Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,901)

Search Parameters:
Keywords = ERK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3496 KiB  
Article
Analysis of Modular Hub Genes and Therapeutic Targets across Stages of Non-Small Cell Lung Cancer Transcriptome
by Angeli Joy B. Barretto, Marco A. Orda, Po-wei Tsai and Lemmuel L. Tayo
Genes 2024, 15(10), 1248; https://doi.org/10.3390/genes15101248 - 25 Sep 2024
Viewed by 189
Abstract
Non-small cell lung cancer (NSCLC), representing 85% of lung cancer cases, is characterized by its heterogeneity and progression through distinct stages. This study applied Weighted Gene Co-expression Network Analysis (WGCNA) to explore the molecular mechanisms of NSCLC and identify potential therapeutic targets. Gene [...] Read more.
Non-small cell lung cancer (NSCLC), representing 85% of lung cancer cases, is characterized by its heterogeneity and progression through distinct stages. This study applied Weighted Gene Co-expression Network Analysis (WGCNA) to explore the molecular mechanisms of NSCLC and identify potential therapeutic targets. Gene expression data from the GEO database were analyzed across four NSCLC stages (NSCLC1, NSCLC2, NSCLC3, and NSCLC4), with the NSCLC2 dataset selected as the reference for module preservation analysis. WGCNA identified eight highly preserved modules—Cyan, Yellow, Red, Dark Turquoise, Turquoise, White, Purple, and Royal Blue—across datasets, which were enriched in key pathways such as “Cell cycle” and “Pathways in cancer”, involving processes like cell division and inflammatory responses. Hub genes, including PLK1, CDK1, and EGFR, emerged as critical regulators of tumor proliferation and immune responses. Estrogen receptor ESR1 was also highlighted, correlating with improved survival outcomes, suggesting its potential as a prognostic marker. Signature-based drug repurposing analysis identified promising therapeutic candidates, including GW-5074, which inhibits RAF and disrupts the EGFR–RAS–RAF–MEK–ERK signaling cascade, and olomoucine, a CDK1 inhibitor. Additional candidates like pinocembrin, which reduces NSCLC cell invasion by modulating epithelial-mesenchymal transition, and citalopram, an SSRI with anti-carcinogenic properties, were also identified. These findings provide valuable insights into the molecular underpinnings of NSCLC and suggest new directions for therapeutic strategies through drug repurposing. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 3830 KiB  
Article
MicroRNA-195-5p Inhibits Intracerebral Hemorrhage-Induced Inflammatory Response and Neuron Cell Apoptosis
by Yi-Cheng Tsai, Chih-Hui Chang, Yoon Bin Chong, Chieh-Hsin Wu, Hung-Pei Tsai, Tian-Lu Cheng and Chih-Lung Lin
Int. J. Mol. Sci. 2024, 25(19), 10321; https://doi.org/10.3390/ijms251910321 - 25 Sep 2024
Viewed by 240
Abstract
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in [...] Read more.
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague–Dawley rats (7 weeks old, 200–250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 2009 KiB  
Article
Clarithromycin Modulates Neutrophilic Inflammation Induced by Prevotella intermedia in Human Airway Epithelial Cells
by Naoki Iwanaga, Ayaka Ota, Hiroki Ashizawa, Yuya Ito, Tatsuro Hirayama, Masataka Yoshida, Kazuaki Takeda, Shotaro Ide, Masato Tashiro, Naoki Hosogaya, Noriho Sakamoto, Takahiro Takazono, Kosuke Kosai, Mariko Naito, Yoshimasa Tanaka, Kazuhiro Yatera, Koichi Izumikawa, Katsunori Yanagihara and Hiroshi Mukae
Antibiotics 2024, 13(9), 909; https://doi.org/10.3390/antibiotics13090909 - 23 Sep 2024
Viewed by 382
Abstract
Objectives: In the present study, we aimed to clarify the mechanisms by which periodontal pathogens, particularly Prevotella intermedia, induce severe neutrophilic inflammation. In addition, we aimed to test the efficacy of macrolides, which has not been resolved in the neutrophilic inflammation induced [...] Read more.
Objectives: In the present study, we aimed to clarify the mechanisms by which periodontal pathogens, particularly Prevotella intermedia, induce severe neutrophilic inflammation. In addition, we aimed to test the efficacy of macrolides, which has not been resolved in the neutrophilic inflammation induced by P. intermedia. Methods: NCl-H292 human airway epithelial cells were pre-incubated with clarithromycin for 2 h before incubation with P. intermedia supernatants. Then, C-X-C motif chemokine ligand 8 (CXCL8) transcription and interleukin (IL)-8 production were measured. To elucidate the signaling pathway, mitogen-activated protein kinase inhibitors were added to the cell culture, and the cells were subjected to Western blotting. Results:P. intermedia supernatants promoted CXCL8 transcription and IL-8 production, and the reactions were significantly suppressed by clarithromycin pretreatment. Only trametinib, the selective mitogen-activated extracellular signal-regulated kinase inhibitor, downregulated CXCL8 transcription and IL-8 production. Furthermore, Western blotting revealed that stimulation with P. intermedia supernatants specifically induces extracellular signal-regulated kinases (ERK) 1/2 phosphorylation, which is suppressed by clarithromycin pretreatment. Notably, the interference analysis revealed that ERK3 might be dispensable for IL-8 production under the stimulation of P. intermedia supernatants. Conclusions: Our results provide new insight into the mechanism underlying P. intermedia-induced production of IL-8 from human airway epithelial cells. Furthermore, macrolides might have therapeutic potential in regulating periodontal pathogen-induced neutrophilic inflammation in the lungs. Full article
Show Figures

