types of
bonds such as NH, CH, and OH characterized by specific frequencies or wavelengths [50].
For example, the reflectance at wavelengths from 700 to 1200 nm is caused by the scattering
of leaf cells. At each wavelength of 1200, 1450, and 2400, water existence absorbs the
incoming light, which reduces the reflectance value (Figure 3) [9,51].
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Figure 3. Reflectance pattern of Perennial ryegrass (Lolium perenne) with different N contents.

4.2. Plant Spectrum Figure

The structure of Chl with several conjugated double bonds generates an electron
density in which electrons are shared around a tetrapyrrole unit. This allows for electron
transitions to higher-energy molecular orbitals after absorbing photons of solar radiation.
This type of structure determines the type of spectrum absorbed by Chl and gives it its
spectral properties in the range from visible to bode red (400 to 710 nm) [52]. Specifically,
the absorbance spectra of chlorophylls show a predominant band in the visible blue and red.
However, each Chl absorbs at different wavelengths due to their structural differences. In
the case of Chl a, the arrangement of alternating single and double bonds in the porphyrin
ring provides delocalized electrons generating absorption maximums in 432 nm and 670 nm
(Figure 4). These absorption points coincide with the two excited states of Chl a. In the case
of Chl b, the absorbance corresponds to 451 nm and 633 nm [52].

Figure 4. The absorption spectrum of both Chl a and b pigments. The figure was slightly modified
from [53].
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4.3. Relationship between Chl and N in Crops

Nitrogen is an essential element for crops and is involved in most biochemical pro-
cesses, for example, to form Chl [54]. Chl is a photosynthetic pigment found in plants,
algae, and cyanobacteria. The function of chlorophylls is to absorb sunlight to initiate
an electrochemical potential across the photosynthetic membrane to reduce atmospheric
carbon dioxide to carbohydrates. This conversion of light energy into chemical energy is
made possible by the structure of chlorophylls [52]. The porphyrin macrocycle is the basic
structure of chlorophylls and consists of four pyrrole rings. Each of the rings contains four C
and one N linked by one carbon bridge. The four-N arrangement creates an ideal situation
for binding metal ions in the center; in the case of chlorophylls, this is almost always Mg.
Furthermore, chlorophylls normally have an additional five-membered fifth E-ring, and the
C17 side chain is esterified by long-chain terpenoid alcohol (phytol, C20) [55]. Chlorophylls
a, b, d, and f (Chl a, b, d, and f) are found in oxygenic organisms (i.e., crops). The best
known is Chl a, which is present in all photosynthetic organisms except a group of bacteria
and is essential for photosynthesis. Chl b is present in all higher plants and acts as an
accessory to Chl a in photosynthesis. Chl a and b differ in structure, differing in the C7 side
chain, with a methyl group (CH3) in Chl a and a formyl group (CHO) in Chl b. In vascular
plants, Chl a and b are found in a 3:1 or 1:1 ratio depending on maturity and stress [52].

4.4. N and Biomass

The use of indicators related to crop N concentration has been commonly used to
estimate the N nutritional status of crops. Quemada et al. [56] used hyperspectral imagery
to determine crop N status and predict maize yield at flowering. Wang et al. [57] applied
machine learning algorithms with hyperspectral imagery to detect maize N deficiency
and end-season yield. This estimation is based on the concept of the critical N dilution
curve, a crop diagnostic approach based on the allometry between N uptake dynamics
and biomass accumulation in crops [58]. For example, the use of the biomass of the whole
crop as a predictor of the dilution trend of N concentration in the crop in the field has been
widely used. This is because N used by the crop is based on absorption, assimilation, and
subsequent translocation to the grain. Therefore, during the growing season, there is a
decrease in the concentration of N [59].

5. Extracting Phenotypic Traits from UAV Image

Raw image data taken by UAV platforms are not ready for extracting phenotypic traits.
This section introduces basic knowledge on the data analytical process of extracting crop
physiological traits from UAV images.

