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Abstract: The rising demand to efficiently acquire live production data has added more significance
to automated monitoring and reporting within the industrial manufacturing sector. Real-time parts
screening requiring repetitive human intervention for data input may not be a feasible solution to meet
the demands of modern industrial automation. The objective of this study is to automatically classify
and report on manufactured metal sheet parts. The metal components are mechanically suspended
on an enamel paint-coating conveyor line in a household appliance manufacturing plant. At any
given instant, the parts may not be in the exact coordinates within the desired area of interest and the
classes of objects vary based on changing production requirements. To mitigate these challenges, this
study proposes the use of a trained Mask R-CNN model to detect the objects and their associated
class. Images are acquired in real-time using a video camera located next to the enamel coating line
which are subsequently processed using the object detection algorithm for automated entry into the
plant management information system. The highest achieved average precision obtained from the
model was 98.27% with an overall accuracy of 98.24% using the proposed framework. The results
surpassed the acceptable standard for the average precision of 97.5% as set by the plant production
quality engineers.

Keywords: object detection; Mask R-CNN; deep learning; automation; enamel coating

1. Introduction
1.1. Background

Digital transformation within the industrial manufacturing sector has attracted sig-
nificant attention due to the integration of Industry 4.0. However, this has posed several
challenges within the manufacturing industry, especially where legacy systems are still
being used. Challenges include organizational and technological structural requirements
which are necessary to meet the demands of newer technologies. This has resulted in some
industries not having reaped the full benefits of digitalization [1]. In the shift towards digi-
tal transformation within the manufacturing industry, data analytics and machine learning
has become imperative to realize production process improvements. However, to utilize
these methodologies to their full potential requires readily available data. The challenge
of non-available data within the industrial process may be due to missing technological
infrastructure or related software deployment costs needed for data extrapolation [2]. A
conventional approach to acquire live plant data may include the use of paper-based instru-
ments. However, these traditional techniques may lead to inaccuracies caused by human
error [3,4]. Studies of human manual data capturing have indicated a 6.5% error rate, and
for spreadsheet data entry it is expected to be in the range of 5% [5,6]. While this is relative
to the amount of data and the complexity of the entered data, it was shown that the human
error rate may even vary between 5% and 26.9% [7].

Object detection using computer vision within the manufacturing industry is being
increasingly utilized to address the challenges previously mentioned. This is evident
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from the state of research surrounding object detection, which has increased rapidly over
the last decade with several deep learning models being developed and adapted for
industrial applications used in various industrial applications [8–11]. Notably, improved
production rates were achieved when using a combination of computer vision and the
robotics field [12–14]. Furthermore, an image processing technique that has received much
attention in the literature is the Region-based Convolution Neural Network (Mask R-CNN),
which was developed by the Facebook™ Artificial Intelligence Research (FAIR) group [15].
It has demonstrated remarkable results over existing single-model entries with the Common
Object in Context (COCO) dataset being used as a benchmark. In this study, we propose its
use for object detection of metal parts in a moving conveyor line.

1.2. Problem Definition

An enamel paint coating line within a household appliance manufacturing facility
has relied heavily on human observation and feedback to determine the total number of
parts produced in one production shift. This was achieved by manually counting and
documenting the parts as they were taken off the conveyor line and stacked into a trolley
to be transported to the desired assembly workstation. This study focuses on applying an
object detection model to automatically recognize the total parts per group/class to achieve
the required production information and improve efficiency. With a manufacturing process
that has a changing number of classes and variations of the part’s physical orientation
within the process line, the importance of investigating the use of an object detection
model was identified. This study compared the computer vision models with average
precision based on changes made to the learning rate and the intersection over union (IoU)
thresholds. To the author’s knowledge, research on enamel paint-coated parts detection
and classification has not been as prevalent in the literature, and this makes this application
unique within similar industrial applications and the computer vision research community.
Therefore, this research study proposes the Mask R-CNN model for metal parts detection
and classification based on the results provided in the subsequent sections. During this case
study, the industrial environment was controlled in terms of lighting, and a predetermined
fixed distance between the objects of interest and the camera was maintained to achieve
a high level of average precision. One of the main aims of this study was to achieve an
average precision that was greater than 97.5% to be deemed as a viable solution to meet the
industry standard for usable information within the business which was far superior to
manual data entry.

The main contribution of this study is summarized as follows:

• We introduce a technique to automatically classify manufactured metal parts on an
enamel paint-coating conveyor line, thus eliminating the need for repetitive human
intervention.

