Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = GEDI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 557 KiB  
Article
Evolutionary Game Analysis of Government Regulation on Green Innovation Behavior Decision-Making of Energy Enterprises
by Gedi Ji, Qisheng Wang, Qing Chang, Yu Fang, Jianglin Bi and Ming Chen
Sustainability 2024, 16(17), 7542; https://doi.org/10.3390/su16177542 - 30 Aug 2024
Abstract
Encouraging environmentally friendly innovation in energy companies is an essential way to stop global warming. Through ingenious integration of reputation and fairness preference, this research develops an evolutionary game model between the government and energy companies. This research investigates the dynamic evolution of [...] Read more.
Encouraging environmentally friendly innovation in energy companies is an essential way to stop global warming. Through ingenious integration of reputation and fairness preference, this research develops an evolutionary game model between the government and energy companies. This research investigates the dynamic evolution of green innovation strategy selection by energy firms operating under government supervision, using an evolutionary game model as a basis. This study examines how government regulations, including their subsidies and penalties, reputation, and fairness preference, affect the green innovation behavior of energy enterprises. The research shows that without considering the fairness preference, the subsidy and punishment of government regulation can improve the tendency of energy enterprises to choose green innovation behavior. At the same time, considering the reputation of energy enterprises to assume social responsibility can improve the tendency of energy enterprises to choose green innovation behavior. In the case of considering fairness preference, energy companies with strong fairness preference are more likely not to adopt green innovation and need more subsidies and penalties to choose green innovation; energy enterprises with weak fairness preference are more likely to adopt green innovation; green innovation will take place with fewer subsidies and penalties; reputation plays a stronger role in energy companies with weak fairness preferences. The study can give the government a theoretical foundation on which to build precise regulatory plans for various energy firms and encourage green innovation in those enterprises. Full article
15 pages, 530 KiB  
Article
Unravelling the Digital Thread: How Access, Protection, and Adoption Drive Technological Entrepreneurship
by Takawira Munyaradzi Ndofirepi and Renier Steyn
Adm. Sci. 2024, 14(8), 185; https://doi.org/10.3390/admsci14080185 - 20 Aug 2024
Viewed by 339
Abstract
This study explores the relationship between digital access, protection, and adoption in supporting technological entrepreneurship within national digital ecosystems. The study utilised PROCESS regression analysis on the Global Entrepreneurship Development Institute (GEDI)’s Digital Development Economy (DPE) Index 2020 dataset to examine selected digital [...] Read more.
This study explores the relationship between digital access, protection, and adoption in supporting technological entrepreneurship within national digital ecosystems. The study utilised PROCESS regression analysis on the Global Entrepreneurship Development Institute (GEDI)’s Digital Development Economy (DPE) Index 2020 dataset to examine selected digital factors’ direct and indirect effects on entrepreneurial activity across 116 countries. While the relationship between digital access, adoption, protection, and technological entrepreneurship has been established in previous research, this study provides global evidence to reinforce this connection. However, digital protection did not significantly moderate the effect of digital access. Notably, digital adoption emerged as a significant mediator, influencing the impacts of both access and protection on entrepreneurial outcomes. This study emphasises the importance of understanding the complex relationships between digital factors in cultivating a thriving entrepreneurial ecosystem, offering valuable insights for policymakers and practitioners seeking to stimulate technological innovation and economic growth. Full article
(This article belongs to the Section International Entrepreneurship)
Show Figures