Figure 1

12 pages, 4938 KiB  
Article
An Ingenane-Type Diterpene from Euphorbia kansui Promoted Cell Apoptosis and Macrophage Polarization via the Regulation of PKC Signaling Pathways
by Xiaoyi Feng, Lizhong Wang, Li Pu, Jianchun Li, Hongmei Li, Dan Liu and Rongtao Li
Int. J. Mol. Sci. 2024, 25(18), 10123; https://doi.org/10.3390/ijms251810123 - 20 Sep 2024
Viewed by 337
Abstract
Euphorbia kansui, a toxic Chinese medicine used for more than 2000 years, has the effect of “purging water to promote drinking” and “reducing swelling and dispersing modules”. Diterpenes and triterpenes are the main bioactive components of E. kansui. Among them, ingenane-type [...] Read more.
Euphorbia kansui, a toxic Chinese medicine used for more than 2000 years, has the effect of “purging water to promote drinking” and “reducing swelling and dispersing modules”. Diterpenes and triterpenes are the main bioactive components of E. kansui. Among them, ingenane-type diterpenes have multiple biological activities as a protein kinase C δ (PKC-δ) activator, which have previously been shown to promote anti-proliferative and pro-apoptotic effects in several human cancer cell lines. However, the activation of PKC subsequently promoted the survival of macrophages. Recently, we found that 13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (compound A) from E. kansui showed dual bioactivity, including the inhibition of tumor-cell-line proliferation and regulation of macrophage polarization. This study identifies the possible mechanism of compound A in regulating the polarization state of macrophages, by regulating PKC-δ-extracellular signal regulated kinases (ERK) signaling pathways to exert anti-tumor immunity effects in vitro, which might provide a new treatment method from the perspective of immune cell regulation. Full article
Show Figures

