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Abstract: With its ability to estimate yield, winemakers may better manage their vineyards and obtain
important insights into the possible crop. The proper estimation of grape output is contingent upon
an accurate evaluation of the morphology of the vine canopy, as this has a substantial impact on the
final product. This study’s main goals were to gather canopy morphology data using a sophisticated
3D model and assess how well different morphology characteristics predicted yield results. An
unmanned aerial vehicle (UAV) with an RGB camera was used in the vineyards of Topol'¢ianky,
Slovakia, to obtain precise orthophotos of individual vine rows. Following the creation of an extensive
three-dimensional (3D) model of the assigned region, a thorough examination was carried out to
determine many canopy characteristics, including thickness, side section dimensions, volume, and
surface area. According to the study, the best combination for predicting grape production was the
side section and thickness. Using more than one morphological parameter is advised for a more
precise yield estimate as opposed to depending on only one.

Keywords: yield prediction; point clouds; canopy morphology; 3D crop model

1. Introduction

The diversity of vineyards is often associated with factors such as sun exposure [1],
water availability [2], local climate [3], soil management and composition. These influential
factors have a direct impact on the health and productivity of grapevines. To illustrate, they
play a significant role in determining the strength of the canopy, the surface area of leaves
(referred to as leaf area index or LAI), the overall volume of the canopy, the number of
grapes produced, and the quality of the grapes harvested. Within the domain of precision
agriculture, the evaluation of canopy size, whether through manual methods or by utilizing
digital sensors, is a widely adopted procedure. Consequently, these measurements are
frequently transformed into pertinent indicators related to the canopy, such as the leaf area
index [4], leaf wall area, and tree row volume [5].

Crop yield estimation plays a crucial role in the agricultural sector due to the signif-
icant impact of the correlation between yield and various agronomic factors in assisting
farmers in making informed decisions regarding future management practices. The pro-
cess of forecasting crop yield relies heavily on the continuous monitoring and analysis of
meteorological conditions, environmental influences, soil characteristics, and crop-specific
parameters. A variety of techniques and instruments are utilized in the evaluation and quan-
tification of canopy dimensions, including but not limited to empirical and non-invasive
approaches [6] alongside direct and invasive methodologies [7], as well as the utilization
of optical or alternative sensor technologies [8,9]. These diverse methods contribute to a
comprehensive understanding of crop growth and development, facilitating more accurate
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predictions and informed decision-making for farmers and stakeholders in the agricultural
domain.

Canopy manual measurement with measuring tape is unsuitable because it is sub-
jective, laborious, and time-consuming [10]. Modern advancements in technology have
enabled viticulturists to employ precise, rapid, and consistent techniques for assessing
canopy characteristics in grape cultivation, thus enhancing the efficiency and accuracy of
viticultural practices. These include drones [11], laser scanners (handheld, mobile) [12],
structure from motion (SfM) [13], photogrammetry techniques and software [14], and
global navigation satellite system (GNSS) receivers [15].

Photogrammetry is a technique of precise reconstruction that overlays images of a
given area or part of a vineyard using methods from many disciplines, including optics
and projective geometry. Using photogrammetry techniques, spatial models are created
based on the combination of several images that overlap, creating an orthomosaic of images.
Photogrammetric processing can be performed using specific image processing tools and
software. This tool allows to perform photogrammetric triangulation, creating a point
cloud. The combination of these techniques makes it possible to reconstruct a 3D model of
the vine. Moreover, further detailed parameters of the plant can be determined. Several
studies have pointed out the advantages of using 3D reconstruction of the canopy size [16],
spatial variability of vines, detecting trunk [17] and row gap [18], optimizing the number
of pesticides and sprays [19], and determining the health status [20].

This study is focused on the exploration and analysis of specific canopy parameters at
an individual level, aiming to establish their correlations with grape yield to assess their
appropriateness for predicting yield as an integral component of pre-harvest agronomic
practices. The primary goal of this research is to examine how various canopy character-
istics interact with grape production levels, thereby contributing valuable insights to the
effective management of vineyards before harvesting. In this study, the authors follow
up their preliminary research [21], which focused on yield prediction using a low-cost
drone. In this study, research was enriched with more input data from a professional drone,
complemented with a more comprehensive analysis.