Figure 1

23 pages, 5725 KiB  
Article
Estimation of the Aboveground Carbon Storage of Dendrocalamus giganteus Based on Spaceborne Lidar Co-Kriging
by Huanfen Yang, Zhen Qin, Qingtai Shu, Lei Xi, Cuifen Xia, Zaikun Wu, Mingxing Wang and Dandan Duan
Forests 2024, 15(8), 1440; https://doi.org/10.3390/f15081440 - 15 Aug 2024
Viewed by 507
Abstract
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the [...] Read more.
Bamboo forests, as some of the integral components of forest ecosystems, have emerged as focal points in forestry research due to their rapid growth and substantial carbon sequestration capacities. In this paper, satellite-borne lidar data from GEDI and ICESat-2/ATLAS are utilized as the main information sources, with Landsat 9 and DEM data as covariates, combined with 51 pieces of ground-measured data. Using random forest regression (RFR), boosted regression tree (BRT), k-nearest neighbor (KNN), Cubist, extreme gradient boosting (XGBoost), and Stacking-ridge regression (RR) machine learning methods, an aboveground carbon (AGC) storage model was constructed at a regional scale. The model evaluation indices were the coefficient of determination (R2), root mean square error (RMSE), and overall estimation accuracy (P). The results showed that (1) The best-fit semivariogram models for cdem, fdem, fndvi, pdem, and andvi were Gaussian models, while those for h1b7, h2b7, h3b7, and h4b7 were spherical models; (2) According to Pearson correlation analysis, the AGC of Dendrocalamus giganteus showed an extremely significant correlation (p < 0.01) with cdem and pdem from GEDI, and also showed an extremely significant correlation with andvi, h1b7, h2b7, h3b7, and h4b7 from ICESat-2/ATLAS; moreover, AGC showed a significant correlation (0.01 < p < 0.05) with fdem and fndvi from GEDI; (3) The estimation accuracy of the GEDI model was superior to that of the ICESat-2/ATLAS model; additionally, the estimation accuracy of the Stacking-RR model, which integrates GEDI and ICESat-2/ATLAS (R2 = 0.92, RMSE = 5.73 Mg/ha, p = 86.19%), was better than that of any single model (XGBoost, RFR, BRT, KNN, Cubist); (4) Based on the Stacking-RR model, the estimated AGC of Dendrocalamus giganteus within the study area was 1.02 × 107 Mg. The average AGC was 43.61 Mg/ha, with a maximum value of 76.43 Mg/ha and a minimum value of 15.52 Mg/ha. This achievement can serve as a reference for estimating other bamboo species using GEDI and ICESat-2/ATLAS remote sensing technologies and provide decision support for the scientific operation and management of Dendrocalamus giganteus. Full article
Show Figures

Figure 1

23 pages, 11056 KiB  
Article
Co-Kriging-Guided Interpolation for Mapping Forest Aboveground Biomass by Integrating Global Ecosystem Dynamics Investigation and Sentinel-2 Data
by Yingchen Wang, Hongtao Wang, Cheng Wang, Shuting Zhang, Rongxi Wang, Shaohui Wang and Jingjing Duan
Remote Sens. 2024, 16(16), 2913; https://doi.org/10.3390/rs16162913 - 9 Aug 2024
Viewed by 690
Abstract
Mapping wall-to-wall forest aboveground biomass (AGB) at large scales is critical for understanding global climate change and the carbon cycle. In previous studies, a regression-based method was commonly used to map the spatially continuous distribution of forest AGB with the aid of optical [...] Read more.
Mapping wall-to-wall forest aboveground biomass (AGB) at large scales is critical for understanding global climate change and the carbon cycle. In previous studies, a regression-based method was commonly used to map the spatially continuous distribution of forest AGB with the aid of optical images, which may suffer from the saturation effect. The Global Ecosystem Dynamics Investigation (GEDI) can collect forest vertical structure information with high precision on a global scale. In this study, we proposed a collaborative kriging (co-kriging) interpolation-based method for mapping spatially continuous forest AGB by integrating GEDI and Sentinel-2 data. First, by fusing spectral features from Sentinel-2 images with vertical structure features from GEDI, the optimal estimation model for footprint-level AGB was determined by comparing different machine-learning algorithms. Second, footprint-level predicted AGB was used as the main variable, with rh95 and B12 as covariates, to build a co-kriging guided interpolation model. Finally, the interpolation model was employed to map wall-to-wall forest AGB. The results showed the following: (1) For footprint-level AGB, CatBoost achieved the highest accuracy by fusing features from GEDI and Sentinel-2 data (R2 = 0.87, RMSE = 49.56 Mg/ha, rRMSE = 27.06%). (2) The mapping results based on the interpolation method exhibited relatively high accuracy and mitigated the saturation effect in areas with higher forest AGB (R2 = 0.69, RMSE = 81.56 Mg/ha, rRMSE = 40.98%, bias = −3.236 Mg/ha). The mapping result demonstrates that the proposed method based on interpolation combined with multi-source data can be a promising solution for monitoring spatially continuous forest AGB. Full article
(This article belongs to the Special Issue Remote Sensing and Lidar Data for Forest Monitoring)
Show Figures