Figure 1

16 pages, 4941 KiB  
Article
Novel Molecular Mechanisms Underlying the Ameliorative Effect of Platelet-Rich Plasma against Electron Radiation-Induced Premature Ovarian Failure
by Grigory Demyashkin, Matvey Vadyukhin, Zaira Murtazalieva, Ekaterina Pugacheva, Vladimir Schekin, Makka Bimurzaeva, Svetlana Pesegova, Petr Shegay and Andrey Kaprin
Int. J. Mol. Sci. 2024, 25(18), 10115; https://doi.org/10.3390/ijms251810115 - 20 Sep 2024
Viewed by 311
Abstract
Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal [...] Read more.
Radiotherapy is one of the risk factors for radiation-induced premature ovarian failure and infertility in cancer patients. The development of methods for ovarian radioprotection remains relevant. Moreover, electrons are a little-studied and promising method of radiation with the least toxic effect on normal tissues. The assessment of intracellular mechanisms regulating the protective effects of leukocyte-poor platelet-rich plasma in a model of radiation-induced premature ovarian failure caused by electron irradiation. Wistar rats were divided into four groups, namely a control group, irradiation group (electron exposure), irradiation + leukocyte-poor platelet-rich plasma group, and only leukocyte-poor platelet-rich plasma group. Fragments of ovaries were removed and hormonal, oxidant, histological, and morphometric studies were carried out. The cell cycle of ovarian follicles and the inflammatory and vascular response were assessed using immunohistochemistry. The activity of MAPK, ERK, and PI3K pathways was also assessed using the RT-qPCR. We found that electron irradiation causes a decrease in the functional activity of the ovaries and the death of follicular cells through apoptosis. The administration of LP-PRP led to a partial restoration of the cytokine balance. In addition, minor ovarian damage and mild inflammation were observed in this group. Leukocyte-poor platelet-rich plasma components have anti-inflammatory, angiogenetic, and radioprotective effects, reducing the activation of the NOX4, caspase and cytokine cascades, and inflammatory response severity through the MAPK/p38/JNK signaling pathway. This leads to the induction of endogenous antioxidant protection, the repair of post-radiation follicular damage, and slowing down the development of radiation-induced premature ovarian failure after electron irradiation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

13 pages, 3831 KiB  
Article
Differential Expression of Mitogen-Activated Protein Kinase Signaling Pathways in the Human Choroid–Retinal Pigment Epithelial Complex Indicates Regional Predisposition to Disease
by Dylan R. Hailey, Debolina Kanjilal and Peter Koulen
Int. J. Mol. Sci. 2024, 25(18), 10105; https://doi.org/10.3390/ijms251810105 - 20 Sep 2024
Viewed by 279
Abstract
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch’s membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological [...] Read more.
The retina is composed of neuronal layers that include several types of interneurons and photoreceptor cells, and separate underlying retinal pigment epithelium (RPE), Bruch’s membrane, and choroid. Different regions of the human retina include the fovea, macula, and periphery, which have unique physiological functions and anatomical features. These regions are also unique in their protein expression, and corresponding cellular and molecular responses to physiological and pathophysiological stimuli. Skeie and Mahajan analyzed regional protein expression in the human choroid–RPE complex. Mitogen-Activated Protein Kinase (MAPK) signaling pathways have been implicated in responses to stimuli such as oxidative stress and inflammation, which are critical factors in retina diseases including age-related macular degeneration. We, therefore, analyzed the Skeie and Mahajan, 2014, dataset for regional differences in the expression of MAPK-related proteins and discussed the potential implications in retinal diseases presenting with regional signs and symptoms. Regional protein expression data from the Skeie and Mahajan, 2014, study were analyzed for members of signaling networks involving MAPK and MAPK-related proteins, categorized by specific MAPK cascades, such as p38, ERK1/2, and JNK1/2, both upstream or downstream of the respective MAPK and MAPK-related proteins. We were able to identify 207 MAPK and MAPK-related proteins, 187 of which belonging to specific MAPK cascades. A total of 31 of these had been identified in the retina with two proteins, DLG2 and FLG downstream, and the other 29 upstream, of MAPK proteins. Our findings provide evidence for potential molecular substrates of retina region-specific disease manifestation and potential new targets for therapeutics development. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Retina Degeneration)
Show Figures

