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Abstract: Orthopedic prosthesis infection must be medically managed after appropriate microbio-
logical documentation. While bacteria and fungi are acknowledged to be causative opportunistic
pathogens in this situation, the potential role of methanogens in orthopedic prosthesis infections is
still unknown. In a retrospective study, a total of 100 joint and bone samples collected from 25 patients
were screened by specific PCR assays for the detection of methanogens. PCR-positive samples were
observed by autofluorescence, electron microscopy and tentatively cultured under specific culture
conditions. Methanogens were detected by quantitative PCR in 4/100 samples, in the presence
of negative controls. Sequencing identified Methanobrevibacter oralis in two cases, Methanobrevibac-
ter smithii in one case and Methanobrevibacter wolinii in one case. Microscopic methods confirmed
molecular findings and bacterial culture yielded two strains of Staphylococcus aureus, one strain of
Staphylococcus epidermidis and one strain of Proteus mirabilis. These unprecedented data highlight
the presence of methanogens in joint and bone samples of patients also diagnosed with bacterial
orthopedic prosthesis infection, questioning the role of methanogens as additional opportunistic
co-pathogens in this situation.

Keywords: methanogens; Methanobrevibacter oralis; Methanobrevibacter smithii; Methanobrevibacter
wolinii; orthopedic prosthesis infection

1. Introduction

Postoperative infection is the principal complication of orthopedic prosthesis implan-
tation, with an estimated prevalence of 0.5 to 1% after hip prosthesis implantation and 1 to
2% after knee prosthesis implantation [1–3]. Infections could compromise the functional
outcome of the patient, even increasing morbidity and mortality [4,5]. Documentation of
orthopedic prosthesis infection relies on microbiological investigations including direct mi-
croscopic examination of the samples following Gram staining, PCR-based tests, and culture
in an aerobic atmosphere [6–9]. Microbiological diagnosis of these infections is manda-
tory, as the antimicrobial susceptibility pattern of the causative opportunistic pathogens
guides the medical treatment alongside the surgical orthopedic treatment [10–12]. Series of
orthopedic prosthesis infections have indicated that bacteria and fungi were responsible
for all the currently documented cases, with numerous cases in which mixed infections
consisting of several bacteria or mixed bacteria and fungi were identified in the same
clinical specimen [13,14].

Prosthesis 2022, 4, 38–47. https://doi.org/10.3390/prosthesis4010005 https://www.mdpi.com/journal/prosthesis

https://doi.org/10.3390/prosthesis4010005
https://doi.org/10.3390/prosthesis4010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/prosthesis
https://www.mdpi.com
https://doi.org/10.3390/prosthesis4010005
https://www.mdpi.com/journal/prosthesis
https://www.mdpi.com/article/10.3390/prosthesis4010005?type=check_update&version=1


Prosthesis 2022, 4 39

Methanogenic archaea (here designed as methanogens) are aero-intolerant microorgan-
isms belonging to the Archaea domain and the only known sources of biotic methane [15,16].
They are a common inhabitant of many niches of the human body especially the digestive
microbiota [17,18]. Methanogens play important roles in human health such as maintaining
gut homeostasis by preventing the accumulation of toxic metabolic end products of bacteria
including H2, CO2 and trimethylamine [19,20]. However, their dysbiosis is associated
with many diseases including severe acute malnutrition, inflammatory bowel diseases and
chronic constipation [21–25].

More recently, methanogens were co-detected with bacteria in various pathological
situations, raising questions as to their role as co-pathogen [26–30]. However, no studies
have been conducted on the possible implication of methanogens in bone infection.

In this paper, we report on the unprecedented observation that methanogens could
also be detected in mixed infections of orthopedic prostheses.

2. Results
2.1. Routine Bacteriological Investigations

A total of 100 samples collected from 25 patients were collected and analyzed. Routine
culture found Staphylococcus aureus (n = 55; 11 patients), Staphylococcus epidermidis (n = 12;
three patients), Corynebacterium amycolatum (n = 2; one patient), Proteus mirabilis (n = 17; one
patient), Pseudomonas aeruginosa (n = 5; two patients), Klebsiella oxytoca (n = 3; two patients),
Klebsiella pneumoniae (n = 1; one patient), Escherichia coli (n = 2; one patient), Streptococcus
anginosus (n = 1; one patient), Acinetobacter radioresistens (n = 1; one patient) and Enterobacter
cloacae (n = 1; one patient).