2. Materials and Methods
2.1. Field Experimental Site

The study area included five vine rows in Topol¢ianky (48°25'40.14” N, 18°23'51.48" E,
WGS84) (Slovakia) (Figure 1). This vineyard was planted in 2015 (Vitis vinifera cv Riesling Italico).
Rows were approximately the same length, 121 m on average. Vines were spaced 3 m between
rows and 0.8 m within a row, with the height of the vine approximately 2 m. The vineyard was
located on the plain, and the surveyed area was 0.2 ha. A total of 5 rows were studied.
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Figure 1. Area of interest (background: orthophotomosaic by GKU Bratislava, NLC).
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2.2. Data Collection

A collection of five ground control points (GCP) was strategically positioned on the
ground in between rows for the purpose of georeferencing. Each individual GCP underwent
precise measurements through the utilization of a cutting-edge GNSS receiver known as the
Trimble TSC3 combined with the highly efficient Trimble R8s antenna (Trimble, Sunnyvale,
CA, USA). The level of accuracy achieved in determining the position of each GCP was an
impressive 1 cm. The drone used for image acquisition was programmed to capture images
from three distinct angles, ensuring comprehensive coverage of the targeted area.

Specifically, a popular consumer-grade drone model, the DJI Mavic Pro (DJI Technol-
ogy Co., Shenzhen, China), was equipped with a standard built-in RGB camera for this
aerial surveying task. The camera has a 1/2.3-inch CMOS sensor. The resolution of the
images stood at 4000 pixels by 3000 pixels, with a ground sampling distance (GSD) of
0.30 cm per pixel. The flight plan for the DJI Mavic Pro drone was created in the Litchi
application (Litchi, VC Technology Ltd. © 2024, London, UK). In total, the drone flew over
each row 3 times, once vertically and twice obliquely (Figure 2). The drone maintained a
consistent flight height of 10 m above the ground during the data collection process. In
order to ensure comprehensive image coverage and accuracy, the forward overlap and
side overlap percentages were set at 95% and 85%, respectively, adhering to industry best
practices. A substantial volume of data was gathered, with a total of 943 images collected
in the year 2021 and 924 images gathered in 2022, with images being captured at every 2 m
of flight progression. The acquisition of drone images took place at two distinct time points,
specifically 26 days and 6 days prior to the anticipated harvest seasons in the years 2021
and 2022, respectively, aligning with the agricultural calendar for effective monitoring and
assessment purposes (Table 1). Data acquisition was performed around 12 p.m.

Figure 2. Schematic representation of vineyard mapping by DJI Mavic Pro. Red represents a vertical
fly-over row, and light and dark blue represent the assessment of oblique images of a row taken by
the tilted camera of the drone.

Table 1. Overview table on flight date, drone type, and harvest time.

2021 2022 2023
Flight time 22.9. 6.10. 26.9.
DJI Mavic Pro, . )
Drone DJI Mavic Pro DJI Matrice 300 with DJI Matrice 300 with

Zenmuse P1 Zenmuse P1

Harvest 18.10. 12.10. 3.10.
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Since 2022, the surveyed area has also been imaged with a DJI Matrice 300 drone with
a Zenmuse P1 camera with a 35 mm lens (DJI Technology Co., Shenzhen, China). The flight
plan was created in the DJI Pilot application, where the area of interest was determined,
and the application prepared the flight plan itself. The flight height was 25 m above the
terrain. Lower flight height was not possible due to an automated flight plan because a
wider area, including surrounding vegetation, was inevitable for oblique images (Figure 3).
The camera has an 8192 by 5460 pixels, 45 MP full-frame sensor, offering optimal image
quality. GSD has 0.31 cm per pixel. Vertical and oblique images were also taken; for the
area of interest, 606 images were used for each year. The same flight plan was used for both
years. In 2023, it was flown 7 days before harvest at around 12 p.m. (Table 1).

lu

e

Figure 3. Schematic representation of vineyard mapping by DJI Matrice 300. Blue points represent
the position of images. Background: orthophotomosaic by GKU Bratislava, NLC.