• A trained Mask R-CNN model is proposed for object detection and classification
tasks, which is a sophisticated deep learning technique known in the literature for its
accuracy in detecting and segmenting objects in captured images.

• The study addresses the challenges of objects being outside the area of interest and
shadows that distort the features of objects in an image.

• Based on production requirements, variability in different classes of objects is ac-
counted for, meaning that the system can accurately adapt to changing production
requirements.

• Finally, the proposed system achieves high average precision and overall accuracy to
meet the stringent demands of quality requirements.

The article is organized as follows: Section 2 discusses the related works within the
enamel coating process and the proposed Mask R-CNN object classification algorithm
used for parts segmentation is discussed. Section 3 provides the methodology used in
the specified industrial case study. Section 4 presents and discusses the findings of the
experimental results. Section 5 provides recommendations for improvement and concludes
the study.
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2. Related Work
2.1. Traditional Methods for Object Detection on a Conveyor Line

For specific parts detection on a conveyor line, a common approach is to use Radio
Frequency Identification (RFID) tags that are either attached to the product itself or the
hanger on which the product is being conveyed. These tags are thermally armored to
withstand the high temperature within the furnace after passing through the enamel
coating process. This method does not apply to the industrial application in this paper,
as an RFID tag would be required for each part which is not economically sustainable.
In addition, due to workflow, quality, and company design standards, a single hanger
was used to carry more than one product at any given instant; therefore, RFID tags were
not a viable option. Alternatively, pattern recognition using light curtains may also be
used to identify certain classes of objects as they pass through the light curtain. This is
accomplished through target objects blocking the transmission of light to the receiving
sensor. The different classes may be defined by the hardware or software configuration.
This approach, however, resulted in very poor accuracy due to the parts being in very
close proximity to each other. As a result, the use of human intervention for manual data
was instated. This archaic approach introduced inaccuracies and significant delays which
hindered the process.

2.2. Computer Vision Approaches for Object Detection in the Manufacturing Industry

Research reported in [16], proposed the use of an Artificial Neural Network (ANN)
model developed for fault detection on specular painted surfaces of automobiles. The au-
thor proposes Histogram of Orientated Gradients (HoG) feature vectors of a 20 × 20 image
patch to train the ANN model. This approach could provide a clear distinction between
dirt, scratch and no defect classes. Superior results were obtained using images that had a
higher contrast, namely images with a darker background and brighter defects. However,
the author did note that the ANN model could not classify images of metallic surfaces
with small irregular spots or blemishes in a reliable manner and further suggests that the
algorithm could be improved for images that are noisy. In a similar application, ref. [17]
proposed the use of deflectometry and vision-based technologies to overcome the problem
of specular defects on vehicle body surfaces. They proposed a two-stage algorithm, in
which the first was developed to enhance the image contrast between the image pixels
with high-level and low-level intensity to distinguish between the presence of defects or
lack thereof. For the second step, they present localized directional blurring to provide
background exclusion. More recently, ref. [18] presented the results of an automatic surface
defect inspection using machine vision methods. The proposed automatic inspection sys-
tem extracts candidate defective regions which are classified according to dents, scratches
and pseudo-defects with their relative shape, size and divergent features. A Support Vector
Machine (SVM) was used in the classification of each class.

In [19], computer vision techniques were used to identify defective parts on an assem-
bly line. The captured images were preprocessed to remove background artifacts, reduce
noise, correct orientation, and provide scaling for further processing. Objects of interest
were then extracted based on their unique contours and centroid distance computations.
Lastly, the detection results were based on the objects’ similarity rating to other stored
predefined model shapes and likeness matching.

In another industrial application, machine vision was used to provide robot guid-
ance in a collaborative framework. The authors in [20] highlighted the importance of
computer vision as an effective tool for developing autonomous systems that enable collab-
orative work between humans and industrial robots, thereby improving the robotic device
positioning accuracy as tasks become increasingly complex.

