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Abstract

:

Artificial neural networks (ANN) have a great promise in predicting the load-bearing capacity of building structures. The purpose of this work was to develop ANN models to determine the ultimate load of eccentrically compressed concrete-filled steel tubular (CFST) columns of circular cross-sections, which operated on the widest possible range of input parameters. Short columns were considered for which the amount of deflection does not affect the bending moment. A feedforward network was selected as the neural network type. The input parameters of the neural networks were the outer diameter of the columns, the thickness of the pipe wall, the yield strength of steel, the compressive strength of concrete and the relative eccentricity. Artificial neural networks were trained on synthetic data generated based on a theoretical model of the limit equilibrium of CFST columns. Two ANN models were created. When training the first model, the ultimate loads were determined at a given eccentricity of the axial force without taking into account additional random eccentricity. When training the second model, additional random eccentricity was taken into account. The total volume of the training dataset was 179,025 samples. Such a large training dataset size has never been used before. The training dataset covers a wide range of changes in the characteristics of the pipe metal and concrete of the core, pipe diameters and wall thicknesses, as well as eccentricities of the axial force. The trained models are characterized by high mean square error (MSE) scores. The correlation coefficients between the predicted and target values are very close to 1. The ANN models were tested on experimental data for 81 eccentrically compressed samples presented in five different works and 265 centrally compressed samples presented in twenty-six papers.
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1. Introduction


Concrete-filled steel tubular columns are a promising type of building structure. They are widely used in the construction of high-rise buildings, transport structures, overpasses, etc. [1,2,3,4]. Compared to traditional reinforced concrete elements, CFST structures have a number of advantages, which primarily include an increase in load-bearing capacity due to the work of concrete under conditions of triaxial compression [5], savings on formwork and reinforcement work, etc.



Improving methods for calculating the load-bearing capacity of CFST columns is an urgent task, which is confirmed by the large number of theoretical and experimental works published recently on this topic [6,7,8].



When determining the load-bearing capacity of CFST columns, two approaches are most common. The first approach is to use empirical dependencies obtained from experimental data [9]. These dependencies are quite simple and suitable for engineering calculations, but the range of parameter changes in which the experiments were carried out limits their scope.



The second approach is finite element modeling in a three-dimensional setting, taking into account the real deformation diagrams of concrete and steel, as well as the contact interaction between the shell and the concrete core. A significant number of publications are devoted to the issues of finite element modeling of the stress–strain state of CFST columns [10,11,12,13,14,15,16,17]. This approach provides good agreement with experimental data but requires great computational resources and time.



Recently, machine learning methods have been widely used in the task of predicting the load-bearing capacity of CFST columns. In the work by Tran et al. [18], an empirical formula was proposed to determine the load-bearing capacity of centrally compressed square-section concrete tubular columns using an artificial neural network (ANN). ANN training was performed on experimental data for 300 columns presented in the literature. A comparative analysis showed greater stability and accuracy of the ANN compared to other existing formulas.



In another work, Tran et al. [19] built an artificial neural network model to predict the load-bearing capacity of centrally compressed CFST columns with a circular cross-section. Unlike the previous work, training was carried out on the results of numerical experiments rather than full-scale ones. To generate the dataset, three-dimensional finite element analysis was used in a nonlinear formulation in the ABAQUS environment. The ANN training database included data for 768 columns with different lengths, outer cross-sectional diameters, pipe wall thickness, steel yield strength and concrete compressive strength. For practical engineering calculations, the authors prepared a tool with a graphical interface.



In ref [20], Du et al. proposed two ANN models to determine the ultimate load under central compression of square-section CFST columns. Both models were trained on experimental data for 275 samples, and 30 samples were used for testing. The output data of the neural networks was compared with the results of calculations according to the design codes of various countries, and it was found that the resulting functional dependence of the load-bearing capacity on the main parameters differs somewhat from those presented in the design codes.



In ref [21], Al-Khaleefi et al. discussed the issues of predicting the fire resistance of CFST columns using artificial neural networks. Based on neural network modeling, a functional dependence of the CFST columns’ fire resistance index on the parameters that determine the dimensions of the samples, material characteristics and loading conditions was constructed. The total dataset included 35 experimental samples, of which 27 samples were used for training and 8 for testing. Another study on predicting the fire resistance of CFST columns using an ANN is presented in the work of Moradi et al. [22]. This paper is based on a larger database, including testing of 300 samples.



In ref [23], Zarringol et al. built artificial neural network models to predict the ultimate load for CFST columns of rectangular and circular cross-sections under central and eccentric compression. Compared to the previous works, larger datasets were used to train the ANN: 895 experiments for centrally compressed rectangular columns, 392 experiments for eccentrically compressed rectangular columns, 1305 experiments for centrally compressed circular columns, and 499 experiments for circular columns subjected to eccentric compression. The accuracy of ultimate load prediction was also compared with design codes of various countries.



CFST columns are also the object of study of ref [24], in which the ultimate load under central compression of columns was predicted using Multiphysics Artificial Intelligence. This article compared models based on an artificial neural network, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP). The research dataset contained data from 1667 experiments, of which 702 corresponded to short columns and 965 corresponded to long columns. Gene Expression Programming, in combination with the finite element method, was also used in [25] to predict the strength of CFST columns made of high-strength concrete.



Ref [26] proposes a hybrid model that includes an ANN with a particle swarm optimization (PSO) algorithm. This model was used to predict flexural bending capacity and flexural stiffness at the initial and serviceability limits of CFST beams.



Among recent artificial intelligence techniques, the gradient boosting algorithm is currently gaining great popularity. Ref [27] demonstrates the application of this algorithm to predicting the strength of centrally compressed CFST columns of circular cross-sections. A comparison was made with other machine learning algorithms, such as random forest (RF), support vector machines (SVM), decision tree (DT) and deep learning.



In ref [28], the following machine learning models were applied to solve the same problem: back-propagation neural network (BPNN), genetic algorithm (GA)-BPNN, radial basis function neural network (RBFNN), Gaussian process regression (GPR) and multiple linear regression (MLR). The training dataset included 2045 centrally compressed columns selected through an extensive literature review. This paper shows that forecasting efficiency can be improved by dividing columns into subgroups depending on slenderness.



There are also publications in which machine learning methods are used not only to predict the ultimate load but also to predict the load–strain curve. In ref [29], Zarringol et al. showed the successful use of an artificial neural network in engineering calculations, which predicts the complete deformation diagram of centrally compressed CFST columns of round and square sections. For training, a database was used that included the results of 1152 finite element calculations in the ABAQUS environment, as well as the results of 392 full-scale experiments.



The review shows that machine learning methods are a promising tool in predicting the load-bearing capacity of CFST columns. At the same time, most existing publications refer to centrally compressed elements. For eccentrically compressed columns, compared to centrally compressed structures, an additional parameter affecting the load-bearing capacity is the eccentricity of the axial force. Therefore, to build ANN models that predict the load-bearing capacity of eccentrically compressed CFST columns, a significantly larger dataset size is required. The purpose of this work is to develop artificial neural network models that could predict with high accuracy the ultimate load for the entire possible range of parameters affecting the load-bearing capacity of eccentrically compressed columns. In our case, neural networks will be trained on synthetic data obtained on the basis of a theoretical model, followed by comparison with experimental data.