2.3. Data Processing

The process of reconstructing the 3D point cloud was conducted using Agisoft Metashape
Professional software (Agisoft LLC in St. Petersburg, Russia). The specific region of interest,
encompassing 5 rows along with the ground, contained an estimated 71,000,000 individual
points. The parameters like the accuracy (in step “align photos”) and quality (in step “build
dense cloud” and “build mesh”) were set to highest and high, respectively. The same setup was
used to prepare the point cloud for all study years. Subsequently, the point cloud generated
by Agisoft Metashape Professional was subjected to visualization and initial processing using
CloudCompare software (CloudCompare 2.12.4 GNU License, Paris, France). Within the
CloudCompare platform, various elements such as noise points, ground features, posts, and tree
trunks were meticulously eliminated through manual intervention. The average density of the
3D point cloud representing the canopy was determined to be approximately 31,000 points per
cubic meter. To facilitate further analysis, each row was subdivided into segments delineated
by the presence of every second post, resulting in a total of 13 segments per row, as illustrated
in Figure 4. Each segment encompassed an average of 12 tree trunks and spanned a length of
approximately 9.5 m. In the year 2021, the area under investigation harbored a total of 708 plants,
whereas, in 2022, the plant count had slightly increased to 711 individuals, and in 2023, there
were 730 of them. Envelopes (thick border lines, Figure 4) were created in the CloudCompare
software and represent the thickness (Figure 4A) and side section (Figure 4B) for each row. These
envelopes were subsequently implemented in ArcMap 10.7 (ESRI, Redlands, CA, USA). The
rows were divided into individual segments, and the area (m?) of the side section and thickness
parameters were calculated for each segment. Canopy volume (m?) and surface area (m?) were
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calculated in Agisoft Metashape Professional for each segment. During the data processing,
a computer with these parameters was used: processor Intel(R) Core(TM) i7-9750H CPU @
2.60 GHz and graphic card NVIDIA GeForce GTX 1660 Ti. Computer time was approximately
3.5 days.

segment n segment m

i

Figure 4. Schematic representation of segments and the area representing the thickness (A) and side

.

.

section (B). On average, each segment included 12 trunks in reality. Segments were formed by every
second pole (black).

2.4. Grape Yield Assessment

The grapes harvested from the vineyard were individually subjected to weighing
procedures according to their respective segments. Each grape’s weight, along with various
canopy parameters, was meticulously documented and then used to establish correlations
between different variables. It is important to note that the decision was taken to exclude
the last segments in the four rows from the analysis due to their shorter length compared
to the other segments. This precaution was necessary to prevent any potential introduction
of discrepancies or inaccuracies in the statistical analysis. The last segment of the fifth row
was not excluded because it was the same length as the rest of the segments in the row.

2.5. Statistical Analysis

The normality test conducted in GraphPad Prism (v.8; GraphPad Software, San Diego,
CA, USA) did not provide evidence to confirm the adherence of the data to the Gaussian
distribution. For this reason, non-parametric Spearman correlation was used to determine
the strength and direction of association between grape yield and individual morphology
parameters. Subsequently, linear regression and multiple linear regression were used to
describe a relation between grape yield and a variety of morphology parameters. The
mathematical equations derived from linear regression and multiple linear regression
analysis conducted in the year 2022 were then used for the prediction of the yield production
of 2023. Results were compared to the actual harvest weight.

3. Results
3.1. Grape Yield

The graphical representation of the grape harvest is shown in Figure 5. Several zones
alternated between higher and lower yields on a biannual base. The total production output
for the year 2021 equaled 1688 kg, followed by 1620 kg in 2022 and 1625 kg in 2023. The
quantity of grapes harvested from individual segments varied, ranging from 6.4 kg to 48.4
kg in 2021, 6.9 kg to 39.3 kg in 2022, and 3.3 kg to 38.2 kg in 2023.
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Figure 5. Harvest weight of grapes for individual segments for years.

3.2. 3D Point Cloud

In the year 2021, a total of 943 photos entered the 3D point cloud, with an equal
number aligned. In 2022, 924 photos from DJI Mavic Pro were used, of which 837 photos
were aligned. In the case of DJI Matrice 300, 606 photos entered the 3D point cloud in
2022-2023, while the number of aligned was 584 and 579 in 2022 and 2023, respectively.
The process of alignment was conducted with the highest accuracy and highest quality;,

and it was set in the generation of the point cloud. Descriptive data of each parameter are
shown in Table 2.

Table 2. Mean and standard deviation (SD) value for each parameter per segment.

2021 2022 2023
Parameter
Mean SD Mean SD Mean SD
Side section [mz] 10.81 1.13 11.91 0.53 11.39 0.57
Thickness [m?] 4.16 0.75 5.10 0.35 5.42 0.64
Volume [m3] 4.14 0.72 493 1.07 4.02 1.08
Surface [m?] 40.46 4.23 42.72 4.32 43.24 7.01

3.3. Correlation and Regression Analysis

The relationship between morphological parameters and grape yield was analyzed
using Spearman correlation analysis (Table 3). When DJI Mavic Pro was used for imaging
in 2021, a positive but weak correlation was confirmed only in the case of the side section.
Using DJI Mavic Pro in 2022 showed a correlation with all morphological parameters but
was quite weak. Switching to a professional drone, DJI Matrice 300, led to a stronger

correlation between the grape yield and morphological parameters, especially side section
and thickness.
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Table 3. Spearman correlation between grapes weight and parameters.
2021 2022 2022 Matrice 2023 Matrice
Parameter
r p-Value r p-Value r p-Value r p-Value