Figure 1

19 pages, 8042 KiB  
Article
Evaluation of Anti-Inflammatory Activity of the New Cardiotonic Steroid γ-Benzylidene Digoxin 8 (BD-8) in Mice
by Davi Azevedo Ferreira, Anna Beatriz Araujo Medeiros, Mariana Mendonça Soares, Éssia de Almeida Lima, Gabriela Carolina Santos Lima de Oliveira, Mateus Bernardo da Silva Leite, Matheus Vieira Machado, José Augusto Ferreira Perez Villar, Leandro Augusto Barbosa, Cristoforo Scavone, Marcelo Tigre Moura and Sandra Rodrigues-Mascarenhas
Cells 2024, 13(18), 1568; https://doi.org/10.3390/cells13181568 - 18 Sep 2024
Viewed by 408
Abstract
Cardiotonic steroids are known to bind to Na+/K+-ATPase and regulate several biological processes, including the immune response. The synthetic cardiotonic steroid γ-Benzylidene Digoxin 8 (BD-8) is emerging as a promising immunomodulatory molecule, although it has remained largely unexplored. Therefore, we tested the immunomodulatory [...] Read more.
Cardiotonic steroids are known to bind to Na+/K+-ATPase and regulate several biological processes, including the immune response. The synthetic cardiotonic steroid γ-Benzylidene Digoxin 8 (BD-8) is emerging as a promising immunomodulatory molecule, although it has remained largely unexplored. Therefore, we tested the immunomodulatory potential of BD-8 both in vitro and in vivo. Hence, primary mouse macrophages were incubated with combinations of BD-8 and the pro-inflammatory fungal protein zymosan (ZYM). Nitric oxide (NO) production was determined by Griess reagent and cytokines production was assessed by enzyme-linked immunosorbent assay. Inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), p-nuclear factor kappa B p65 (NF-κB p65), p-extracellular signal-regulated kinase (p-ERK), and p-p38 were evaluated by flow cytometry. Macrophages exposed to BD-8 displayed reduced phagocytic activity, NO levels, and production of the proinflammatory cytokine IL-1β induced by ZYM. Furthermore, BD-8 diminished the expression of iNOS and phosphorylation of NF-κB p65, ERK, and p38. Additionally, BD-8 exhibited anti-inflammatory capacity in vivo in a carrageenan-induced mouse paw edema model. Taken together, these findings demonstrate the anti-inflammatory activity of BD-8 and further reinforce the potential of cardiotonic steroids and their derivatives as immunomodulatory molecules. Full article
Show Figures

Figure 1

15 pages, 6009 KiB  
Article
L-Glutamate Regulates Npy via the mGluR4-Ca2+-ERK1/2 Signaling Pathway in Mandarin Fish (Siniperca chuatsi)
by Jiahui Duan, Qiuling Wang, Shan He, Xu-Fang Liang and Liyun Ding
Int. J. Mol. Sci. 2024, 25(18), 10035; https://doi.org/10.3390/ijms251810035 - 18 Sep 2024
Viewed by 288
Abstract
Metabotropic glutamate receptor 4 (mGluR4) is widely regarded as an umami receptor activated by L-glutamate to exert essential functions. Numerous studies have shown that umami receptors participate in food intake regulation. However, little is known about mGluR4’s role in mediating food ingestion and [...] Read more.
Metabotropic glutamate receptor 4 (mGluR4) is widely regarded as an umami receptor activated by L-glutamate to exert essential functions. Numerous studies have shown that umami receptors participate in food intake regulation. However, little is known about mGluR4’s role in mediating food ingestion and its possible molecular mechanism. Mandarin fish, a typical carnivorous fish, is sensitive to umami substances and is a promising vertebrate model organism for studying the umami receptor. In this study, we identified the mGluR4 gene and conducted evolutionary analyses from diverse fish species with different feeding habits. mGluR4 of mandarin fish was cloned and functionally expressed to investigate the effects of L-glutamate on mGluR4. We further explored whether the signal pathway mGluR4-Ca2+-ERK1/2 participates in the process in mandarin fish brain cells. The results suggest that L-glutamate could regulate Neuropeptide Y (Npy) via the mGluR4-Ca2+-ERK1/2 signaling pathway in mandarin fish. Our findings unveil the role of mGluR4 in feeding decisions and its possible molecular mechanisms in carnivorous fishes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