2. Materials and Methods


The process of building a model of any artificial neural network includes choosing its architecture and training. As an environment for implementing the ANN model, the MATLAB package (Neural Network Toolbox) was selected.



The CFST columns of circular cross-sections were selected as the object of study since this cross-sectional shape is the most common in the designs of buildings and structures for various purposes. The prediction of the ultimate load     N   u l t     (kN) in the developed ANN models was carried out according to 5 input parameters: outer diameter of the column     D   p     (mm), pipe wall thickness     t   p     (mm), yield strength of steel     R   y     (MPa), compressive strength of concrete     R   b     (MPa) and relative eccentricity   e /   D   p    . We were considering short columns for which deflection did not lead to a significant increase in the bending moment, so the length of the elements was not included in the input parameters. Columns, according to [30], are considered short if their slenderness (the ratio of the calculated length to the radius of gyration of the section) does not exceed 14.



A feedforward network architecture was selected as it is one of the most common neural network types. The developed ANN model contains 2 hidden layers. The number of neurons in each hidden layer is 16. The TANSIG (hyperbolic tangent) function was used as the activation function for neurons in both layers. The architecture of the developed neural networks is shown schematically in Figure 1.



Unlike most previous works, where training is carried out on experimental data, in our work the neural networks were trained on synthetic data. Experimental data were not used for training, since they are not so numerous and could not cover the full variety of column sizes and concrete and steel characteristics. However, after training the neural networks, their performance was tested using experimental data.



When generating a dataset for training, the provisions presented in the Russian design codes for composite steel and concrete structures SR 266.1325800.2016 [30] were used. Columns without bar reinforcement were considered, in which only a steel pipe acts as a reinforcement. When determining the breaking load, the stress diagrams in concrete and steel in the limit state were assumed to be rectangular; the work of tensile concrete was not taken into account. The diagram for determining the ultimate load under eccentric compression of a CFST column is shown in Figure 2.



The strength calculation of normal sections of eccentrically compressed CFST elements without bar reinforcement according to SR 266.1325800.2016 is performed by the limit equilibrium method from the condition:


  N · e ≤   2   3     r   b   3     R   b p       sin   3      α   +   1   π     A   p     r   p     sin    α       R   y   +   R   p c     ,  



(1)




where   N   is the axial force,   e   is the eccentricity of the axial force,     r   b   = (   D   p   − 2   t   p   ) / 2   is the radius of the concrete core,     R   b p     is the compressive design strength of concrete taking into account the effect of lateral compression,   α   is the angle that determines the size of the compressed zone of concrete,     A   p   = π   D   p     t   p     is the cross-sectional area of the steel pipe,     r   p   = (   D   p   −   t   p   ) / 2   is the average radius of the steel pipe,     R   p c     is the design strength of a steel pipe under compression.



The compressive design strength of concrete taking into account the effect of lateral compression in [30] is determined by the formula:


    R   b p   =   R   b   + Δ   R   b   ⋅ m ;  Δ   R   b   =   2 + 2.52 ·   e   −   1   c       R   y     A   p   +   R   b     A   b             t   p       D   p   − 2   t   p       R   p   ;  m =       1 −   7.5 e     D   p   − 2   t   p     ,   i f     D   p   − 2   t   p   − 7.5 e ≥ 0         0 ,     i f     D   p   − 2   t   p   − 7.5 e < 0         .  



(2)







The coefficient   c   in Formula (2) is taken equal to 25 MN.



The design strength of a pipe under compression is determined by the formula:


    R   p c   =   R   y     1 − 0.25 ⋅ m   .  



(3)







Angle α in Formula (1) is determined from the equation:


    r   b   2     α −   1   2     sin    2 α       R   b p   +   α   π     A   p     R   p c   −   1 −   α   π       A   p     R   y   = N .  



(4)







Expression (1) allows one to check the fulfillment of the column strength condition but does not find the ultimate load at a given eccentricity. For a given eccentricity of the axial force e, determining the magnitude of the ultimate load based on the SR 266.1325800.2016 method is a very non-trivial task. Equation (4) is transcendental and requires the use of numerical methods to solve. The task of determining the ultimate compressive force at a known value of e was solved by us by stepwise increasing the load from 0 to     N   u l t , 0    , where     N   u l t , 0     is the ultimate load for a given sample under central compression. At each step, the root of Equation (4) was numerically determined, and then the fulfillment of Condition (1) was checked. When generating the training sample, the range of changes in the compressive strength of concrete     R   b     was taken from 10 to 65 MPa; the yield strength of the steel varied from 240 to 440 MPa. The relative eccentricity   e /   D   p     varied from 0 to 0.65. The values of outer diameters of pipes and wall thicknesses used during training corresponded to the Russian assortment of electric-welded straight-seam pipes GOST 10704-91 (Table 1).



For quantities     R   b     and     R   y    , 5 different values were used from     R   b , m i n     (    R   y , m i n    ) to     R   b , m a x     (    R   y , m a x    ) with uniform steps. For wall thickness     t   p    , 11 different values from     t   p , m i n     to     t   p , m a x     were used in uniform increments. For the relative eccentricity, 21 different values   e /   D   p     were taken from 0 to 0.65 with equal steps. Thus, the size of the training sample was 5 × 5 × 11 × 21 × 31 = 179,025.



During training, the sample was randomly divided into 3 parts: “Train”, “Validation” and “Test” in the proportion of 70%, 15% and 15%. To train the ANN, we used the Levenberg–Marquardt algorithm. The value of the mean square error (MSE) was taken as a criterion for the quality of training:


  M S E =   1     n   s       ∑  i = 1     n   s            d   i   −   y   i       2     ,  



(5)




where     n   s     is the sample size,     y   i     are the target values and     d   i     are the predicted values.



In addition to the ANN model trained to determine the maximum load at a given eccentricity value   e  , another ANN model was also built to determine the value     N   u l t    , taking into account additional random eccentricity. In accordance with Russian standards for the design of composite steel and concrete structures [30], the largest of the values [0.01 m; Dp/30; l/600] was taken as a random eccentricity, where l was the design length of the column. Since short columns were considered, the value of random eccentricity was taken as the largest of the two values [0.01 m; Dp/30].




3. Results and Discussion


Figure 3 shows the training performance graph for the model trained on ultimate loads without taking into account additional random eccentricities. Figure 4 is the same for the model trained taking into account additional random eccentricities. In the first case, the learning process took 474 epochs, and in the second case, it took 682 epochs. The model trained without taking into account additional random eccentricities is characterized by a four-times-smaller MSE value: 4693 vs. 18,940. The MSE values for the “Train”, “Validation” and “Test” parts of the sample are almost the same: the blue, green and red lines overlap each other. A small difference in MSE for the “Train”, “Validation” and “Test” parts of the sample indicates its sufficient volume.