Side section 0.27 <0.05 0.27 <0.05 0.64 <0.001 0.61 <0.001
Thickness 0.05 0.68 —0.29 <0.05 0.64 <0.001 0.57 <0.001
Volume 0.04 0.78 0.58 <0.001 0.6 <0.001 0.53 <0.001
Surface 0.06 0.63 0.45 <0.001 0.51 <0.001 0.45 <0.001

3.4. Prediction of Grape Yield

Yield prediction based on side section, thickness, and volume showed a discrepancy
in the range of 10-12% (Table 4). Prediction based on the surface showed the lowest
discrepancy from harvested yield, 1%. Additional multiple linear regression analysis
appointed four other equations combining parameters such as side section, thickness, and
volume. Among these, three predictions led to a satisfying discrepancy in the range of
2-3.2% (Table 4).

Table 4. Equations used for the prediction of grape weight and comparison with harvested yield in
2023. Equations are derived from linear regression (1-4) and multiple linear regression (5-8) and
calculated from 2022 data. The discrepancy of predicted weight was calculated from the overall

harvested yield.
Equation Used for Prediction Discrepancy

1: Y = —43.8 + 5.836 x side section —11.8%

2:Y = —16.06 + 8.187 x thickness 10.2%

3:Y=12.28 +2.719 x volume —9.9%

4:Y =1.32 +0.5705 x surface 1.0%

5:Y = —47.72 + 4.159 x side section + 4.687 x thickness —2.5%

6: Y =3.123 x thickness + 1.988 x volume —3.2%

7: Y = 0.4237 x side section x thickness 2.0%

8: Y =14.9 + 0.03545 x side section x thickness x volume —7.0%

The distribution of individual yield prediction compared to harvested yield is graphi-
cally visualized in Figure 6. The closest distribution of predicted data and mean to harvested
yield is when equation E (Table 4) was applied, using parameters such as side section and
thickness. The mean of predicted yield was comparable to harvested yield, 25.1 & 4.6 kg
and 25.7 + 5.3 kg, respectively.

Equations based on the same parameters as in 2022 were calculated also from 2023
data (Table 5). The equations 13-15 based on 2022 (Table 4) are very similar in means of
coefficients and intercepts when compared to the equation from 2023 (Table 5).

Table 5. Equations are derived from linear regression (9-12) and multiple linear regression (13-16)
and calculated from 2023 data.

Equation

9:Y = —44.234 + 6.141 x side section
10: Y = —2.81 + 5.262 x thickness
11: Y =13.68 + 3.002 x volume
12: Y =7.492 + 0.422 x surface
13: Y = —42.06 + 4.338 x side section + 3.386 x thickness
14: Y = 3.802 x thickness + 1.267 x volume
15: Y = 0.4154 x side section x thickness
16: Y =16.54 + 0.03577 x side section x thickness x volume
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Figure 6. Comparison of weight yields and estimated weight yields equation based on morphological
parameters. Linear regression and multiple linear regression were used as a base for equations.
The main effect equals the effect of the factor regardless of other factors. Two-way interaction is a
combined (multiplied) effect of two factors. The data are expressed as violin graphs with median
(dashed) and quartile (dotted) lines.

4. Discussion

Yield prediction is an important tool in the management of vineyards and helps
farmers to adjust economic and human resources before harvest. Morphological parameters
are one of the options for how to predict yield. Current methods for crop prediction
are either very subjective (manual assessment), invasive (leaf area index), or expensive
(autonomous robots with scanners). Drone technology enables an accurate, fast, non-
invasive assessment of images. Combination with photogrammetric techniques results
in reliable 3D models of vineyards. This study focused on using images taken by drones
for the creation of a 3D point cloud. Subsequently, the morphological features of the
vineyard were calculated and evaluated. Lastly, results were tested in the application of
yield estimation.

Measurement of harvested grapes showed similar yield production in three consecu-
tive years. However, several zones in the monitored vineyard exhibited a fluctuation of
yield on a biannual basis. The fluctuations in weight among the individual segments are
considered a common occurrence for vine plants, reflecting the natural growth patterns.
Farmers typically prefer lower levels of fluctuation to maintain stability in weight yields
over the long term, as it is more conducive to effective planning and management of
resources.
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Using a professional drone led to a reduction in input data and, thus, to more efficient
processing when compared to commercial drones. On the other hand, there are also
disadvantages too. The main negative is route planning. The professional drone has limited
conditions for shooting, e.g., more maneuvering space. In this study, the area of interest is
located near the forest; thus, the flight height had to be adjusted higher to limit any possible
contact with the trees.