2.3. Applications of Mask R-CNN-Based Vision Systems

The use of instance segmentation models within industry can vary in applications
from quality control to counting and size estimation of an object and represents one of the
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classic tasks in computer vision. Essentially image segmentation can be considered as a
clustering problem. A study focusing on detecting florae in aerial images showed that the
Mask R-CNN model was not only effective in counting but was also able to determine the
size of each vegetable based on the segmentation mask, achieving a detection accuracy
of ~78% for potatoes and ~98% for lettuces [21]. In another study [22], a Mask R-CNN
model was used to identify, and segment manufactured parts in an assembly line. The parts
were recognized and segmented with an accuracy of 87.5%. Recently, in a study conducted
by [23], the challenge of accurate instance segmentation to determine tree density within
a forest was highlighted. While the paper does not consider the approach of utilizing a
Mask R-CNN model, the challenge presented shows similarity within the manufacturing
industry for determining the utilization of space on an assembly line or a hanger as in the
case of this study.

In [24], the study involved counting livestock using the Mask R-CNN model. In all the
defined categories, it resulted in an Average Precision (AP) of ~95% and an overall accuracy
of ~93%. In comparison to other approaches, such as the You Only Look Once (YOLOv3),
Faster R-CNN and Single Shot Multibox Detector (SSD), it was the superior model [24].
Further, in a research study based on counting bacterial growth within a petri dish whereby
the illumination was controlled throughout the experiment, the highest scoring model was
achieved using Mask R-CNN. Interestingly, it achieved an AP of 93.8% and a mean absolute
percentage error of 2.3% [25].

In another unique study based on pest identification and counting, a modified version
of the Mask R-CNN model was used. The model was able to increase AP to 80.2% from
79.6% and was the highest-scoring model when compared to Faster R-CNN, YOLO and
SSD500 [26]. Finally, in a study conducted by [27], the application of Mask R-CNN for
defect identification in printed circuit boards (PCBs) was evaluated. Two different datasets
were used to test the efficacy of the model which included missing vias and electrical
short-circuits of copper tracks on the PCB layers. An impressive high accuracy within the
range of 95% and 99% was achieved. Hence, based on the diverse range of applications that
the Mask R-CNN model has successfully been applied, we propose its use in this paper.

2.4. The Mask R-CNN Model

As shown in Figure 1, the Mask R-CNN is a deep learning model that can achieve
pixel-wise instance segmentation through the combination of object detection and semantic
segmentation [15]. This model is an extension of Faster R-CNN by the addition of the mask
branch. The addition of this branch performs the task of predicting the segmentation mask
of each Region of Interest (RoI). This task is executed in parallel with the existing branch
from Faster R-CNN that performs the task of classification and bounding box regression.
The backbone used for feature extraction is Residual Neural Networks (ResNet) with the
addition of the Feature Pyramid Network (FPN). The Region Proposal Network (RPN)
performs the task of generating region proposals that may possibly contain the object
of interest [28]. Once the region proposals are generated, the Region of Interest Align
(ROIAlign) layer performs the task of extracting features from the feature map. Mask R-
CNN was chosen for this study’s application since it is capable of instance segmentation [29].
With instance segmentation, objects within an image can be split into their respective
detected classes as a single object and not a part of a set of objects as one class [30]. This
would enable the detection of individual parts from a production line. The notable change
of Mask R-CNN in comparison with Faster R-CNN was the replacement of the ROI (Region
of Interest) pool with ROI Align, which would handle the misalignment and data loss
between the input image and feature maps [15].
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2.4.1. Feature Pyramid Network

The FPN plays an important role in extracting features from an image that form part
of the CNN backbone, as shown in Figure 1. The feature extractor performs the task of
taking a single image of an unknown scale as the input image and outputs feature maps
at multiple levels [31,32]. The low-level feature maps includes information such as edges,
colour and textures while high-level feature maps includes information such as the object
parts or the object itself. This multi-scaled feature map includes information from all the
different levels forming a set that has rich semantic data [33]. The bottom-up pathway uses
ResNet as its backbone which is used to structure the bottom-up pathway and is comprised
of convolution modules. The ResNet module proposed in 2015 [34] has greatly improved
the accuracy of image classification. The advantage of ResNet is the ability for a model
to be trained at a deeper level within neural networks [35]. A degradation problem was
exposed when deeper networks started to converge. With the network depth increase,
accuracy was decreased due to saturation. ResNet was proposed to solve this issue leading
to better accuracy with a deeper network [34].

2.4.2. ROI Align

In contrast to Faster R-CNN is ROI Pooling, which is an operation that is used to extract
feature maps from a ROI. Faster R-CNN was not designed for pixel-to-pixel alignment
using ROI Pooling, which performs stride quantization resulting in misalignment and loss
of data. While ROI Pooling may not affect classification, it does have a negative impact with
regard to predicting the masks generated for each pixel of the object [15]. With ROIAlign,
there is no quantization that is applied. This eliminates misalignment and data loss between
the extracted features with the inputs [15]. Bilinear interpolation is used to calculate the
values at four locations within the bin location of each RoI. The final value is achieved by
the maximum or average of those values [15].