2.2. Methanogen Investigations

The qPCR targeting the actin gene was positive for all samples analyzed. Of the 100
joint fluid and bone samples investigated for the presence of methanogens, four samples
(4/100) collected from four different patients were found to be positive in both screening
real-time PCR analyses and confirmatory standard PCR. The negative controls remained
negative. Quantitative PCR analyses yielded a median Ct of 28.37 (26.77–31.32). The
16S rRNA gene amplicon sequencing identified Methanobrevibacter oralis in two cases,
Methanobrevibacter smithii in one case and Methanobrevibacter wolinii in one case. M. oralis
was detected in two different samples as was the case in patient no. 2 and M. smithi was
detected in two different samples as was the case in patient no. 3, at different times (Table 1).
Eight controls (two negative controls for one positive patient) consisting of patients without
an orthopedic prosthesis infection were also tested for the presence of methanogens and
remained negative.
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Table 1. Characteristics of four patients diagnosed with methanogens-positive orthopedic prosthesis.

Cases Age Sex

Clinical
History of
Prosthesis
Infection

Routine
Bacterial
Culture

Methanogen
Detection

Previous
Antibiotics

Number of
Surgeries

after
Prosthesis

Implantation

Infection
Evolution
(Months)

Prosthesis
Ablation

Prosthesis
Re-

Implantation

Spacer
Implantation Cured Relapse

Case 1 81 F

S. aureus and
E. coli

right knee
prosthesis
infection

S. aureus M. oralis
Rifadin +

clindamycin
+ ofloxacin

2 111 Yes Yes YES Yes No

Case 2 78 M

S. aureus and
S. epidermidis

right hip
prosthesis
infection

S.
epidermidis M. oralis Rifampicin +

ofloxacin 1 99 Yes No Yes No No

Case 3 46 F

S. aureus and
S. lugdunensis
and Klebsiella
pneumoniae
and Proteus

mirabilis and S.
capitis
left hip

prosthesis
infection

P. mirabilis M. smithii Imipenem +
clindamycin No 358 Yes Yes No No Yes

Case 4 74 M
S. aureus
left Knee

prosthesis
S. aureus M. wolinii

Rifampicin +
ofloxacin +
teicoplanin

2 74 Yes Yes Yes On
going No
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M. oralis and M. wolinii were co-detected with S. aureus (n = 2), M. smithii were co-
detected with S. epidermidis (n = 1) and with P. mirabilis (n = 1). Scanning electron microscopy
showed two microscopic microorganisms in PCR-positive joint fluid collected from patient
no. 1: the first microorganism presented a bacillary morphology characteristic of M. oralis
and the second microorganism corresponded to S. aureus.

M. oralis was also observed by auto-fluorescence in the same PCR-positive joint fluid
but not in the PCR-negative samples (Figure 1).
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Figure 1. Microscopic observations of joint sample of Case 1 and a negative control sample (joint
sample PCR-negative to methanogens). (A1) Negative control showing only S. aureus; (A2) two
Methanobrevibacter oralis observed in the same field with Staphylococcus aureus using scanning electron
microscopy TM4000Plus (Hitachi). All image settings for the magnification, focus and keV mode
are shown on micrographs. (B1) Negative control sample; (B2) auto-florescent methanogens in joint
sample of Case 1 after exposure to ultraviolet excitation laser with Zeiss LSM 800 confocal microscope
at 63×, 1.4 numerical aperture (NA) oil immersion objective. The scale bar represents 5 µm.

2.3. Medical History
2.3.1. Case 1

An 81-year-old woman had a history of a right knee replacement in 2007. Nine years
later, following a fall, she had a prosthetic fracture and surgery with osteosynthesis was
performed. One month later, the patient presented an early nosocomial infection of the
surgical site with S. aureus and E. coli. Surgical debridement was performed, and the patient
was treated with co-trimoxazole for five months, with persistent disabling pain. Two years
later, due to increasing pain in the right knee, the hip prosthesis was removed and was
replaced by a spacer containing vancomycin [31]. Routine bacterial culture S. aureus was
isolated from the knee prosthesis, and methanogen investigation identified M. oralis in the
same samples. She was treated with clindamycin and rifampicin for eight months and
cured with no relapse at the three-month follow-up examination.
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2.3.2. Case 2

A 78-year-old man had a total right hip replacement in 2016. Eight months later
the scar became inflamed with discharge. A surgical deep sample taken was positive for
S. aureus. The patient was treated with rifampicin and ofloxacin for six weeks and was
cured. Three years later, the patient once again suffered right hip pain due to the prosthesis
loosening. A CT-guided puncture was performed and S. epidermidis was co-detected with
M. oralis from this hip sample. The patient had an indication to remove the prosthesis in
two stages.