An important aspect is imaging itself. If the forward image overlap is lower than
80% and the side overlap is less than 75% [22], there is an inadequate reconstruction of
the object’s shape, and so the accuracy of the result is reduced. A high forward overlap
(95%) and side overlap (more than 80%) achieve suitable conditions for the creation of 3D
point clouds [23], which results in the correct and accurate shape of the object. There are
several factors that play a role in using imaging for the prediction of the yield, and one
of those is timing. Imaging in the early stage of the vineyard growing cycle can lead to
underestimation of the yield. Also, imaging before the management of the vineyard, such
as pruning, can overestimate the yield. Ballesteros et al. [24] collected data at five time
points representing different stages of the vine. It has been confirmed that the ideal time for
imaging is after management, close to the harvest date. The limitation of this procedure is
that processing images and generation of a 3D point cloud is time-consuming and requires
proper computing power. On the other hand, this procedure can correctly map vineyard
parameters compared to manual measurement [5].

Two drones were used in this study: commercial (DJI Mavic Pro) and professional
(DJI Matrice 300). Commercial drones with built-in camera performance showed a weak
correlation of the side section parameter in both 2021 and 2022. Overall performance could
be explained by the timing of the imaging process. Specifically, imaging was conducted
nearly a month before the harvest in 2021, whereas, in 2022, it took place only 6 days before
the harvest. During the period between imaging and harvest in 2021, there were additional
activities carried out in the vineyard, such as leaf removal, which could potentially impact
the accuracy and consistency of the morphology parameters and their correlation with
the grape yield. Furthermore, the side section parameter may exhibit a lower degree
of sensitivity to partial leaf removal in comparison to factors such as canopy thickness,
volume, and surface area. Despite the fact that the correlation between the side section and
grape yield was deemed to be weak, the findings remained consistent across both years
under observation, thus hinting at a recurring relationship. Correlation analysis shows that
a professional drone, DJI Matrice 300 equipped with a Zenmuse P1 camera, is more suitable
for accurate data collection, resulting in a stronger correlation between morphological
features and harvested yield, especially side section and thickness.

Equations based on linear regression led to acceptable but still inaccurate predictions
of yield except for surface parameters. The range of discrepancy, 10-12%, is similar to a
study by Di Gennaro et al. [25]. The authors estimated the grape yield by counting the
bunches of grapes depicted in the images and subsequently multiplying this count by the
average weight of each bunch. This method resulted in a 12% underestimation of the actual
yield. Although the surface parameter had the best yield estimation, the correlation of
the surface parameter with harvested yield and the distribution of estimated weights of
individual segments rather point to its unsuitability for prediction. Moreover, equations
for yield prediction created in both consecutive years (2022, 2023) have different values of
intercept (2022: Y = 1.32 + 0.5705 x surface, 2023: Y = 7.492 + 0.422 x surface), indicating
instability. For more accurate yield estimation in individual segments, it is necessary to
include another factor in the equation.

Such a factor can be an interaction or combination of morphological features. Several
combinations were tested. The outcome of the most promising based on the statistical
analysis is presented in the study. Almost all of them demonstrated much lower discrepancy
in yield prediction in the range of 2-3.2%, which is far better than other studies [25].
Moreover, prediction based on side section and thickness as main effects (Table 4—E) is
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most similar to the distribution and mean of harvested grapes in individual segments. It is
for this reason that we consider this equation to be the most appropriate.

5. Conclusions

In the current investigation, a 3D point cloud of vine rows was generated utilizing
UAV images and photogrammetry software, enabling the determination of various canopy
parameters, including side section, thickness, volume, and surface area. Among these pa-
rameters, the side section, in combination with thickness, emerges as the most dependable
for predicting yield. The calculated grape yield weight exhibited a slight underestimation
of merely—2.5% compared to the actual measured weight, a level of variance that is ac-
ceptable within the research context. The forthcoming phases of this project will involve
annual assessments to validate the reliability of this approach and enhance the accuracy
of yield estimations to minimize any discrepancies. This innovative methodology holds
promise for enhancing yield estimation accuracy, as well as providing valuable support for
pre-harvest planning and agronomic decision-making processes.
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