2.5. Other Object Classification Models

Faster R-CNN is an object detection model that integrates object detection and region
proposal into one network. Faster R-CNN builds on Fast R-CNN and the earlier R-CNN
models by introducing the RPN that is used in Mask R-CNN. RPN performs the task
of generating region proposals [28]. The regions are proposed using a sliding window
approach. For each window, the RPN identifies ROIs. The proposal regions are then
cropped from the feature maps and sent to a final detection network. This classifies each
region and generates the bounding box coordinates.

In consideration of other approaches, the U-Net model is based on a modified Fully
Convolution Network (FCN) such that it may work with limited training images with the
outcome of higher precise segmentation within the image [36]. The model was designed for
image segmentation with a specific focus on the biomedical field. The network architecture
comprises a contracting path and an expansive path. The contracting path consists of
repeated convolutions, each followed by a rectified linear unit (ReLu) and a max pooling
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operation used to increase feature complexity. The expanding path combines the features
through upsampling [36]. YOLOv3 builds on previous models by introducing several
enhancements and a new classification network [37]. YOLOv3 is a single-shot detector as
compared to Mask R-CNN, which is accomplished by predicting bounding boxes using
dimensional clusters as the anchor boxes in the model. The network can predict the coor-
dinates of the bounding box by using logistic regression. Each class is predicted from the
bounding box, which has shown improved performance compared to its predecessors [37].
You Only Look at Coefficients (YOLACT) is a real-time instance segmentation model that
is used to detect and segment objects within an image. The instance segmentation task
is achieved in two steps, namely, generating the prototype masks and predicting the per
instance mask coefficients. The masks are generated by combining the prototypes with the
mask coefficients [38]. The model leverages the FPN for robust feature extraction while
FCN is used to produce the prototype masks [38].

3. Methodology
3.1. Proposed Framework

This research study followed the framework outlined in Figure 2. Image datasets
were collected using the cameras that were mounted on either side of the monorail and
an automated script that executed on a dedicated computer to capture the images with a
pixel size of 1920 × 1200 once the object hanger passed a proximity sensor. These images
were then split into their respective class folders following the training, validation, and
testing ratio of 80:10:10. Each group of images was then manually annotated using VGG
Image Annotator (VIA) [39]. This tool can create bounding boxes of the object which were
subsequently used as the ground truth images during model training, validation, and
testing. The Mask R-CNN model used during the training, testing and validation phases
was downloaded from a GitHub repository, with the link provided in the Supplementary
Materials section of this paper. Hyperparameters were adjusted for the model and prior
to model training, the images were augmented using fixed values. The trained model
was executed using the validation dataset to evaluate its performance. The efficacy of the
model was calculated using the precision–recall curve and the confusion matrix to compute
the average precision and the overall accuracy of each model at different thresholds. The
outcome was analyzed followed by an iterative process of re-adjusting the hyperparameters
until the optimal parameters were established.
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3.2. Image Dataset Manipulation

The required images were gathered using a simple Python-coded script to capture
live images from a camera once the conveyor hanger activates an adjacent photoelectric
sensor. A digital input signal was received by a Moxa® ioLogik E1200 I/O module once
the hanger triggered the photoelectric sensor. The digital input module was connected
to a network switch over ethernet communication protocol. The digital input signal was
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translated as a trigger signal using the Python script and was sent back to the camera
through ethernet. The image was captured and stored on the computer’s hard drive, to be
processed. The experimental setup executed for one production run to gather the required
images which were subsequently used to train the Mask R-CNN model. Table 1 shows
the number of data that was split into train, validation, and test datasets (ratio of 80:10:10,
respectively). The model had varying amounts of data per class to monitor if there was
a difference in identified parts as detailed by the resultant confusion matrix. It should be
noted that the difference in percentage per class collected correlates to the percentage seen
from the production line at a given production run. This was carried out intentionally
to detect any issues if training images could be collected in one production run with no
special requirements to perform data captures after the production run. This would also
provide insight into having an unbalanced dataset and how it may affect results.

Table 1. Dataset split.