5.1. Georeferencing, Structure-from-Motion, and Radiometric Calibration

Each single image taken by UAV platforms has position and altitude information be-
cause they are equipped with a GNSS receiver and inertial measurement unit (IMU). How-
ever, most commercially available UAV platforms are not implemented with high-precision
modules due to high economic cost, causing the systems to suffer from measurement errors
of image position, altitude, and orientation estimates [60]. To overcome the problems of
the inaccuracy of UAV image position and orientation, the Structure-from-Motion (SfM)
technique in photogrammetry has generally been used. Briefly, the SfM technique first
finds and matches key points from overlaps in the images and then obtains accurate po-
sition and orientation parameters based on bundle adjustments. Based on these accurate
parameters, the SfM technique further reconstructs the surficial 3D point cloud captured in
the scene. The UAV images are projected onto the 3D point cloud to develop a textured
3D model, which can be used for generating an orthomosaic. Precise georeferencing is
key to generating high-quality orthomosaics with accurate spatial referencing. This can be
achieved by providing accurately known geographic coordinates, so-called ground control
points (GCPs), for tie points in SfM processing. However, setting GCPs in fields is laborious
and time-consuming. Either real-time kinematic (RTK) or post-processing kinematic (PPK)
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enables accurate georeferencing for all UAV images, which is a preferable approach as it
can eliminate the need for setting GCPs in the fields.

Optical image sensors including RGB, multispectral, and hyperspectral cameras record
the radiant energy as pixel values in an image, the so-called DN. The illumination of the
environment undergoes intensity and spectral changes during UAV image acquisition. To
make the image data consistent and precise across or among the flight events, it is essential
to convert the DN to surface reflectance through radiometric calibration. Radiometric cali-
bration can be performed using a calibration panel and sunshine sensor generally provided
with commercial multispectral and hyperspectral cameras from the manufacturers.

Currently, several software products, including Pix4D mapper (Pix4D, Prilly, Switzer-
land) and MetaShape (Agisoft LLC, St. Petersburg, Russia), are commercially available for
SfM processing followed by radiometric calibration. The SfM technique is computationally
extensive; thus, it is performed using a workstation. But several companies provide cloud-
based processing services including the Pix4D cloud (Pix4D, Prilly, Switzerland) and DJI
Terra (DJI, Shenzhen, China). Some bundled software for UAVs performs not only flight
mission creation but also PPK processing for every image’s data that enables eliminating
GCPs. For instance, the software eMotion (AgEagle, Wichita, KS, USA) is developed for
processing data from the fixed-wing drone ‘eBee’ series, and DJI Terra is compatible with
their enterprise UAVs. The manufacturers developed seamless and convenient software
for their own UAV and sensing products. Meanwhile, KlauPPK (Klau Geomatics, Nowra,
NSW, Australia) provides a unique PPK toolkit and software that can be equipped with
any combination of UAVs and cameras.

5.2. Ground Sampling Distance

Ground sampling distance (GSD) is a term used in remote sensing to describe the size
of the smallest discernable feature in an image or dataset, measured in units of distance on
the ground. It is a key parameter that describes the spatial resolution of a remote sensing
system and is determined by the flight height (distance from the terrain) and camera
specifications like sensor resolution, sensor size, and focal length (Figure 5). A smaller GSD
indicates a higher spatial resolution, meaning that smaller features can be discerned in
the image or dataset. It plays a crucial role in determining the level of detail that can be
captured by the UAV’s sensors. The GSD is important in certain high-quality orthomosaics
to obtain the digital surface model (DSM) [26,27]. The accuracies of orthomosaics generated
by images taken from a UAV can be influenced by the GSD. Therefore, it is possible to
reduce the GSD using a high-resolution camera or flying at low altitude, to improve the
resolution of the obtained orthomosaic [61].

Figure 5. Ground sampling distance scheme. The figure was modified from [62].
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5.3. Region of Interest and Extracted Features

A region of interest (ROI) is a subset of an image identified for a specific objective,
such as an experimental plot and destructively harvested area. An ROI is often defined
as a polygon using GIS software. Basic statistics such as the mean and median pixel
values are generally extracted from orthomosaics. The pixel values include the DN, surface
reflectance, vegetation indices, surficial temperature, and elevation depending on the
sensors, as described in Sections 3.1–3.6. As UAV platforms can capture images with high
spatial resolution, UAV images contain high spatial information. Therefore, not only basic
statistics but also texture-based feature extraction methods are widely performed to extract
values related to crop physiological traits [63]. The extracted values are further used as
explanatory variables for developing prediction models for a particular response variable
of crop physiological traits such as biomass, N content, and grain yield. Although the
crop’s physiological traits might be more reliable if they are measured in a sufficiently large
harvest plot, it is difficult to efficiently collect a large number of samples using a destructive
sampling method. A recent study showed that even a single-harvested hill was sufficiently
reliable for developing a UAV-based biomass prediction model, indicating that a small ROI
might be more efficient for collecting ground truth data [64].