Figure 5 and Figure 6 show regression plots for the two models. The x-axis shows the target values T of the ultimate load. The y-axis shows the predicted Y values of the ultimate load. Most of the points on the graphs fit on the straight line Y = T. The correlation coefficients R of both models are close to 1. High correlation coefficients between the target and predicted values are achieved thanks to the two-layer neural network architecture, large number of neurons in hidden layers and large dataset size.



The constructed models were tested on experimental data for 81 eccentrically compressed CFST columns of circular cross-sections, presented in five different works [31,32,33,34,35]. The diameter of the columns varied from 103 to 720 mm. The wall thickness changed from 1.81 to 11.95 mm. The yield strength of steel varied from 248.9 to 440 MPa. The compressive strength of concrete changed from 21.5 to 63.8 Mpa. The ratio of the axial force eccentricity to the outer diameter of the column e/Dp varied from 0.05 to 0.64. The results are summarized in Table 2. In this table, N1 are the values of the ultimate loads determined by the first ANN model (without taking into account additional random eccentricities), and N2 are the values of the ultimate loads determined by the second ANN model (taking into account additional random eccentricities).



From Table 2, it can be seen that for most samples the results predicted by the first model are in good agreement with the experimental data. The average value of the ratio N1/Nexp is 0.97, maximum value is 1.38 and minimum value is 0.79. The standard deviation σ = 0.11 and the coefficient of variation CV = 10.9%.



Deviations of the predicted values from the experimental results can be explained, on the one hand, by the scatter of experimental data and, on the other hand, by simplifications adopted in the theoretical model, which is used to train the artificial neural network. It should also be noted that, at present, there is no generally accepted criterion for CFST columns to reach the limit state. Some researchers take the magnitude of deformation as a criterion for destruction and others take the achievement of the pipe material’s yield point, etc.



The second model predicts the maximum load with a safety margin for most samples. The average value of the N2/Nexp ratio is 0.82, the maximum value is 1.11 and the minimum is 0.61. The standard deviation σ = 0.124 and the coefficient of variation CV = 15.1%. In the design practice, the second model should be used, which takes into account random eccentricities.



Also, the first model, which predicts the values of the ultimate load without taking into account additional random eccentricities, was tested on experimental data for 265 centrally compressed columns, presented in 26 different works [31,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60]. A comparison of the predicted values with the experimental data is given in Table 3. The diameter of the columns in papers [31,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] varied from 100 to 1020 mm, the wall thickness varied from 0.86 to 13.25 mm, the yield strength of steel varied from 165.8 to 853 MPa and the compressive strength of concrete varied from 16.7 to 114.3 MPa.



Despite the fact that some values of the input parameters in Table 3 are outside the range in which the neural network was trained, it showed good ability to extrapolate data. The average value of the ratio     N   1   /   N   e x p     is 0.96. The maximum value of the ratio     N   1   /   N   e x p     is 1.14, the minimum is 0.77. The standard deviation   σ   = 0.06 and the coefficient of variation CV = 5.9%.




4. Conclusions


During the conducted study, the following main results were obtained:



1. Two models of artificial neural networks have been developed to predict the ultimate load of eccentrically compressed short concrete-filled steel tubular columns of circular cross-sections either without taking into account or taking into account additional random eccentricities. The developed ANNs are based on the theoretical model of the limiting equilibrium of CFST columns. Machine learning models are trained on the entire possible range of the diameters and wall thicknesses of metal tubes, as well as on the wide range of changes in the design strength of concrete and steel. The volume of the training dataset was 179,025 samples, which is hundreds and thousands of times larger than the sample sizes previously used by other researchers.



2. Training of the ANN models on synthetic data was successful; the trained models are characterized by good performance in terms of mean squared error, and the correlation coefficients between the predicted and target values are close to 1.



3. The results of predicting ultimate loads using artificial neural networks were compared with the results of experiments for 81 eccentrically compressed samples presented in five different works and 265 centrally compressed samples presented in twenty-six papers. The first ANN model, which was trained on ultimate loads determined without taking into account random eccentricities, showed good agreement with experimental data for most samples. The second model, which takes into account random eccentricities in accordance with the requirements of design standards, predicts the maximum load with a safety margin for most prototypes. This model can be used in the design process to quickly determine the bearing capacity of columns at a given eccentricity.



In this work, when training artificial neural networks, the basis was a simplified model for determining the ultimate load, in which the stress diagrams in concrete and steel in the limit state were assumed to be rectangular, and the work of tensile concrete was not taken into account. The goal of our further research will be the development of artificial neural networks based on more complex models [61,62,63]. In this case, the nonlinearity of the diagrams of concrete and steel, as well as the dilatation effect, will be taken into account. Also, this article considers only short columns, for which the additional eccentricity of the axial force caused by the deflection of the element can be neglected. In the future, it is planned to build ANN models to predict the load-bearing capacity of slender CFST columns.



It should also be noted that artificial neural networks are not the only machine learning algorithm. In some cases, other algorithms turn out to be more effective when applied to concrete and reinforced concrete structures, for example, support vector regression (SVR) [64], multi-objective grasshopper optimization algorithm (MOGOA) [65] and others. In the future, it is also planned by us to use alternative algorithms to analyze the datasets generated in this work.
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Figure 1. Artificial neural network architecture. 
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Figure 2. Diagram for determining the ultimate load. 
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Figure 3. Training performance graph for the model trained without taking into account random eccentricities. 
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Figure 4. Training performance plot for the model trained with additional random eccentricities. 






Figure 4. Training performance plot for the model trained with additional random eccentricities.



[image: Civileng 05 00008 g004]







[image: Civileng 05 00008 g005] 





Figure 5. Regression plot for the model trained without taking into account additional random eccentricities. 
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Figure 6. Regression plot for a model trained taking into account additional random eccentricities. 
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Table 1. The values of the outer diameters of pipes, as well as the minimum and maximum wall thicknesses used in training.
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№

	
      D   p   , m m    

	
      t   p   , m m    




	
Min

	
Max






	
1

	
102

	
1.8

	
5.5




	
2

	
108

	
1.8

	
5.5




	
3

	
114

	
1.8

	
5.5




	
4

	
127

	
1.8

	
5.5




	
5

	
133

	
1.8

	
5.5




	
6

	
140

	
1.8

	
5.5




	
7

	
152

	
1.8

	
5.5




	
8

	
159

	
1.8

	
8




	
9

	
168

	
1.8

	
8




	
10

	
177.8

	
1.8

	
8




	
11

	
180

	
4

	
5




	
12

	
193.7

	
2

	
8




	
13

	
219

	
2.5

	
22




	
14

	
244.5

	
3

	
22




	
15

	
273

	
3.5

	
22




	
16

	
325

	
4

	
22




	
17

	
355.6

	
4

	
22




	
18

	
377

	
4

	
22




	
19

	
406.4

	
4

	
22




	
20

	
426

	
4

	
22




	
21

	
478

	
5

	
12




	
22

	
508

	
4.5

	
24




	
23

	
530

	
5

	
20




	
24

	
630

	
7

	
24




	
25

	
720

	
7

	
30




	
26

	
820

	
7

	
30




	
27

	
920

	
7

	
20




	
28

	
1020

	
8

	
32




	
29

	
1120

	
8

	
20




	
30

	
1220

	
9

	
32




	
31

	
1420

	
10

	
32











 