Objects Physical
Dimensions Train (80%) Validate (10%) Test (10%)

Class (mm) Images ROI Images ROI Images ROI

A 300 × 210 88 188 11 22 13 26
B 400 × 300 64 77 8 13 8 12
C 600 × 600 26 51 3 6 3 6
D 600 × 350 50 50 6 6 6 6
E 550 × 300 18 51 2 6 3 6

The VIA application used to annotate the objects from the images is a lightweight
web-based application that can separate each object into its respective class and save the
data as a ‘JSON’ file. Figure 3 shows acquired images of the manufactured target objects
with their annotated lining around each object of interest.
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3.3. Image Preprocessing

Images went through several preprocessing techniques, which included adding data
augmentation parameters, as shown in Table 2. The preprocessing techniques were applied
sequentially. It should be noted that the images were augmented in a fixed arrangement
to ensure stability with results after testing. This defines the sequence of augmentation
techniques that need to be applied to each image. The sequence of augmentation was
applied according to Figure 4. The lighting conditions were controlled during the collection
of training, validating and testing datasets; however, due to the slight angle formed as the
object was suspended from the conveyor hanger, the brightness was increased to minimize
the loss of detail due to this challenge. Saturation, grayscale and sharpness were increased
until defined metal folds and edges from the objects of interest were noticeable. The final
values from the experimental results are shown in Table 2.
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Table 2. Image preprocessing.

Augmentation Applied Units

Grayscale 0.75
Saturation 10
Brightness 5
Sharpness 0.5
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the other classes in a single pane that belongs to the same image. This is applied to every 
annotated image that is fed into the model during the training phase. With the isolation 
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3.4. Mask R-CNN Model Selection

Figure 5 illustrates how the model segments an image into its class of objects with its
corresponding mask as generated by VIA. Each class is grouped together separately from
the other classes in a single pane that belongs to the same image. This is applied to every
annotated image that is fed into the model during the training phase. With the isolation of
each class, the model is able to learn the characteristics of each object class. Mask R-CNN
combines all losses to calculate the total multi-task losses. Finally, the isolation in classes is
used to calculate the mask losses for each class independently [15].
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Figure 5. (a) The second panel contains class B and the third panel contains class A; (b) the second
panel contains class B and the third panel contains class C; (c) the second panel contains class E and
the third panel contains no class; (d) the second panel contain class D and the third panel contains
class A.

3.5. Default Hyperparameter Settings

Table 3 provides the default hyperparameters that were used in the model training.
The number of epochs, which is a full pass over the entire training set, was set to 10. The
steps per epoch were calculated by using the training dataset divided by the batch size
which is the number of training images used in one training step. A weight decay of 0.0001
was used to reduce overfitting of the model by the addition of a penalty value allowing the
model to generalize acceptably. The learning momentum accelerates the optimization of
the model through increased stability of gradient descent.

Table 3. ResNet101 hyperparameter settings.

Hyperparameters Experiment Value

Epochs 10
Steps per Epoch 100
Weight Decay 0.0001

Learning Momentum 0.9

4. Experimental Results and Analysis
4.1. Experimental Hardware Configuration

The hardware consisted of two cameras mounted on each side of the conveyor mono-
rail facing the objects of interest as illustrated with a block diagram in Figure 6. A Basler™
ACE acA1600-40gc CMOS camera (Basler™, TANDM Technologies (Pty) Ltd., Cape Town,
South Africa) was chosen for image acquisition due to it delivering 2 MP resolution images
at 60 frames per second. The computer used to perform the training and testing with the
Mask R-CNN model was equipped with an Nvidia® GTX 1650 4 GB with 32 GB of RAM
running an AMD® Ryzen 5 3600 6-Core processor. There was a generic retroreflective
sensor used as a trigger to capture the images whenever the hanger passed a fixed point.
The sensor was connected to a Moxa® ioLogik E1200 I/O module that was connected to
the computer. Figure 7 illustrates the hardware setup in the field.
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Figure 7. Experimental setup of the image capturing system.

4.2. Ambient Light Conditions

It was noted that ambient lighting plays a significant role in identifying the edges of
an object of interest [40–45]. Too intense lighting may overexpose an image and introduce
blur, while inadequate lighting may not allow for adequate detail to be captured by the
camera [44,45]. For these reasons, the cameras were installed in a controlled environment
where illuminating conditions were maintained within an enclosed room with 8000 lumens
per 20 square meters and a colour temperature of 4000 K.