2.3.3. Case 3

A 46-year-old woman had a total left hip replacement in 2007 which was complicated
by an S. aureus infection. One year later, the left hip prosthesis was removed, and a
vancomycin spacer was inserted [31]. The spacer was removed, and a new hip prosthesis
replacement was done. She had a chronic hip polymicrobial infection, with a chronic
hip abscess. A total of four successive surgical interventions were performed between
2007 and 2019. Since 2015, no hip prosthesis has been replaced and she has a chronic
inflammatory fistula with discharge. The microorganisms isolated were Staphylococcus
lugdunensis, Staphylococcus capitis, Klebsiella pneumoniae and Pseudomonas aeruginosa. Finally,
in the latest hip fistula sample, P. mirabilis was co-detected with M. smithii. Over 13 years,
she received numerous antibiotics including clindamycin, ofloxacin and imipenem. At the
eight-month follow-up examination, the hip fistula persisted.

2.3.4. Case 4

A 74-year-old man received a left knee prosthesis in 2018, and an early S. aureus
infection was diagnosed. He was treated with rifampin and ofloxacin for five months. Two
years later, the patient relapsed, the prosthesis was removed, and a vancomycin spacer was
inserted. S. aureus grew from the intraoperative samples and methanogen investigation
identified M. wolinii. S. aureus was treated successively with vancomycin and imipenem,
followed by teicoplanin combined with clindamycin and ciprofloxacin. After four months
of follow-up, no relapse was noted.

3. Discussion

The documentation of methanogens in the puncture and biopsy samples collected
from orthopedic devices and prostheses reported in this study did not merely result from
contamination, as methanogens have never been reported in clinical microbiology labora-
tories. Moreover, the methanogens reported here, have been consistently detected by at
least two unrelated laboratory approaches in the same pus sample, including molecular
and microscopic methods; and the same methanogen has been consistently detected in
time-series samples. The negative controls introduced at every experimental step remained
negative, and no methanogen positive controls have ever been introduced in the experi-
mental procedures to avoid contamination. Attempts to culture methanogens have failed,
which can be explained by the fact that the bone samples were not collected under anaerobic
conditions, having been in contact with the ambient atmosphere. Indeed, several studies
have demonstrated the exquisite sensitivity of methanogens to oxygen [31–33].

We detected methanogens in 4/100 joint and bone samples from four patients diag-
nosed with orthopedic prosthesis infection. These observations expand the spectrum of
methanogen-associated infections in patients. Indeed, M. smithii and M. oralis are emerging
as opportunistic pathogens co-detected with bacteria in cases of skeletal muscular ab-
scesses [28], refractory sinusitis [34] and life-threatening brain abscesses [29]. Methanogens
are also part of dysbiosis in the case of vaginosis [35] and urinary tract infections [30]. More
recently, we specifically detected M. smithii by adopting a polyphasic approach to the blood
of febrile patients [33]. Here, we report for the first time, that the methanogen M. wolinii
can be retrieved from clinical samples, as this methanogen was previously only known in
the rumen of sheep, having never been detected, not cultured from human microbiota [36].
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The obligate detection of methanogens in association with bacteria reported in several
studies [34,37,38] suggest syntrophic interactions between methanogens and some bacteria,
which could support co-pathogenicity. Here, methanogens have been co-detected with
staphylococci which are recognized as the predominant cause of bone infections [39]. In
addition, it is known that the formation of biofilm on the surface of the osteoarticular pros-
thesis is a key step in the physiopathology of bone infections [40,41]. Some studies have
reported the ability of methanogens, especially M. smithii and M. oralis, to form a biofilm,
suggesting their probable involvement in mixed orthoaedic prosthesis infections [42–44].

In this study, the detection of methanogens results from the use of specific laboratory
tools. These tools, however, could be implanted in any clinical microbiology laboratory for
the routine search of methanogens in orthopedic specimens In particular, the PCR-based
detection protocol here reported, could be done in any one laboratory with experience
in home-made PCR-based diagnosis of infectious disease pending to the introduction of
controls for the accurate interpretation of data, as referenced in this report [45]. However,
exploration of the methanogen population in this context and their interactions still require
further investigation through large-scale studies to understand their potential role in the
infectious process of bone infections, this may lead to a change in the standard therapeu-
tic protocols incorporating antibiotics active against these microorganisms, for optimal
management of orthopedic prosthesis infections.