Table 2. Results of testing the developed models of artificial neural networks on experimental data for eccentrically compressed CFST columns.
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№

	
Experiment

	
e/Dp

	
Dp, mm

	
tp, mm

	
Ry, MPa

	
Rb, MPa

	
Nexp, kN

	
N1, kN

	
        N   1       N   e x p        

	
N2, kN

	
        N   2       N   e x p        






	
Luksha and Nesterovich [31]




	
1

	
SB1

	
0.06

	
159

	
6

	
295

	
24.4

	
1406

	
1475

	
1.05

	
1044

	
0.74




	
2

	
SB2

	
0.13

	
159

	
6

	
295

	
25

	
1210

	
1045

	
0.86

	
850

	
0.70




	
3

	
SB3

	
0.26

	
159

	
6

	
295

	
26.9

	
932

	
831

	
0.89

	
700

	
0.75




	
4

	
SB4

	
0.06

	
159

	
6

	
295

	
35.7

	
1559

	
1659

	
1.06

	
1228

	
0.79




	
5

	
SB5

	
0.13

	
159

	
6

	
295

	
36.4

	
1412

	
1194

	
0.85

	
975

	
0.69




	
6

	
SB6

	
0.26

	
159

	
6

	
295

	
39

	
1066

	
936

	
0.88

	
797

	
0.75




	
7

	
SB7

	
0.06

	
219

	
8

	
290

	
36.1

	
2921

	
3084

	
1.06

	
2348

	
0.80




	
8

	
SB8

	
0.13

	
219

	
8

	
290

	
33.9

	
2698

	
2141

	
0.79

	
1841

	
0.68




	
9

	
SB9

	
0.26

	
219

	
8

	
290

	
35.7

	
1962

	
1667

	
0.85

	
1495

	
0.76




	
10

	
SB10

	
0.06

	
219

	
8

	
290

	
51.2

	
3308

	
3570

	
1.08

	
2797

	
0.85




	
11

	
SB11

	
0.13

	
219

	
8

	
290

	
48.2

	
3041

	
2498

	
0.82

	
2140

	
0.70




	
12

	
SB12

	
0.26

	
219

	
8

	
290

	
50.7

	
2289

	
1922

	
0.84

	
1719

	
0.75




	
13

	
SB13

	
0.13

	
159

	
6

	
440

	
43.2

	
1774

	
1624

	
0.92

	
1393

	
0.79




	
14

	
SB14

	
0.25

	
159

	
6

	
440

	
46.2

	
1346

	
1315

	
0.98

	
1144

	
0.85




	
15

	
SB15

	
0.38

	
159

	
6

	
440

	
42.2

	
1059

	
1004

	
0.95

	
888

	
0.84




	
16

	
SB16

	
0.13

	
159

	
6

	
440

	
60.3

	
1842

	
1890

	
1.03

	
1565

	
0.85




	
17

	
SB17

	
0.25

	
159

	
6

	
440

	
62.2

	
1515

	
1486

	
0.98

	
1269

	
0.84




	
18

	
SB18

	
0.38

	
159

	
6

	
440

	
63.8

	
1238

	
1162

	
0.94

	
1011

	
0.82




	
19

	
SB19

	
0.13

	
106

	
4

	
435

	
45

	
849

	
771

	
0.91

	
638

	
0.75




	
20

	
SB20

	
0.25

	
106

	
4

	
435

	
45.8

	
633

	
623

	
0.98

	
521

	
0.82




	
21

	
SB21

	
0.38

	
106

	
4

	
435

	
41.6

	
468

	
472

	
1.01

	
409

	
0.87




	
22

	
SB22

	
0.13

	
106

	
4

	
435

	
59

	
839

	
888

	
1.06

	
698

	
0.83




	
23

	
SB23

	
0.25

	
106

	
4

	
435

	
62.9

	
691

	
725

	
1.05

	
581

	
0.84




	
24

	
SB24

	
0.38

	
106

	
4

	
435

	
62.5

	
572

	
557

	
0.97

	
464

	
0.81




	
25

	
SB25

	
0.06

	
530

	
7.8

	
349.2

	
38.3

	
12,500

	
13,604

	
1.09

	
13,163

	
1.05




	
26

	
SB26

	
0.12

	
530

	
7.8

	
349.2

	
38.3

	
10,700

	
10,600

	
0.99

	
9227

	
0.86




	
27

	
SB27

	
0.06

	
530

	
11.95

	
322.6

	
38.3

	
14,500

	
15,636

	
1.08

	
15,350

	
1.06




	
28

	
SB28

	
0.12

	
530

	
11.95

	
322.6

	
38.3

	
12,500

	
11,519

	
0.92

	
10,636

	
0.85




	
29

	
SB29

	
0.06

	
630

	
6.6

	
303

	
28.4

	
12,000

	
13,351

	
1.11

	
12,977

	
1.08




	
30

	
SB30

	
0.13

	
630

	
6.6

	
303

	
28.4

	
10,500

	
9857

	
0.94

	
8877

	
0.85




	
31

	
SB31

	
0.06

	
630

	
9.8

	
311

	
38.8

	
17,000

	
18,821

	
1.11

	
18,655

	
1.10




	
32

	
SB32

	
0.13

	
630

	
9.8

	
311

	
38.8

	
15,000

	
13,189

	
0.88

	
12,613

	
0.84




	
33

	
SB33

	
0.06

	
720

	
7.7

	
395.4

	
31.4

	
18,500

	
20,793

	
1.12

	
20,405

	
1.10




	
34

	
SB34

	
0.13

	
720

	
7.7

	
395.4

	
31.4

	
16,000

	
15,096

	
0.94

	
13,589

	
0.85




	
35

	
SB35

	
0.06

	
720

	
9.6

	
315.6

	
31.4

	
18,500

	
20,587

	
1.11

	
20,504

	
1.11




	
36

	
SB36

	
0.13

	
720

	
9.6

	
315.6

	
31.4

	
16,000

	
14,660

	
0.92

	
13,751

	
0.86




	
37

	
SB37

	
0.06

	
720

	
11.74

	
274

	
31.4

	
19,000

	
20,943

	
1.10

	
20,377

	
1.07




	
38

	
SB38

	
0.13

	
720

	
11.74

	
274

	
31.4

	
16,650

	
14,649

	
0.88

	
13,765

	
0.83




	
Matsui et al. [32]