Automation 2024, 5 223

4.3. Evaluation Criteria

In this study, Average Precision (AP) was the metric used to determine the efficacy
of the model. To calculate this metric, the precision and recall values were needed to
generate a precision versus recall comparison. The area under this curve shows the AP
percentage per trained model. The AP calculated in this study is the average over all
classes as mentioned in the COCO metrics description [46] and would thus traditionally be
referred to as the Mean Average Precision (mAP).

The model precision is calculated as:

Precision =
TP

TP + FP
(1)

where True Positive (TP) represents the objects that were detected by the model and are
the correctly detected class. False Positive (FP) represents objects that were incorrectly
classified.

The recall of the model is given by:

Recall =
TP

TP + FN
(2)

where False Negative (FN) are objects with a positive class that were present in the image
but were not detected by the model.

The area under the precision–recall curve represents the AP of the model, where p and
r represent the precision and recall, respectively:

AP =
∫ 1

0
p(r) dr (3)

The results focus on the average precision of all trained models with a comparison
to variations in the learning rate. The thresholds selected for the Intersection Over Union
(IOU) were set to AP50, AP75, and AP90. The Mask R-CNN was able to produce the
required results at an average precision percentage of 98.27% after fine-tuning the model,
which is illustrated in Figure 8.
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4.4. Average Precision of the Model at Different Thresholds

The average precision metric is the most generic form method to determine its efficacy.
Table 4 shows the average precision of the model at different IOU (intersection over union)
thresholds. The learning algorithm would ignore the predicted objects at an IOU that is less
than the threshold that was selected. The learning rate was selected at three setpoints and
affects how quickly the model can adapt to the problem. A learning rate that is too high
may cause learning to jump over the minimum while a learning rate that is too low might
cause it not to converge or become ‘trapped’ at a local minimum relating to loss function.

Table 4. Average Precision at varying learning rates.

Learning Rate AP50 (%) AP75 (%) AP90 (%)

0.00002 95.05 91.45 91.28
0.0002 96.01 96.43 95.98
0.002 95.55 96.55 98.27 1

1 Trained model with the highest average precision.

4.5. The Precision–Recall Curve of the Model at Different Thresholds

To determine the average precision of a model, the precision–recall curve needs to be
created and the area below it would determine the average precision. This is illustrated in
Figure 9 for the different AP learning rates.
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4.6. Confusion Matrix

The confusion matrix was used to determine the overall accuracy of the model after
the model with the highest average precision was attained as illustrated in Figure 10.
The columns represent the actual objects per class present in the image while the rows
characterize the predicted objects per class.
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4.7. Losses over Epochs Graph

Figure 11 shows the losses as the model is trained over 10 epochs. This graph provides
insight to model overfitting or underfitting. In this case, both the train and test losses are
converging and the gaps between each are not diverging from each other, indicating that
the model is generalizing satisfactorily given the custom dataset.
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4.8. Metric Evaluation Criteria

The kappa (K) coefficient was used to determine the overall accuracy of the model,
and the following metrics required in the equation were calculated. Po denotes the correctly
observed agreements and Pe denotes the expected agreements.

K =
Po − Pe
1 − Pe

(4)

The overall accuracy is calculated by taking the sum of all the correctly classified
objects and dividing them by the total number (‘57’, as denoted in the bottom right corner
of Figure 10). The error of commission is calculated by the fraction of objects that were
predicted to be in a specific class that they do not belong to. These results are tabulated in
Table 5. The inference time for the proposed Mask R-CNN was documented at ~200 ms per
frame on a GPU using the COCO dataset [15]. In this study, given the proposed hardware
configuration, we were able to achieve an inference time of ~400 ms per frame.

Table 5. Overall accuracy of the model.

Metric Classes Learning Rate 0.00002 Learning Rate 0.0002 Learning Rate 0.002

AP50 (%) AP75 (%) AP90 (%) AP50 (%) AP75 (%) AP90 (%) AP50 (%) AP75 (%) AP90 (%)

Accuracy 93.33 85.48 83.08 91.80 88.89 90.32 93.33 94.91 98.25

Error of
Commission

BG 0 0 0 0 0 0 0 0 0
A 7.69 7.69 7.69 7.69 7.69 14.29 7.69 7.69 7.69
B 0 21.21 18.75 13.33 18.75 13.33 10.34 7.14 0
C 0 0 0 0 0 0 0 0 0
D 33.33 0 33.33 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0