5.4. Data Analysis

It is well known that either vegetation indices or vegetation cover are strongly corre-
lated with several crop physiological traits such as biomass, N content, and grain yield.
An analysis of variance (ANOVA) has been applied for the vegetation indices to see the
treatment effects [25,65]. Linear regression or empirical regression has also been tradition-
ally used to develop prediction models using RGB and multispectral cameras [32,66,67].
Meanwhile, most of the recent studies have developed prediction models using machine
learning techniques as they can model more complicated and non-linear relationships
among the variables [28,68,69]. Given that sensors such as thermal and hyperspectral
cameras other than RGB and multispectral cameras have been becoming more commer-
cially available, recent studies have actively combined multimodal sensing platforms and
machine learning techniques to enhance the mode performance. Support vector regression
models performed the best among various model frameworks (i.e., partial least squares,
neural network, and non-linear model regression) for evaluating the vigor of rapeseed
seedlings [70]. Meanwhile, the prediction accuracies of the ensemble learning approach
that stacks multiple base machine learning models outperformed each base model (i.e.,
ridge regression, support vector machine, random forest, Gaussian process, and K-neighbor
network) when predicting the LAI, fresh weight, and biomass of maize [71]. For the classifi-
cation or segmentation task, deep learning methods such as convolutional neural networks
(CNNs) have been widely used to detect plant stands [72,73] and reproductive organs [74]
and delineate the dominant areas of crops and weeds [75]. CNNs are also employed for
regression tasks that can predict crop biomass [76] and yield [77,78].

6. Phenotypic Applications

A variety of phenotypic applications using UAV platforms is summarized from recent
publications (2019–2024) in Table 2. The result covered 17 different types of crops and four
different types of sensors. The GSD ranged from 0.2 to 31.25 cm pixel−1. More than ten
different kinds of focus crop traits were predicted using various regression and classification
algorithms and explanatory variables.
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Table 2. Summary of selected applications of UAV platforms for field phenotyping.

Crops Camera GSD
cm

Pixel−1

Explanatory
Variables 1

Predicted
Traits

Data Analysis 2 Ref.
Type Model

Alfalfa
RGB DJI Zenmuse XT2 0.19

Saturation, a*, b*,
Canopy temperature LAI, Forage yield (FY) LME [33]Thermal

Barley RGB Sony Alpha 6000 0.85 DSM Plant height, lodging
percentage

Average lodging
severity, weighted
average lodging

severity

[27]

Barley,
wheat

RGB Sony Alpha 6000 0.2–0.59 ExGR, NDVI Plant density ANOVA, LRM [66]
Multispectral Micasense

RedEdge 0.69–1.36

Barley,
wheat

RGB
Multispectral Parrot Sequioa 31.25 Resized RGB images,

Resized NDVI images Yield CNN [78]

Barley,
Wheat,

Triticale
Multispectral Mini-MCA6

Tetracam 0.54 NDVI, ExG, GNDVI

Total dry biomass,
Sugar release,

Theoretical ethanol
Yield,

Bioethanol potential

ANOVA, LRM [67]

Maize RGB Lumix GX7
Panasonic 0.94 GGA, Hue, NDLab, TGI,

NGRDI, CSI Grain yield ANOVA, LSD, LRM [32]

Maize RGB Canon IXUS
127 HS 2 DSM Biomass, Grain yield

LRM, exponential
regression, power
regression, GAM

[29]

Maize RGB DJI Phantom
4 Advanced 0.3 Resized RGB images Seedlings CNN [72]

Maize
RGB Sony A5100 1.96

20.87
GNDVI, NDVI, NDREI, REIP,

SIPI
Grain yield, Canopy
cover, LAI, Relative

Water content,
Ear weight

PLS-R, PLS-DA [79]

Multispectral Mini MCA12
Tetracam

Maize RGB DJI Phantom 4
Advanced 0.82 DSM Plant height LRM, ANOVA [80]

Oat Multispectral MicaSense
RedEdge-MX 1.74

GNDVI, NDVI, NGRDI, RVI,
DVI, EVI, CVI, TVI, PSRI,

BGI, VARI, GLI

Aboveground
biomass PLSR, SVM, RF, ANN [68]

Oilseed
rape, rice,

wheat,
cotton

RGB Sony NEX 7
0.6 Canopy reflectance Fractional vegetation

cover
PROSAIL-GP, RF [81]

Multispectral
MQ022HG-IM-
SM5 × 5-NIR2

Ximea

Red
fescue,

Perennial
ryegrass,

Tall fescue

RGB
Canon ELPH 110

HS S.O.D.A
senseFly

1.38–2.27 Texture, Height Lodging SVM [28]

Rice RGB DJI Phantom
4 Pro 0.2 DSM

Biomass, Heading
date, Culm length,

Grain weight, Panicle
number,

Panicle length

LME [30]