	
39

	
4-21

	
0.13

	
165.2

	
4.17

	
358.7

	
40.9

	
1265

	
1190

	
0.94

	
1053

	
0.83




	
40

	
4-63

	
0.38

	
165.2

	
4.17

	
358.7

	
40.9

	
767

	
726

	
0.95

	
661

	
0.86




	
41

	
4-105

	
0.64

	
165.2

	
4.17

	
358.7

	
40.9

	
558

	
482

	
0.86

	
447

	
0.80




	
42

	
P-78-2

	
0.07

	
106

	
3

	
298.9

	
37.1

	
603

	
639

	
1.06

	
441

	
0.73




	
43

	
P-78-3

	
0.13

	
106

	
3

	
298.9

	
37.1

	
531

	
491

	
0.92

	
406

	
0.76




	
44

	
P-78-4

	
0.23

	
106

	
3

	
298.9

	
37.1

	
405

	
411

	
1.01

	
346

	
0.85




	
45

	
P-78-5

	
0.3

	
106

	
3

	
298.9

	
37.1

	
345

	
354

	
1.03

	
308

	
0.89




	
46

	
P-78-6

	
0.42

	
106

	
3

	
298.9

	
37.1

	
256

	
285

	
1.11

	
257

	
1.00




	
47

	
P-78-7

	
0.57

	
106

	
3

	
298.9

	
37.1

	
200

	
230

	
1.15

	
214

	
1.07




	
Huixian et al. [33]




	
48

	

	
0.07

	
106

	
3

	
299

	
35.2

	
603

	
624

	
1.03

	
431

	
0.71




	
49

	

	
0.14

	
106

	
3

	
299

	
35.2

	
531

	
491

	
0.92

	
392

	
0.74




	
50

	

	
0.24

	
106

	
3

	
299

	
35.2

	
405

	
394

	
0.97

	
334

	
0.82




	
51

	

	
0.32

	
106

	
3

	
299

	
35.2

	
345

	
333

	
0.97

	
294

	
0.85




	
52

	

	
0.45

	
106

	
3

	
299

	
35.2

	
255

	
267

	
1.05

	
244

	
0.96




	
53

	

	
0.6

	
106

	
3

	
299

	
35.2

	
200

	
218

	
1.09

	
205

	
1.03




	
54

	

	
0.1

	
108.6

	
4.6

	
271.9

	
30.7

	
674

	
630

	
0.93

	
444

	
0.66




	
55

	

	
0.15

	
108.6

	
4.6

	
271.9

	
30.7

	
612

	
561

	
0.92

	
408

	
0.67




	
56

	

	
0.2

	
108.6

	
4.6

	
271.9

	
30.7

	
551

	
504

	
0.91

	
379

	
0.69




	
57

	

	
0.25

	
108.6

	
4.6

	
271.9

	
30.7

	
431

	
452

	
1.05

	
351

	
0.81




	
58

	

	
0.3

	
108.6

	
4.6

	
271.9

	
30.7

	
433

	
408

	
0.94

	
326

	
0.75




	
59

	

	
0.33

	
108.6

	
4.6

	
271.9

	
30.7

	
445

	
385

	
0.87

	
311

	
0.70




	
60

	

	
0.35

	
108.6

	
4.6

	
271.9

	
30.7

	
433

	
372

	
0.86

	
302

	
0.70




	
Zhong et al. [34]




	
61

	
A1

	
0.05

	
108.1

	
4.21

	
300.9

	
21.5

	
776

	
754

	
0.97

	
547

	
0.70




	
62

	
A2

	
0.1

	
103

	
2

	
300.9

	
21.5

	
285

	
348

	
1.22

	
310

	
1.09




	
63

	
A3

	
0.15

	
108

	
4.21

	
300.9

	
21.5

	
623

	
505

	
0.81

	
385

	
0.62




	
64

	
A4

	
0.15

	
108.5

	
4.75

	
300.9

	
21.5

	
669

	
551

	
0.82

	
409

	
0.61




	
65

	
A5

	
0.15

	
103

	
1.81

	
300.9

	
21.5

	
333

	
306

	
0.92

	
280

	
0.84




	
66

	
A6

	
0.2

	
108.1

	
4.33

	
300.9

	
21.5

	
563

	
466

	
0.83

	
362

	
0.64




	
67

	
A7

	
0.25

	
103

	
4.83

	
300.9

	
21.5

	
314

	
434

	
1.38

	
334

	
1.06




	
68

	
A8

	
0.25

	
103.3

	
2.02

	
300.9

	
21.5

	
289

	
265

	
0.92

	
248

	
0.86




	
69

	
A9

	
0.3

	
105.3

	
3.1

	
300.9

	
21.5

	
353

	
304

	
0.86

	
265

	
0.75




	
Cai et al. [35]




	
70

	
PA2-3

	
0.06

	
166

	
5

	
277.3

	
38.2

	
1642

	
1589

	
0.97

	
1208

	
0.74




	
71

	
PA2-4

	
0.06

	
166

	
5

	
277.3

	
38.2

	
1568

	
1589

	
1.01

	
1208

	
0.77




	
72

	
PA2-5

	
0.12

	
166

	
5

	
329.3

	
38.2

	
1568

	
1286

	
0.82

	
1078

	
0.69




	
73

	
PA2-6

	
0.12

	
166

	
5

	
294

	
41.1

	
1568

	
1250

	
0.80

	
1032

	
0.66




	
74

	
PA2-7

	
0.18

	
166

	
5

	
286.2

	
41.1

	
1127

	
1079

	
0.96

	
896

	
0.80




	
75

	
PA2-8

	
0.18

	
166

	
5

	
248.9

	
41.1

	
1201

	
1009

	
0.84

	
817

	
0.68




	
76

	
PA2-9

	
0.24

	
166

	
5

	
313.6

	
38.2

	
1039

	
962

	
0.93

	
836

	
0.80




	
77

	
PA2-10

	
0.24

	
166

	
5

	
279.3

	
38.2

	
990

	
902

	
0.91

	
763

	
0.77




	
78

	
PA2-11

	
0.36

	
166

	
5

	
279.3

	
38.2

	
735

	
702

	
0.96

	
615

	
0.84




	
79

	
PA2-12

	
0.36

	
166

	
5

	
296

	
38.2

	
843

	
726

	
0.86

	
647

	
0.77




	
80

	
PA2-13

	
0.6

	
166

	
5

	
296

	
41.1

	
564

	
507

	
0.90

	
459

	
0.81




	
81

	
PA2-14

	
0.6

	
166

	
5

	
296

	
41.1

	
510

	
507

	
0.99

	
459

	
0.90











 





Table 3. Comparison of ANN predicted values with experimental data for centrally compressed CFST columns.
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№

	
Experiment

	
Dp, mm

	
tp, mm

	
Ry, MPa

	
Rb, MPa

	
Nexp, kN

	
N1, kN

	
        N   1       N   e x p        






	
M.H. Lai, J.C.M. Ho [36]