4. Materials and Methods
4.1. Patients and Study Design

This retrospective study included a total of 100 orthopedic samples, consisting of 33
joint fluid samples and 67 bone biopsies at the site of orthopedic material implantation
samples collected from 25 unrelated patients between January and April 2020 and was
approved by the IHU Méditerranée Infection Ethics Committee (No. 2020-032). No samples
were taken specifically for this study and, in accordance with European General Data
Protection Regulation No. 2016/679, patients were informed of the potential use of their
medical data and that they could refuse the use of their data. All the samples were
manipulated at the diagnostic laboratory of the IHU Méditerranée Infection, Marseille
as part of its routine activities following the reference methodology MR-004 registered
on No. PADS20-284 in the AP-HM register. All the patients enrolled in this study had
previously presented clinical, biological and radiological pieces of evidence for joint or
bone infection. The samples were collected by aspiration or surgical biopsy in sterile tubes
or in bottles (BacT/ALERT FN Plus, bioMérieux, Marcy-l’Étoile, France) and stored at
−20 ◦C (Figure 2).
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4.2. Routine Bacteriological Investigations

All the samples were examined by microscopy after Gram staining and 200 µL of
each sample were cultured using three different culture media: CHOCOLAT Polyvitex
(BioMérieux, Marcy-l’Étoile, France) and COLUMBIA ANC (BioMérieux) media, incubated
at 37 ◦C under 5% CO2 for five days to grow aerobic bacteria; and 5% sheep blood Columbia
agar medium (BioMérieux) incubated at 37 ◦C for 10 days to grow anaerobic bacteria.
Cultured bacteria were identified by using matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) as previously described [46]. Antibiotic
susceptibility testing was performed as previously described [47].

4.3. Methanogen PCR-Based Identification

Manipulations to search for methanogens were performed on the remaining sam-
ples preserved at −20 ◦C after routine microbiological investigations had been completed.
For joint fluid samples, a 200-µL volume was transferred into a 2-mL tube and sonicated
for 20 min with the Branson 2510 ultrasonic sonicator (Branson, Rungis, France). To-
tal DNA was then extracted using the automat extractor EZ1 advanced XL with EZ1
DNA tissue kit (Qiagen, Courtaboeuf, France). Bone samples were cut into small pieces
using a sterile scalpel and transferred into a 2 mL tube and extracted as previously de-
scribed [47]. Firstly, a quantitative real-time PCR system targeting the 16S rRNA gene
of methanogens was used for screening using the following primers and probe: forward
5′-CGAACCGGATTAGATACCCG-3′, Reverse 5′-CCCGCCAATTCCTTTAAGTT-3′, Probe
6FAM-CCTGGGAAGTACGGTCGCAAG. PCR results were validated by the detection of
human β-actin gene as an internal control-PCR for each sample. Samples were considered
positive when the CT value was equal, or less than 35 CT.

In the second step, clinical samples that were positive by real-time PCR were assessed
for the presence of methanogens using PCR-sequencing as described above using the 16S
rRNA gene forward primer 5′-CCGGGTATCTAATCCGGTTC-3′ and reverse primer 5′-
CTCCCAGGGTAGAGGTGAAA-3′ [47]. The PCR products were purified and sequenced
using a Big Dye Terminator v1.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA,
USA), the different sequences were analyzed and assembled with ChromasPro software,
then compared to the GenBank database using the online BLAST program of NCBI (www.
ncbi.nlm.nih.gov/BLAST/, accessed on 21 May 2020). Two mL tubes filled with 200 µL
of sterile phosphate buffered saline (PBS) (Thermo Fisher Scientific, Villebon Sur-Yvette,
France) were used as negative controls in each of the above laboratory steps.

4.4. Microscopic Examinations

Samples were observed for the presence of methanogens using the TM4000plus scan-
ning electron microscope (Hitachi, Tokyo, Japan). Briefly, 100 µL of joint fluid and bone
samples were fixed with 100 µL of 2.5% glutaraldehyde and 100 µL of that mixture was
spotted onto a glass slide by cytocentrifugation (Shandon Cytospin 4, Thermo Scientific,
Waltham, MA, USA). Slides were stained using 1% phosphotungstic acid (PTA; Sigma
Aldrich, Saint-Louis, MO, USA) for two minutes at room temperature. Image acquisi-
tion was performed using the TM4000 plus software (Hitachi). To detect auto-fluorescent
methanogens, the PCR-positive samples were excited by an ultraviolet excitation laser, and
image acquisition was performed with a Zeiss LSM 800 confocal microscope using a 63×,
1.4 numerical aperture (NA) oil immersion objective, as previously described [33].
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