37 pages, 3636 KiB  
Review
Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2
by Andrew Bustamante, Stavroula Baritaki, Apostolos Zaravinos and Benjamin Bonavida
Cancers 2024, 16(18), 3180; https://doi.org/10.3390/cancers16183180 - 17 Sep 2024
Viewed by 685
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression [...] Read more.
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

14 pages, 2039 KiB  
Article
Metabolomic Effects of Liraglutide Therapy on the Plasma Metabolomic Profile of Patients with Obesity
by Assim A. Alfadda, Anas M. Abdel Rahman, Hicham Benabdelkamel, Reem AlMalki, Bashayr Alsuwayni, Abdulaziz Alhossan, Madhawi M. Aldhwayan, Ghalia N. Abdeen, Alexander Dimitri Miras and Afshan Masood
Metabolites 2024, 14(9), 500; https://doi.org/10.3390/metabo14090500 - 17 Sep 2024
Viewed by 340
Abstract
Background: Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at [...] Read more.
Background: Liraglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP1RA), is a well-established anti-diabetic drug, has also been approved for the treatment of obesity at a dose of 3 mg. There are a limited number of studies in the literature that have looked at changes in metabolite levels before and after liraglutide treatment in patients with obesity. To this end, in the present study we aimed to explore the changes in the plasma metabolomic profile, using liquid chromatography-high resolution mass spectrometry (LC-HRMS) in patients with obesity. Methods: A single-center prospective study was undertaken to evaluate the effectiveness of 3 mg liraglutide therapy in twenty-three patients (M/F: 8/15) with obesity, mean BMI 40.81 ± 5.04 kg/m2, and mean age of 36 ± 10.9 years, in two groups: at baseline (pre-treatment) and after 12 weeks of treatment (post-treatment). An untargeted metabolomic profiling was conducted in plasma from the pre-treatment and post-treatment groups using LC-HRMS, along with bioinformatics analysis using ingenuity pathway analysis (IPA). Results: The metabolomics analysis revealed a significant (FDR p-value ≤ 0.05, FC 1.5) dysregulation of 161 endogenous metabolites (97 upregulated and 64 downregulated) with distinct separation between the two groups. Among the significantly dysregulated metabolites, the majority of them were identified as belonging to the class of oxidized lipids (oxylipins) that includes arachidonic acid and its derivatives, phosphorglycerophosphates, N-acylated amino acids, steroid hormones, and bile acids. The biomarker analysis conducted using MetaboAnalyst showed PGP (a21:0/PG/F1alpha), an oxidized lipid, as the first metabolite among the list of the top 15 biomarkers, followed by cysteine and estrone. The IPA analysis showed that the dysregulated metabolites impacted the pathway related to cell signaling, free radical scavenging, and molecular transport, and were focused around the dysregulation of NF-κB, ERK, MAPK, PKc, VEGF, insulin, and pro-inflammatory cytokine signaling pathways. Conclusions: The findings suggest that liraglutide treatment reduces inflammation and modulates lipid metabolism and oxidative stress. Our study contributes to a better understanding of the drug’s multifaceted impact on overall metabolism in patients with obesity. Full article
(This article belongs to the Special Issue Metabolomics in Human Diseases and Health)
Show Figures