	
1

	
CNO-1-114-30

	
111.5

	
0.96

	
370

	
31.4

	
479

	
513

	
1.07




	
2

	
CNO-1-114-30_1

	
111.6

	
0.95

	
370

	
31.4

	
456

	
513

	
1.13




	
3

	
CNO-1-114-80

	
111.6

	
0.96

	
370

	
79.9

	
955

	
1041

	
1.09




	
4

	
CNO-1-114-80_1

	
111.8

	
0.96

	
370

	
79.9

	
979

	
1043

	
1.07




	
5

	
CNO-3-114-30

	
114.8

	
2.86

	
284.9

	
31.4

	
719

	
709

	
0.99




	
6

	
CNO-3-114-80

	
114.7

	
2.86

	
284.9

	
79.9

	
1199

	
1198

	
1.00




	
7

	
CND-4-139-30_S

	
139

	
3.96

	
289.5

	
31.7

	
1010

	
1073

	
1.06




	
8

	
CN0-4-139-30_R

	
139

	
3.97

	
289.5

	
30.6

	
1022

	
1059

	
1.04




	
9

	
CNO-4-139-50

	
139

	
3.99

	
289.5

	
51.7

	
1297

	
1362

	
1.05




	
10

	
CNO-4-139-100_S

	
138.7

	
4

	
289.5

	
104.5

	
2070

	
1883

	
0.91




	
11

	
CNO-4-139-100_R

	
139.1

	
3.94

	
289.5

	
101.6

	
2040

	
1887

	
0.93




	
12

	
CNO-5-114-50

	
114.5

	
4.98

	
422.6

	
51.4

	
1274

	
1429

	
1.12




	
13

	
CNO-5-114-50_1

	
114

	
5.03

	
422.6

	
51.4

	
1379

	
1430

	
1.04




	
14

	
CNO-5-114-120

	
114.3

	
5.01

	
422.6

	
114.3

	
1876

	
1691

	
0.90




	
15

	
CN0-5-168-30

	
169.2

	
4.93

	
369

	
29.1

	
1727

	
1743

	
1.01




	
16

	
CNO-5-168-60

	
169.2

	
5.04

	
369

	
61.2

	
2556

	
2442

	
0.96




	
17

	
CNO-5-168-80

	
168.7

	
4.97

	
369

	
85.4

	
2926

	
2855

	
0.98




	
18

	
CNO-8-168-30

	
168.7

	
7.76

	
383.6

	
38.1

	
2507

	
2591

	
1.03




	
19

	
CNO-8-168-80

	
168.2

	
7.8

	
361.6

	
75.2

	
3101

	
3181

	
1.03




	
20

	
CNO-10-168-30

	
168.4

	
9.91

	
386.4

	
27

	
2533

	
2879

	
1.14




	
21

	
CNO-10-168-90

	
168.7

	
9.96

	
386.4

	
95.1

	
3940

	
3873

	
0.98




	
Gardner and Jacobson [37]




	
22

	
3

	
101.7

	
3.07

	
650.1

	
34.1

	
1112

	
987

	
0.89




	
23

	
4

	
101.7

	
3.07

	
650.1

	
31.2

	
1067

	
958

	
0.90




	
24

	
8

	
120.8

	
4.06

	
451.6

	
34.4

	
1200

	
1198

	
1.00




	
25

	
9

	
120.8

	
4.09

	
451.6

	
34.1

	
1200

	
1200

	
1.00




	
26

	
10

	
120.8

	
4.09

	
451.6

	
29.6

	
1112

	
1149

	
1.03




	
27

	
13

	
152.6

	
3.18

	
415.1

	
25.9

	
1200

	
1191

	
0.99




	
28

	
14

	
152.6

	
3.07

	
415.1

	
20.9

	
1200

	
1083

	
0.90




	
Luksha and Nesterovich [31]




	
29

	
SB1

	
530

	
7.8

	
349.2

	
38.3

	
14,000

	
13,518

	
0.97




	
30

	
SB2

	
630

	
6.6

	
303

	
28.4

	
13,700

	
13,327

	
0.97




	
31

	
SB3

	
630

	
7

	
225

	
40

	
16,200

	
15,588

	
0.96




	
32

	
SB4

	
630

	
7

	
291.4

	
40

	
16,660

	
16,775

	
1.01




	
33

	
SB5

	
630

	
7.61

	
349.5

	
38.9

	
18,000

	
17,982

	
1.00




	
34

	
SB6

	
630

	
7.9

	
300

	
40

	
17,200

	
17,540

	
1.02




	
35

	
SB7

	
630

	
7.9

	
300

	
77.8

	
28,700

	
28,830

	
1.00




	
36

	
SB8

	
630

	
8.44

	
350

	
38.3

	
18,600

	
18,476

	
0.99




	
37

	
SB9

	
630

	
10.21

	
323.3

	
42.7

	
20,500

	
20,433

	
1.00




	
38

	
SB10

	
630

	
11.6

	
347.2

	
51.1

	
24,400

	
24,500

	
1.00




	
39

	
SB11

	
720

	
7.7

	
395.4

	
31.4

	
21,000

	
20,820

	
0.99




	
40

	
SB12

	
720

	
7.93

	
388.4

	
37.8

	
25,500

	
23,313

	
0.91




	
41

	
SB13

	
720

	
8.3

	
312

	
16.7

	
15,000

	
13,796

	
0.92




	
42

	
SB14

	
820

	
8.93

	
331

	
50

	
33,600

	
34,696

	
1.03




	
43

	
SB15

	
1020

	
9.64

	
336

	
18.8

	
30,000

	
27,689

	
0.92




	
44

	
SB16

	
1020

	
13.25

	
368.7

	
32.1

	
46,000

	
44,305

	
0.96




	
Sakino and Hayashi [38]




	
45

	
L-20-1

	
178

	
9

	
283

	
21.3

	
2120

	
2191

	
1.03




	
46

	
L-20-2

	
178

	
9

	
283

	
21.3

	
2060

	
2191

	
1.06




	
47

	
H-20-1

	
178

	
9

	
283

	
43.6

	
2720

	
2624

	
0.96




	
48

	
H-20-2

	
178

	
9

	
283

	
43.6

	
2730

	
2624

	
0.96




	
49

	
L-32-1

	
179

	
5.5

	
249

	
21.2

	
1410

	
1447

	
1.03




	
50

	
L-32-2

	
179

	
5.5

	
249

	
22.9

	
1560

	
1484

	
0.95




	
51

	
H-32-1

	
179

	
5.5

	
249

	
42

	
2080

	
1898

	
0.91




	
52

	
H-32-2

	
179

	
5.5

	
249

	
42

	
2070

	
1898

	
0.92




	
53

	
L-58-1

	
174

	
3

	
266

	
22.9

	
1220

	
1042

	
0.85




	
54

	
L-58-2

	
174

	
3

	
266

	
22.9

	
1220

	
1042

	
0.85




	
55

	
H-58-1

	
174

	
3

	
266

	
43.9

	
1640

	
1494

	
0.91




	
56

	
H-58-2

	
174

	
3

	
266

	
43.9

	
1710

	
1494

	
0.87




	
Kato [39]