4.9. Analysis of Results

The overall accuracy and average precision over the predetermined IoU thresholds of
the trained models have shown improved results as the learning rate value was increased.
However, it must be noted that the model was unable to be trained when the learning
rate was set to 0.02 and 0.2, leading to unstable convergence of the model. The inference
time of ~400 ms per frame made this a viable approach as the production line speed of 0.1
m/s. Using a capture window of 10 frames after the conveyor hanger passed the proximity
sensor equated to a time frame of approximately 4 s. Ten frames were used to average
the objects detected to reduce the amount of false positive detections. This made for a
travel distance of 0.4 m, which was subsequently within the capture window period. Using
this approach a model with an average precision of 98.27% and an overall accuracy of
98.25% was achieved. An error of commission of 7.69% was noted in ‘class A’ only. In the
experimental phase, all objects were positively detected in all defined classes. However,
there was an instance where a false positive of ‘class A’ was detected in the background,
due to it being very similar in shape to ‘class A’ thus adding to the error of commission.
It should be noted that ‘class B’ and ‘class E’ share similar features and differ mainly in
their dimensions. The Mask R-CNN model was able to successfully detect and differentiate
between both classes, even with them being in close proximity to each other.

5. Conclusions

In this research, a Mask R-CNN was applied to detect parts on an enamel coating
production line. These identified parts would be counted, and the data would be used to
assess overall production throughput and performance. The lighting and environmental
conditions were maintained throughout all data captures used for experimental training
and testing of the model. From the results of the proposed methodology, the Mask R-CNN
may be deemed as a reliable model to be used within an industrial environment of this
nature, producing an average precision of 98.27% and an overall accuracy of 98.25% using
real-world image datasets captured from the industrial facility. Notably, all objects were



Automation 2024, 5 227

reliably detected for each class. Future improvements that could be considered would
include isolating the area within the images with a bounding box where the objects of
interest are located. This would eliminate false positive detections from background objects
and noise. Further enhancements to the approach would include the use of pixel-wise
segmentation that is revealed from the mask branch of the model to determine the exact
location of the parts suspended on the hanger. This would reduce the wastage of enamel
powder coating as used in the spray-painting process and improve the overall quality of the
manufactured parts. Furthermore, the segmentation mask would be useful in determining
optimal parts positioning on the conveyor line, which would aid in efficient robotic spray-
painting systems.

Supplementary Materials: The following supporting Mask R-CNN GitHub repository can be down-
loaded at: https://github.com/matterport/Mask_RCNN (Accessed on 2 September 2022).

Author Contributions: Conceptualization, T.C. and N.P.; methodology, T.C. and N.P.; software, T.C.;
validation, T.C.; formal analysis, T.C. and N.P.; investigation, T.C.; resources, T.C.; data curation,
T.C.; writing—original draft preparation, T.C.; writing—review and editing, N.P.; visualization, T.C.;
supervision, N.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Fremont, V. The Digital Transformation of the Manufacturing Industry: Metamorphic Changes and Value Creation in the

Industrial Network. Ph.D. Thesis, University of Gävle, Gävle, Sweden, 2021.
2. Libes, D.; Shin, S.-J.; Woo, J. Considerations and Recommendations for Data Availability for Data Analytics for Manufacturing. In

Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November
2015. [CrossRef]

3. Weber, B.; Yarandi, H.; Rowe, M.; Weber, J. A Comparison Study: Paper-Based versus Web-Based Data Collection and Man-
agement. Appl. Nurs. Res. 2005, 18, 182–185. [CrossRef]

4. Wang, J.; Zhang, W.; Shi, Y.; Duan, S.; Liu, J. Industrial Big Data Analytics: Challenges, Methodologies, and Applications. arXiv
2018, arXiv:1807.01016.

5. Wahi, M.M.; Parks, D.V.; Skeate, R.C.; Goldin, S.B. Reducing Errors from the Electronic Transcription of Data Collected on Paper
Forms: A Research Data Case Study. J. Am. Med. Inform. Assoc. 2008, 15, 386–389. [CrossRef] [PubMed]

6. Panko, R. Thinking Is Bad: Implications of Human Error Research for Spreadsheet Research and Practice. arXiv 2008,
arXiv:0801.3114.

7. Atkinson, I. Accuracy of Data Transfer: Double Data Entry and Estimating Levels of Error. J. Clin. Nurs. 2012, 21, 2730–2735.
[CrossRef]
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