Figure 1

12 pages, 3736 KiB  
Article
Activation of Nuclear Factor Erythroid 2-Related Factor-2 by Oxylipin from Mangifera indica Leaves
by Atif Ali Khan Khalil, Min-Seok Woo, Dong-Min Kang, Mi-Jeong Ahn, Jeong-Ah Kim, Heejung Yang and Jung-Hwan Kim
Antioxidants 2024, 13(9), 1119; https://doi.org/10.3390/antiox13091119 - 16 Sep 2024
Viewed by 391
Abstract
Mangifera indica L., a member of the Anacardiaceae family, is widely cultivated across the globe. The leaves of M. indica are renowned for their medicinal properties, attributed to the abundance of bioactive compounds. This study investigated the effects of mango leaf extract on [...] Read more.
Mangifera indica L., a member of the Anacardiaceae family, is widely cultivated across the globe. The leaves of M. indica are renowned for their medicinal properties, attributed to the abundance of bioactive compounds. This study investigated the effects of mango leaf extract on oxidative stress in HeLa cells. Notably, the n-hexane fraction (MLHx) significantly enhanced antioxidant response element (ARE)-luciferase activity at a concentration of 100 µg/mL, surpassing other fractions. MLHx also promoted the expression of HO-1 mRNA by increasing nuclear NRF2 levels. The molecular mechanism of MLHx involves increased phosphorylation of ERK1/2 and stabilization of NRF2. Bioactivity-guided isolation resulted in the identification of six oxylipins: 13(R)-hydroxy-octadeca-(9Z,11E,15Z)-trienoic acid (C-1), 9(R)-hydroxy-octadeca-(10E,12Z,15Z)-trienoic acid (C-2), 13(R)-hydroxy-(9Z,11E)-octadecadienoic acid (C-3), 9(R)-hydroxy-(10E,12Z)-octadecadienoic acid (C-4), 9-oxo-(10E,12E)-octadecadienoic acid (C-5), and 9-oxo-(10E,12Z)-octadecadienoic acid (C-6). These structures were elucidated using comprehensive spectroscopic techniques, including MS and 1H NMR. Additionally, compounds C-7 (9-oxo-(10E,12Z,15Z)-octadecatrienoic acid) and 8 (13-oxo-(9E,11E)-octadecadienoic acid) were characterized by LC-MS/MS mass fragmentation. This study reports the isolation of compounds 1–6 from M. indica for the first time. When tested for their effect on NRF2 activity in HeLa cells, compounds 3, 5, and 6 showed strong stimulation of ARE-luciferase activity in a dose-dependent manner. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