	
57

	
C04LB

	
301.5

	
4.5

	
381.2

	
26.6

	
3851

	
3758

	
0.98




	
58

	
C06LB

	
298.5

	
5.74

	
399.8

	
26.6

	
4537

	
4361

	
0.96




	
59

	
C08LB

	
298.4

	
7.65

	
384.2

	
26.6

	
4919

	
5046

	
1.03




	
60

	
C12LB

	
297

	
11.88

	
347.9

	
26.6

	
5909

	
6197

	
1.05




	
61

	
C04MB

	
301.5

	
4.5

	
381.2

	
34.2

	
4547

	
4251

	
0.93




	
62

	
C06MB

	
298.5

	
5.74

	
399.8

	
31

	
5125

	
4635

	
0.90




	
63

	
C08MB

	
298.4

	
7.65

	
384.2

	
34.1

	
5821

	
5501

	
0.95




	
64

	
C12MB

	
297

	
11.88

	
347.9

	
34.2

	
7222

	
6632

	
0.92




	
65

	
C2MBH

	
301.3

	
11.59

	
471.4

	
34.2

	
8594

	
8312

	
0.97




	
66

	
C06HB

	
298.5

	
5.74

	
399.8

	
79.1

	
7938

	
7685

	
0.97




	
67

	
C08HB

	
298.4

	
7.65

	
384.2

	
79.1

	
8388

	
8262

	
0.98




	
68

	
C12HB

	
297

	
11.88

	
347.9

	
79.1

	
9388

	
9170

	
0.98




	
Saisho et al. [40]




	
69

	
H-30.1

	
101.6

	
2.99

	
377.3

	
59.9

	
921

	
991

	
1.08




	
70

	
H-30.2

	
101.6

	
2.99

	
377.3

	
59.9

	
921

	
991

	
1.08




	
71

	
H-30.3

	
101.6

	
2.96

	
377.3

	
59.9

	
901

	
987

	
1.10




	
72

	
H-50.1

	
139.8

	
2.78

	
341

	
55

	
1323

	
1330

	
1.01




	
73

	
H-50.2

	
139.8

	
2.78

	
341

	
55

	
1391

	
1330

	
0.96




	
74

	
H-50.3

	
139.8

	
2.78

	
341

	
55

	
1313

	
1330

	
1.01




	
75

	
11-60.1

	
139.8

	
2.37

	
462.6

	
59.9

	
1558

	
1509

	
0.97




	
76

	
H-60.2

	
139.8

	
2.37

	
462.6

	
68

	
1577

	
1648

	
1.05




	
77

	
H-60.3

	
139.8

	
2.37

	
462.6

	
68

	
1577

	
1648

	
1.05




	
78

	
H-60.4

	
139.8

	
2.37

	
462.6

	
68

	
1626

	
1648

	
1.01




	
79

	
L-30.1

	
101.6

	
2.96

	
377.3

	
24.4

	
676

	
658

	
0.97




	
80

	
L-30.2

	
101.6

	
2.99

	
377.3

	
26.6

	
715

	
679

	
0.95




	
81

	
L-30.3

	
101.6

	
2.99

	
377.3

	
28.2

	
715

	
693

	
0.97




	
82

	
L-50.1

	
139.8

	
2.78

	
341

	
24.4

	
931

	
867

	
0.93




	
83

	
L-50.2

	
139.8

	
2.78

	
341

	
26.6

	
950

	
899

	
0.95




	
84

	
L-60.1

	
139.8

	
2.37

	
462.6

	
26.6

	
1098

	
964

	
0.88




	
85

	
L-60.2

	
139.8

	
2.37

	
462.6

	
26.6

	
1107

	
964

	
0.87




	
86

	
L-60.3

	
139.8

	
2.37

	
462.6

	
26.6

	
1078

	
964

	
0.89




	
Yamamoto et al. [41]




	
87

	
C10A-2A-1

	
101.4

	
3.02

	
371

	
22.3

	
660

	
642

	
0.97




	
88

	
C10A-2A-2

	
101.9

	
3.07

	
371

	
22.3

	
649

	
652

	
1.00




	
89

	
C10A-2A-3

	
101.8

	
3.05

	
371

	
22.3

	
682

	
649

	
0.95




	
90

	
C20A-2A

	
216.4

	
6.66

	
452

	
22.3

	
3568

	
3184

	
0.89




	
91

	
C30A-2A

	
318.3

	
10.34

	
331

	
23.2

	
6565

	
5783

	
0.88




	
92

	
C10A-3A-1

	
101.7

	
3.04

	
371

	
38.6

	
800

	
785

	
0.98




	
93

	
C10A-3A-2

	
101.3

	
3.03

	
371

	
38.6

	
742

	
780

	
1.05




	
94

	
C20A-3A

	
216.4

	
6.63

	
452

	
36.7

	
4023

	
3619

	
0.90




	
95

	
C30A-3A

	
318.3

	
10.35

	
339

	
37.6

	
7933

	
6861

	
0.86




	
96

	
C10A-4A-1

	
101.9

	
3.04

	
371

	
49.2

	
877

	
887

	
1.01




	
97

	
C10A-4A-2

	
101.5

	
3.05

	
371

	
49.2

	
862

	
885

	
1.03




	
98

	
C20A-4A

	
216.4

	
6.65

	
452

	
44.9

	
4214

	
3890

	
0.92




	
99

	
C30A-4A

	
318.5

	
10.38

	
339

	
50.1

	
8289

	
7739

	
0.93




	
Schneider [42]




	
100

	
C1

	
140.8

	
3

	
285

	
28.2

	
881

	
891

	
1.01




	
101

	
C2

	
141.4

	
6.5

	
313

	
23.8

	
1367

	
1445

	
1.06




	
102

	
C3

	
140

	
6.68

	
537

	
28.2

	
2010

	
2192

	
1.09




	
O’Shea and Bridge [43]




	
103

	
S30CS50B

	
165

	
2.82

	
363.3

	
48.3

	
1662

	
1611

	
0.97




	
104

	
S20CS50A

	
190

	
1.94

	
256.4

	
41

	
1678

	
1421

	
0.85




	
105

	
S16CS5013

	
190

	
1.52

	
293.1

	
48.3

	
1695

	
1586

	
0.94




	
106

	
S12CS50A

	
190

	
1.13

	
185.7

	
41

	
1377

	
1178

	
0.86




	
107

	
S10CS50A

	
190

	
0.86

	
165.8

	
41

	
1350

	
1108

	
0.82




	
108

	
S30CS80A

	
165

	
2.82

	
363.3

	
80.2

	
2295

	
2260

	
0.98




	
109

	
S20CS80B

	
190

	
1.94

	
256.4

	
74.7

	
2592

	
2300

	
0.89




	
110

	
S16CS80A

	
190

	
1.52

	
293.1

	
80.2

	
2602

	
2427

	
0.93




	
111

	
S12CS80A

	
190

	
1.13

	
185.7

	
80.2

	
2295

	
2139

	
0.93




	
112

	
S10CS80B

	
190

	
0.86

	
165.8

	
74.7

	
2451

	
1933

	
0.79




	
113

	
S30CS10A

	
165

	
2.82

	
363.3

	
108

	
2673

	
2506

	
0.94




	
114

	
S20CS10A

	
190

	
1.94

	
256.4

	
108

	
3360

	
2813

	
0.84




	
115

	
S16CS10A

	
190

	
1.52

	
293.1

	
108

	
3260

	
2828

	
0.87




	
116

	
S12CS10A

	
190

	
1.13

	
185.7

	
108

	
3058

	
2478

	
0.81




	
117

	
SI10CSI10A

	
190

	
0.86

	
165.8

	
108

	
3070

	
2371

	
0.77




	
Elremaily et al. [44]