Rice RGB FUJIFILM GFX
100 camera 0.2 Resized RGB images Rice panicles

detection CNN [74]

Rice,
Oilseed rape Multispectral

MQ022HG-IM-
SM5X5-NIR2

Ximea
1.12 Canopy reflectance,

fractional vegetation cover
LAI, Leaf/canopy Chl

content, Biomass PROSAIL, RF [38]

Soybean RGB Sony α9 ILCE-9 0.6 DSM Plant height, canopy
cover, LAI Fitted P-splines [31]

Soybean RGB DJI Phantom
4 Pro 3.4 Resized RGB images Yield CNN [82]

Soybean RGB DJI Phantom
4 Pro 0.35 Resized RGB images Seedlings detection CNN [73]

Soybean Multispectral MicaSense
RedEdge-M 2.08 DSM, 36 vegetation indices

(e.g., CiGreen, GNDVI, TGI)

Selected or
non-selected superior

breeding lines
by breeders

ANOVA,
LASSO, PCA [83]

Sugarcane,
weed RGB Canon

G9X camera 5 Resized RGB images Weed/crop
classification CNN [75]

Sugarcane Multispectral MicaSense
RedEdge-MX 1.77

NDVI, GNDVI, NDREI, RVI,
CiGreen, CiRE, DVI, EVI,

CVI, TVI, PSRI, BGI,
VARI, GLI

Orange and brown
rust resistance

SVM, KNN, RF,
ANN, DT [69]
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Table 2. Cont.

Triticale RGB DJI Phantom
4 Pro 0.6 ExG, PSA, DSM Early Vigor and

weed competitiveness
Three-parameter
sigmoid equation [84]

Wheat RGB DJI Zenmuse X3 2.14 Resized RGB images Biomass CNN [76]

Wheat Multispectral
Parrot Sequoia

MicaSense
Rededge altum

1.4–7.1 Resized images for each
band, EVI2 Yield LRM

CNN [77]

Wheat
RGB DJI Zenmuse X5

0.5 VEG, GLI, Spike temperature Fusarium Head
Blight detection ANOVA, PCA, HSD [25]Thermal DJI Zenmuse XT

Wheat
RGB Lumix GX7

Panasonic
0.94 GA, GGA, NGRDI, TGI,

NDVI
Grain yield

ANOVA, LSD,
Bivariate

Pearson correlation
[37]

Multispectral Tetracam Micro
MCA12

Thermal FLIR Tau2 640

Wheat RGB

Canon
Powershot 110
Sony NEX5 DJI

Zenmuse X5

0.7–1.7 DSM Plant height LME [26]

Wheat
RGB DJI Phantom 4

Pro 0.7 NRI, GnyLi, DSM
Biomass, moisture, N

concentration,
N uptake

LRM,
power regression [85]

VNIR/SWIR Prototype [86] 1.3

1 CiGreen = Chlorophyll index—Green; CiRE = Chlorophyll index—Red Edge; CSI = crop senescence index;
CTVI = Corrected Transformed Vegetation Index; DSM = digital surface model; EVI2 = enhanced vegetation
index 2; ExG = Excessive Green; ExGR = Excess Green minus Red; GA = green area; GGA = greener green
area; GLI = Green Leaf Index; GNDVI = green normalized difference vegetation index; MSAVI2 = Soil-Adjusted
Vegetation Index; NDLab = Normalized Difference between a* and b*; NDREI = normalized difference red
edge index; NDVI = normalized difference vegetation index; NGRDI = Normalized Green-Red Difference Index;
NRI = Normalized Ratio Index; PSA = Projected Shoot Area; REIP = Red Edge Inflection Point; RTVI = Red
Edge Triangular Vegetation Index; RVI = Ration Vegetation Index; SIPI = Structure Insensitive Pigment Index;
TGI = Triangular Greenness Index; TVI = Triangular Vegetation Index; VARI= Visual Atmospheric Resistance Index;
VEG = Vegetative. 2 ANN = Artificial Neural Network; ANOVA = analysis of variance; CNN = convolutional
neural network; DT = Decision Tree; GAM = generalized additive model; HSD = Honest Significant Difference;
KNN = K-Nearest Neighbors; LASSO = Least Absolute Shrinkage and Selection Operator; LME = Linear Mixed
Effect; LRM = linear regression model; LSD = Least Significant Difference; PCA = Principal Component Analysis;
PLSA-DA = Partial Least Squares Discriminant Analysis; PLSA-R = Partial Least Squares Regression; RF = random
forest; SVM = support vector machine.