20 pages, 9201 KiB  
Article
Epidermal Growth Factor Receptor Emerges as a Viable Target for Reducing Tumorigenicity of MDCK Cells
by Di Yang, Yuejiao Liao, Lingwei Huang, Jiachen Shi, Jiamin Wang, Zilin Qiao, Zhongren Ma and Sijiu Yu
Genes 2024, 15(9), 1208; https://doi.org/10.3390/genes15091208 - 14 Sep 2024
Viewed by 403
Abstract
The MDCK cell line is perceived as better than the embryos of hen eggs for the production of influenza vaccines, but the tumorigenicity of these cells is concerning. Epidermal growth factor receptor (EGFR) is likely to be a crucial target that contributes to [...] Read more.
The MDCK cell line is perceived as better than the embryos of hen eggs for the production of influenza vaccines, but the tumorigenicity of these cells is concerning. Epidermal growth factor receptor (EGFR) is likely to be a crucial target that contributes to the tumorigenicity of MDCK cells. In this study, EGFR-knockdown and EGFR-overexpression cell lines were established. EGFR’s influence on cell growth, migration, clonogenic ability, and flu virus susceptibility was evaluated in vitro, and its role in cell tumorigenicity was examined in nude mice. GST pull-down coupled with mass spectrometry (MS) and bioinformatics analysis identified EGFR-interacting proteins. The expression levels of these proteins, as well as those of PI3K–AKT- and MAPK–ERK-signaling-pathway-related molecules, were confirmed at both gene and protein levels. The result indicates that EGFR overexpression can enhance cell proliferation, migration, and clonal formation; EGFR knockdown could effectively curtail tumorigenesis and amplify the titers of influenza viruses in MDCK cells. An analysis of the underlying mechanism identified a total of 21 interacting proteins implicated in tumor formation, and among these, AKT1, CDK4, GNB2, and MAPK8 were confirmed at both gene and protein levels. EGFR can activate key factors of the PI3K–AKT signaling pathway, AKT and PI3K, and promote their phosphorylation levels. Consequently, we concluded that EGFR interacts with GNB2, facilitating transmembrane signal transduction, activating the PI3K–AKT signaling cascade, controlling cell cycle alterations, stimulating cell proliferation, and promoting tumorigenesis. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 12979 KiB  
Article
Lactate-Induced HBEGF Shedding and EGFR Activation: Paving the Way to a New Anticancer Therapeutic Opportunity
by Valentina Rossi, Alejandro Hochkoeppler, Marzia Govoni and Giuseppina Di Stefano
Cells 2024, 13(18), 1533; https://doi.org/10.3390/cells13181533 - 13 Sep 2024
Viewed by 509
Abstract
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed [...] Read more.
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed that the increased lactate levels characterizing neoplastic tissues can induce the release of uPA, a protease promoting HBEGF shedding. This effect led to EGFR activation and increased ERK1/2 phosphorylation. Since EGFR-mediated signaling potentiates glycolytic metabolism, this phenomenon can induce a self-sustaining deleterious loop, favoring tumor growth. A well characterized HBEGF inhibitor is CRM197, a single-site variant of diphtheria toxin. We observed that, when administered individually, CRM197 did not trigger evident antineoplastic effects. However, its association with a uPA inhibitor caused dampening of EGFR-mediated signaling and apoptosis induction. Overall, our study highlights that the increased glycolytic metabolism and lactate production can foster the activated state of EGFR receptor and suggests that the inhibition of EGFR-mediated signaling can be attempted by means of CRM197 administered with an appropriate protease inhibitor. This attempt could help in overcoming the problem of the acquired resistance to the conventionally used EGFR inhibitors. Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Italy 2024)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
Anti-Inflammatory Effects of the Combined Treatment of Resveratrol- and Protopanaxadiol-Enriched Rice Seed Extract on Lipopolysaccharide-Stimulated RAW264.7 Cells
by Chaiwat Monmai and So-Hyeon Baek
Molecules 2024, 29(18), 4343; https://doi.org/10.3390/molecules29184343 - 13 Sep 2024
Viewed by 310
Abstract
The overproduction of proinflammatory cytokines triggers a variety of diseases. Protopanaxadiol (PPD) and resveratrol are naturally found in plants such as ginseng and have potential anti-inflammatory properties, and resveratrol- and PPD-enriched rice seeds have been previously successfully generated. Herein, the synergistic anti-inflammatory activities [...] Read more.
The overproduction of proinflammatory cytokines triggers a variety of diseases. Protopanaxadiol (PPD) and resveratrol are naturally found in plants such as ginseng and have potential anti-inflammatory properties, and resveratrol- and PPD-enriched rice seeds have been previously successfully generated. Herein, the synergistic anti-inflammatory activities of extracts of these enriched seeds were assessed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In comparison with treatment using extract prepared from PPD-producing transgenic rice (DJ-PPD) alone, cotreatment with DJ526 and DJ-PPD (TR_3) markedly enhanced the anti-inflammatory activities at a similar (compared to DJ526) or higher (compared to DJ-PPD) level. Cotreatment with DJ526 and DJ-PPD markedly inhibited the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, DJ526 and DJ-PPD in combination suppressed the expression of phosphorylated (p)-NF-κB p65, p-p38 MAPK, and p-ERK 1/2. Cotreatment with DJ526 and DJ-PPD downregulated the expression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), LPS receptor (toll-like receptor-4, TLR-4), proinflammatory mediators (nitric oxide and PGE2), and arachidonic acid pathway critical enzyme (COX-2). These findings demonstrate the synergistic potential anti-inflammatory activities of resveratrol- and PPD-enriched rice seed extract. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, Volume III)
Show Figures

Graphical abstract

12 pages, 4259 KiB  
Article
Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis
by Siqi Li, Tianfeng Chen, Kexin Gao, Yong-Bo Yang, Baojie Qi, Chunsheng Wang, Tongqing An, Xuehui Cai and Shujie Wang
Microorganisms 2024, 12(9), 1879; https://doi.org/10.3390/microorganisms12091879 - 12 Sep 2024
Viewed by 370
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to [...] Read more.
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice. Full article
(This article belongs to the Special Issue The Pathogenic Epidemiology of Important Swine Diseases)
Show Figures

Figure 1

Back to TopTop