	
118

	
CU-040

	
200

	
5

	
265.8

	
27.2

	
2004

	
1798

	
0.90




	
119

	
CU-070

	
280

	
4

	
272.6

	
31.2

	
3025

	
2925

	
0.97




	
120

	
CU-150

	
300

	
2

	
244.2

	
27.2

	
2608

	
2261

	
0.87




	
Johansson [45]




	
121

	
SFE4

	
159

	
5

	
390

	
36.6

	
1770

	
1812

	
1.02




	
122

	
SFE5

	
159

	
6.8

	
402

	
36.6

	
2130

	
2244

	
1.05




	
123

	
SFE6

	
159

	
10

	
355

	
36.6

	
2500

	
2680

	
1.07




	
124

	
SFE7

	
159

	
5

	
390

	
93.8

	
2740

	
2758

	
1.01




	
125

	
SFE8

	
159

	
6.8

	
402

	
93.8

	
3220

	
3110

	
0.97




	
Yu et al. [46]




	
126

	
G4-1a

	
165

	
1

	
222

	
73.4

	
1773

	
1568

	
0.88




	
127

	
G2-2b

	
151

	
2

	
405

	
69.6

	
1933

	
1707

	
0.88




	
128

	
G4-2c

	
165

	
2

	
338

	
73.4

	
2077

	
1927

	
0.93




	
129

	
G4-2d

	
165

	
2

	
338

	
73.4

	
1930

	
1927

	
1.00




	
130

	
G4-2e

	
165

	
2

	
338

	
73.4

	
1920

	
1927

	
1.00




	
131

	
G2-4.5b

	
151

	
4.5

	
438

	
69.6

	
2572

	
2292

	
0.89




	
132

	
G2-6a

	
159

	
6

	
405

	
69.6

	
2957

	
2686

	
0.91




	
133

	
G2-8a

	
159

	
8

	
438

	
69.6

	
3173

	
3235

	
1.02




	
134

	
G2-8b

	
159

	
8

	
438

	
69.6

	
3267

	
3235

	
0.99




	
135

	
G2-8c

	
159

	
8

	
438

	
69.6

	
3330

	
3235

	
0.97




	
Giakoumelis and Lam [47]




	
136

	
C3

	
114.4

	
3.98

	
343

	
25.1

	
826

	
863

	
1.04




	
137

	
C4

	
114.6

	
3.99

	
343

	
78.1

	
1308

	
1420

	
1.09




	
138

	
C7

	
114.9

	
4.91

	
365

	
27.9

	
1050

	
1068

	
1.02




	
139

	
C8

	
115

	
4.92

	
365

	
87.7

	
1787

	
1663

	
0.93




	
140

	
C9

	
115

	
5.02

	
365

	
47.4

	
1390

	
1285

	
0.92




	
141

	
C11

	
114.3

	
3.75

	
343

	
47.4

	
1013

	
1060

	
1.05




	
142

	
C12

	
114.3

	
3.85

	
343

	
25.6

	
826

	
848

	
1.03




	
143

	
C14

	
114.5

	
3.84

	
343

	
82.6

	
1359

	
1438

	
1.06




	
Gu et al. [48]




	
144

	
0-1.5

	
127

	
1.5

	
350

	
48.2

	
890

	
888

	
1.00




	
145

	
0-2.5

	
129

	
2.5

	
350

	
48.2

	
1140

	
1063

	
0.93




	
146

	
0-3.5

	
131

	
3.5

	
310

	
48.2

	
1173

	
1178

	
1.00




	
147

	
0-4.5

	
133

	
4.5

	
310

	
48.2

	
1408

	
1347

	
0.96




	
Han and Yao [49]




	
148

	
scsc1-1

	
100

	
3

	
303.5

	
48.2

	
708

	
780

	
1.10




	
149

	
sch1-1

	
100

	
3

	
303.5

	
48.2

	
766

	
780

	
1.02




	
150

	
scv1-1

	
100

	
3

	
303.5

	
48.2

	
780

	
780

	
1.00




	
151

	
scsc2-1

	
200

	
3

	
303.5

	
48.2

	
2320

	
2083

	
0.90




	
152

	
scsc2-2

	
200

	
3

	
303.5

	
48.2

	
2330

	
2083

	
0.89




	
153

	
sch2-1

	
200

	
3

	
303.5

	
48.2

	
2160

	
2083

	
0.96




	
154

	
sch2-2

	
200

	
3

	
303.5

	
48.2

	
2160

	
2083

	
0.96




	
155

	
scv2-1

	
200

	
3

	
303.5

	
48.2

	
2383

	
2083

	
0.87




	
156

	
scv2-2

	
200

	
3

	
303.5

	
48.2

	
2256

	
2083

	
0.92




	
Sakino et al. [50]




	
157

	
CC4-A-2

	
149

	
2.96

	
308

	
25.4

	
941

	
942

	
1.00




	
158

	
CC4-A-8

	
149

	
2.96

	
308

	
77

	
1781

	
1789

	
1.00




	
159

	
CC6-A-2

	
122

	
4.54

	
576

	
25.4

	
1509

	
1409

	
0.93




	
160

	
CC6-A-4-1

	
122

	
4.54

	
576

	
40.5

	
1657

	
1587

	
0.96




	
161

	
CC6-A-4-2

	
122

	
4.54

	
576

	
40.5

	
1663

	
1587

	
0.95




	
162

	
CC6-A-8

	
122

	
4.54

	
576

	
77

	
2100

	
2098

	
1.00




	
163

	
CC6-C-2

	
239

	
4.54

	
507

	
25.4

	
3035

	
3159

	
1.04




	
164

	
CC6-C-4-1

	
238

	
4.54

	
507

	
40.5

	
3583

	
3734

	
1.04




	
165

	
CC6-C-4-2

	
238

	
4.54

	
507

	
40.5

	
3647

	
3734

	
1.02




	
166

	
CC6-C-8

	
238

	
4.54

	
507

	
77

	
5578

	
5218

	
0.94




	
167

	
CC6-D-2

	
361

	
4.54

	
460.7

	
25.4

	
5633

	
5482

	
0.97




	
168

	
CC6-D-4-1

	
361

	
4.54

	
460.7

	
41.1

	
7260

	
6923

	
0.95




	
169

	
CC6-D-4-2

	
360

	
4.54

	
462

	
41.1

	
7045

	
6902

	
0.98




	
170

	
CC6-D-8

	
360

	
4.54

	
462

	
85.1

	