6.1. Chl and N

As mentioned, Chl and N are two parameters that are strongly related to crop nutrition.
Their knowledge can be relevant for the prediction of yield or the need for fertilization.
To quantify N concentration and absorption in the crop, a prototype multicamera system
addressing the spectral region from 600 to 1700 nm was used [85]. For this purpose, a
combination of bandpass filters was implemented to obtain two vegetation indices (GnyLi
and Normalized Ratio Index). Subsequently, both indices were applied using data obtained
from a single observation date, and crop heights were derived from UAV-based RGB
image data. Based on these variables, regression models were developed that estimated N
concentration and uptake among other parameters. The authors evaluated the relationships
between vegetation indices and estimated crop traits (R2 = 0.57 to 0.66). Furthermore, the
best predictor of N concentration was found to be dry biomass data (R2 = 0.65). Thus, the
results showed how the multicamera system was suitable for estimating N concentration
and uptake. However, the prediction accuracy is generally at a moderate level. Practitioners
are suggested to validate the performance of developed prediction models to confirm
whether the prediction error is acceptable for their experimental purposes.

Another study explored the potential of field phenotyping using a UAV coupled to
a multispectral camera to evaluate the PROSAIL model and estimate rice and oilseed
rape crop biomass [81]. For this purpose, multispectral images and field measurements
of leaf and canopy Chl content during crop growth were collected. The authors observed
how multispectral image coupling successfully recovered leaf and canopy Chl content in
rice (root-mean-square error (RMSE) = 5.40 µg cm−2 and 43.50 µg cm−2, respectively). In
addition, they observed how canopy Chl content gave a good estimate of biomass in rice
(R2 = 0.92, RMSE = 0.22 kg m−2).
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6.2. Height and Lodging

Plant height (PH) is an important trait in the screening of most crops. It represents
a significant indicator for predicting yield, biomass, and lodging severity. It is also an
important trait in plant breeding, as it can provide insight into how genotype and environ-
mental variations influence plant growth [26]. Manual PH measurements are easy but can
be labor-intensive and time-consuming. UAVs can increase the temporal resolution of PH
data collection. Several studies demonstrate the effectiveness of using UAVs to determine
crop height in the field at various stages throughout development. Tirado et al. [80] and
Volpato et al. [26] show how RGB images collected from UAVs can successfully be used
for estimating PH by applying the SfM technique. This enables the generation of 3D point
clouds that can be used to reconstruct multitemporal crop surface models from which PH
can be estimated [26]. Wilke et al. [66] applied the SfM technique using an RGB camera
to quantify lodging percentage and lodging severity, based on canopy height models on
Barley, demonstrating that UAV-based PH can be highly correlated with manually de-
termined PH collected with a measuring ruler in the field. The approach developed for
lodging percentage assessment in this study provided very high accuracy in breeding
trials (R2 = 0.96, RMSE = 7.66%) leading to an overestimation of 2% when applied to a
classical farmer field. Furthermore, Tan et al. [28] successfully discovered an efficient way
to assess the lodging severity in grass seed crops, by extracting two types of features from
individual plot images captured with an RGB camera: the histogram of oriented gradients
(HOG) feature and canopy height. The results showed that the HOG feature and height
distribution achieved an accuracy of 71.9% and 79.1%, respectively.

6.3. Biomass and Yield

Biomass is one of the significant indicators to reflect light use efficiency and crop
growth, and numerous studies were able to predict biomass through UAV imagery. In a
study in Senegal with a sorghum crop, the biomass of different sorghum varieties grown
under two different water supply conditions (water stress and adequate irrigation) was
evaluated [65]. Weekly, from emergence to maturity, drones were flown, and then de-
structive samples were taken. Vegetation indices derived from multispectral sensing on
board a UAV platform showed their ability to estimate biomass. In particular, the NDVI
(R2 = 0.60) was the best predictor. The developed models were validated with data from
the following year (R2 = 0.91). Note that the NDVI value tends to saturate in high-biomass
regions [87]. Thus, the NDVI-based regression model is not favorable for predicting high
biomass and yield accurately. The use of UAVs was also used to assess wheat, barley, and
triticale biomass for bioethanol production [67]. Multitemporal UAV images were taken
by a six-band camera along different phenological stages of the crop, and orthomosaic
images were generated. The images were then analyzed with an object-based algorithm,
and vegetation indices were calculated. Finally, a statistical analysis of spectral data and
bioethanol-related variables was performed. For biomass estimation, the vegetation indices
studied were based on the NIR band. The average values of each vegetation index obtained
during full crop growth were the most accurate for biomass estimation. Additional research
aimed at estimating oat biomass using vegetation indices derived from high-resolution
UAV imagery found a positive correlation at two of the three sites studied [68]. Approxi-
mately 70% of the variance was explained by the random forest, support vector machine,
and partial least squares models for biomass prediction. However, distinctively different
plant physical properties were found even in the same crop probably due to the different
environments. This indicated that additional sampling from multiple experimental years
might be needed to enhance the model prediction performance. This further indicated
that the use of a single algorithm may not be sufficient for accurate biomass monitoring.
Another study evaluated the effect of organic matter application in growing maize on
biomass [29]. To conduct this, they created 3D surface models from high-resolution RGB
UAV images before crop emergence and during crop development. Maize height was
estimated, and regression models were used to predict aerial biomass. The generalized
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additive model was found to be the most efficient (R2 = 0.9), followed by the power model
and finally the exponential model. The results showed that biomass measurements have
a strong correlation with UAV-estimated corn height (R2 = 0.83–0.92). Along these lines,
another study predicted biomass from canopy height data in rice [30]. Parameters related
to canopy height were calculated with a non-linear time series model. The time point of
the maximum canopy height contributed to the prediction of days to bolting and was able
to predict stem weight, leaf weight, and aboveground weight. This probably reflects the
association of biomass with the duration of vegetative growth.

Yield is one of the most desirable factors to predict because of its direct relationship
with economic benefits. In a study conducted under low-N conditions, maize yield was
assessed using remotely sensed indices derived from RGB images, together with the
NDVI [32]. It was observed that the GGA and crop senescence index correlated better with
grain yield from the UAV than the other RGB-based vegetation indices such as a*, b*, and
GA. Another study evaluated the use of RGB cameras, thermal cameras, and NDVI sensors
for the field phenotyping and forage yield assessment of alfalfa [33]. It was observed that
the NDVI showed exponential and positive relationships with forage yield. In addition,
RGB indices of intensity, saturation, and the greenest area were highly correlated with
yield for both hydric states. The use of thermal cameras to obtain canopy temperature
was also evaluated. The stress degree day (difference between canopy temperature and air
temperature) was negatively related to forage yield. Another study focused on evaluating
genotypic differences in yield using thermal, multispectral, and RGB cameras coupled
to a UAV confirms that RGB images are good tools for accessing crop yield [37]. As for
hyperspectral cameras, a study assessing yield in maize demonstrated the ability of UAV
spectral imagery to assess maize yield under full and deficit irrigation [79]. Yield prediction
models were evaluated at different stages of maize development, with the best model using
reproductive stage 2 (R2 = 0.73). Furthermore, the spectral models allowed the authors
to distinguish between different developmental stages and irrigation treatments. This
would potentially allow them to estimate the experimental treatment effects on corn yield
nondestructively.

In addition to the effort of data fusion integrating multiple sensing data and the
combination of temporal sensing data into the modeling, several studies attempted to
enhance model prediction accuracy using CNN models. CNNs can extract spatial features
directly from the canopy image that might be related to crop yield rather than simply
taking average or median values from the entire pixels in the image. Nevavouri et al. [78]
indicated a higher yield prediction performance of CNN models based on RGB images
compared to the conventional NDVI-based algorithm in wheat and barley production.
Another study on wheat yield prediction indicated that although the RMSE values de-
creased by approximately 0.06 t ha−1 in the CNN model compared to the linear regression
model based on the vegetation index (i.e., enhanced vegetation index 2), the degree of the
prediction accuracy improvement in the CNN was not substantial [77]. The most recent
work developed soybean yield prediction using multitemporal UAV-based RGB images
and more complicated CNN models, but the most efficient model showed a moderate yield
prediction accuracy (R2 = 0.6) [82]. A CNN generally requires hundreds or thousands of
training datasets, which may hinder practical phenotyping applications.

6.4. LAI

The LAI is defined as the ratio of the total leaf area of a crop to the area of soil on
which it is established. Predicting the LAI can be of interest because of its relationship to
photosynthesis, crop nutritional status, canopy cover, and yield. The LAI together with
canopy cover values were extracted from an RGB camera for soybean [31]. In a study
under Mediterranean climate conditions with different varieties of forage alfalfa and two
different irrigated scenarios, the LAI was assessed using RGB, a thermal camera, and an
NDVI sensor [33]. As was the case for forage yield in the same study (Section 6.3), the
NDVI also showed positive and exponential relationships with the LAI. In general, similar
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findings were observed for forage yield, where indices, such as intensity, saturation, a*,
u*, and greenest area obtained from RGB images, were highly correlated with the LAI in
both water situations. Another study in Senegal with sorghum under two water treatments
used UAV-derived vegetation indices to estimate the leaf index area [65]. The vegetation
indices estimated from the multispectral images showed similar results to those mentioned
above for biomass for the same study (Section 6.3). The NDVI showed a good prediction
of the LAI (R2 = 0.83), and as with biomass (R2 = 0.60), the models were validated with
the following year’s data (R2 = 0.92 for LAI and R2 = 0.91 for biomass). In a study whose
main objective was to predict the biomass of rice and oilseed rape, the results showed that
the LAI obtained by coupling multispectral images using the PROSAIL model recovered
as well (mean square error = 1.13 µg cm−2) as that observed in the same study for Chl
(Section 6.1) in the case of rice [81].

6.5. Plant Number and Area Cover

Plant density is a significant agronomic factor in agriculture, affecting various aspects
such as water and fertilizer needs, intraspecific competition, and the occurrence of weeds
or pathogens. Therefore, it is a crucial factor to consider for optimal crop management.
Thereby, an efficient high-throughput phenotyping of plant density is crucial for making
informed decisions in precision farming and breeding. Wilke et al. [66] were able to
determine plant density with a high prediction accuracy for barley and wheat (R2 > 0.91)
estimating fractional cover from UAV multispectral image data. The fractional cover was
assessed by calculating two vegetation indices including excess green minus excess red and
the NDVI. BBCH stages 13 and 12 were identified as the most suitable plant development
stages for UAV data acquisition, as there is more overlap between neighboring plants in the
later growth stages. The results showed that plant density was predicted with uncertainties
of less than 10%. The study also showed that the prediction accuracy slightly declined for
multispectral images having a higher GSD. If the image spatial resolution is high enough to
identify individual plants visually, CNN models enable precise plant counting [72,73]. In
the case of seedling detection, object detection algorithms can be implemented using You
only look once (YOLO). A relatively small number of annotations (i.e., 100–200 pictures)
can achieve precise object detection performance using transfer learning techniques for the
pre-trained YOLO models [88].

7. Discussions

Previous holistic review papers have highlighted both the challenges and potentials
of UAV-based phenotyping for practical uses [6–9]. First, the data quality of UAV images
is variable from various factors, including illumination conditions, sensor characteristics,
and payload limitations. Therefore, optimizing flight and sensor parameters, such as flight
speed, height, overlaps, and sensor calibration, has been a crucial topic, and standardized
software and protocols were highly required. However, as described in Section 5.1, UAV
and sensor manufacturers endeavored to create seamless software for each sensing plat-
form, and some software even has the function of cloud-based processing. The RTK/PPK
system is becoming a default implementation for UAV sensing platforms, which enables
eliminating the GCPs’ setting. Furthermore, those protocols are generally well documented,
although slight modification is needed depending on practitioners’ purposes. With the
use of a single sensing platform, optimizing flight/sensor parameters and standardizing
protocols are no longer major constraints for UAV-based phenotyping. Meanwhile, several
studies have demonstrated the advantages of integrating multiple sensors for UAV-based
phenotyping [70,71]. Multiple sensors physically can be mounted on the UAV due to the
advancement of battery and payload capability. However, it is noteworthy that each sensor
has different optimal parameters, which may make it difficult to collect high-quality image
data all at once. Depending on the experimental objectives, practitioners should keep in
mind that data quality and work efficiency should be balanced.
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Although the data collection and processing workflow using a specific sensing plat-
form is standardized, it remains challenging to develop protocols standardizing image data
collected from different sensing platforms. As shown in Figure 2, each optical camera has
somewhat different specifications of band wavelengths. This problem is even more serious
when several researchers collaboratively work with each other as they often use different
types of sensing platforms under different flight environments. Furthermore, as new mod-
els of commercially available cameras are released rapidly, practitioners may not be able to
use the image and ground truth data collected in the previous experimentations directly for
the following seasons if they purchase a new camera. Given that a data-driven approach
based on machine learning and deep learning techniques will be more frequently used for
field phenotyping, a protocol standardizing a collected dataset is key for maintaining data
quality while accumulating datasets from multiple experimentations. Due to academic
journals and the high demand for sharing UAV-based phenotyping datasets, it is becoming
a new standard to store collected data in open data repositories. The methodologies and
conditions of data collection should be documented in detail because that information
is important for applying data standardization. Thus, more attention should be paid to
data articles describing relevant methodologies for data repositories not only from the
perspective of academic novelty. However, such big data will involve great efforts of man-
ual data merging and cleansing in the near future. So far, the necessity of interoperability
(data transfer and communication without human interference) among devices has been a
pivotal issue in digital agriculture [89]. Most of the IoT (Internet of Things) devices, such
as weather stations and sensors for soil moisture and soil electrical conductivity, generate
tabular or vector data. Meanwhile, UAV-based phenotyping technologies generate more
complicated two- or three-dimensional datasets with different spatiotemporal resolutions.
This will raise the necessity of developing efficient and easy-to-use data transfer and
sharing technologies specifically for UAV-based phenotypic datasets from multiple data
repositories or research outputs.

Hyperspectral or multimodal sensing is a current research trend in UAV-based phe-
notyping. Increases in spatial and temporal resolution may also contribute to enhancing
the capability of UAV-based phenotyping. However, researchers should note that the
more complexity increases in data collection and model architecture, the more it costs the
practitioners to implement. A higher model complexity and finer spatiotemporal resolution
of UAV remote sensing did not necessarily improve crop yield prediction accuracy in
deep learning models [77,82]. Furthermore, although deep learning models outperformed
traditional statistical and machine learning models, the degree of model performance
improvements is sometimes not substantial, and the ultimate model performance generally
scored at the moderate level. UAV-based phenotyping may not be able to replace all the
conventional destructive sampling and in-field manual scouting methods. Rather than
just having extreme expectations of UAV-based phenotyping, it might be necessary to
find a solution based on the assumption that the conventional methods are also partially
employed in field experiments. Furthermore, a recent study demonstrated the importance
of integrating not only UAV-based phenotypic data but also multiple sub-target crop physi-
ological traits into a deep learning model to predict the main-target trait of rice biomass [90].
The proposed deep learning model is expected to improve the prediction accuracy for
a specific response variable (i.e., biomass) and facilitate an understanding of the effect
of other sub-target crop physiological traits (i.e., LAI, height, and tiller numbers) on the
main-target trait. Thus, it might be one of the solutions for the limitations of the accuracy
and interpretability of UAV-based phenotyping to utilize multiple sub-target ground truth
crop physiological traits in the modeling. This review paper presented how the UAV-based
phenotyping technique can quantify crop physiological parameters by introducing the prin-
cipal theories and real applications. This will undoubtfully help the hypothesis generation
of what crop physiological traits should be taken into account for developing precise and
interpretable machine learning models beneficial for crop breeding. Future studies on UAV
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phenotyping and machine learning should focus not only on the prediction accuracy but
also on interpretability of collected data.

Expanding the application of UAV-based phenotyping in minor crops or mixed crop-
ping will be a prospective research direction. In this paper, it was found that most of
the recent publications still focused only on major crops such as wheat, maize, rice, and
soybean under a monoculture condition. Minor crops, such as buckwheat, lentils, and
chickpeas, are expected to be a new protein source for humans. Given the necessity of
mitigating the impact of modern agriculture on global warming and the resultant effect of
climate change on cropping systems, accelerating the breeding programs for minor crops
will be more emergent than before. Although UAV-based phenotyping can contribute to
facilitating crop breeding, minor crops were less focused on. Furthermore, intercropping
is becoming a hot research topic in the EU due to the high demand for chemical usage
reduction aimed for by the EU Green Deal [91]. Under the intercropping conditions, favor-
able crop physiological traits could differ from the monoculture system. The development
of UAV-based phenotyping technologies for the intercropping system will be more chal-
lenging than the monoculture system, but deep learning techniques that can automatically
identify differences between crops and weed [75] might be one of the solutions for that.

8. Conclusions

UAV-based remote sensing has been widely used in recent studies on field phenotyp-
ing. Various seamless and useful software for UAV image analysis has been developed in
the past few years, while the parameters of the UAV flight and sensor are well documented
in the protocols. This contributed to simplifying the task of UAV-based phenotyping
substantially. The integration of multiple sensors, such as multispectral/hyperspectral,
thermal, and LiDAR sensors, together with machine learning algorithms has been one of
the most popular research topics in this field. Some studies successfully demonstrated the
high predictive performance of UAV-based phenotyping such as scouting individual plant
numbers and fractional cover, but others showed moderate performance, especially for
biomass and yield estimation. Future research directions should focus on enhancing data
interpretability to boost physiological understanding among multiple variables rather than
simply improving the prediction performance of crop structural and physiological traits.
Given a rapid increase in UAV-based phenotypic studies implementing data-hungry deep
learning algorithms, standardization for data merging protocols from multiple research
projects or repositories is also becoming increasingly important.
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