Figure 1

22 pages, 6511 KiB  
Article
Regional Scale Inversion of Chlorophyll Content of Dendrocalamus giganteus by Multi-Source Remote Sensing
by Cuifen Xia, Wenwu Zhou, Qingtai Shu, Zaikun Wu, Li Xu, Huanfen Yang, Zhen Qin, Mingxing Wang and Dandan Duan
Forests 2024, 15(7), 1211; https://doi.org/10.3390/f15071211 - 12 Jul 2024
Viewed by 476
Abstract
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. [...] Read more.
The spectrophotometer method is costly, time-consuming, laborious, and destructive to the plant. Samples will be lost during the transportation process, and the method can only obtain sample point data. This poses a challenge to the estimation of chlorophyll content at the regional level. In this study, in order to improve the estimation accuracy, a new method of collaborative inversion of chlorophyll using Landsat 8 and Global Ecosystem Dynamics Investigation (GEDI) is proposed. Specifically, the chlorophyll content data set is combined with the preprocessed two remote-sensing (RS) factors to construct three regression models using a support vector machine (SVM), BP neural network (BP) and random forest (RF), and the better model is selected for inversion. In addition, the ordinary Kriging (OK) method is used to interpolate the GEDI point attribute data into the surface attribute data for modeling. The results showed the following: (1) The chlorophyll model of a single plant was y = 0.1373x1.7654. (2) The optimal semi-variance function models of pai, pgap_theta and pgap_theta_a3 are exponential models. (3) The top three correlations between the two RS data and the chlorophyll content were B2_3_SM, B2_3_HO, B2_5_EN and pai, pgap_theta, pgap_theta_a3. (4) The combination of the Landsat 8 imagery and GEDI resulted in the highest modeling accuracy, and RF had the best performance, with R2, RMSE and P values of 0.94, 0.18 g/m2 and 83.32%, respectively. This study shows that it is reliable to use Landsat 8 images and GEDI to retrieve the chlorophyll content of Dendrocalamus giganteus (D. giganteus), revealing the potential of multi-source RS data in the inversion of forest ecological parameters. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

21 pages, 6501 KiB  
Article
Application of Random Forest Method Based on Sensitivity Parameter Analysis in Height Inversion in Changbai Mountain Forest Area
by Xiaoyan Wang, Ruirui Wang, Shi Wei and Shicheng Xu
Forests 2024, 15(7), 1161; https://doi.org/10.3390/f15071161 - 4 Jul 2024
Viewed by 557
Abstract
The vertical structure of forests, including the measurement of canopy height, helps researchers understand forest characteristics such as density and growth stages. It is one of the key variables for estimating forest biomass and is crucial for accurately monitoring changes in forest carbon [...] Read more.
The vertical structure of forests, including the measurement of canopy height, helps researchers understand forest characteristics such as density and growth stages. It is one of the key variables for estimating forest biomass and is crucial for accurately monitoring changes in forest carbon storage. However, current technologies face challenges in achieving cost-effective, accurate measurement of canopy height on a widespread scale. This study introduces a method aimed at extracting accurate forest canopy height from The Global Ecosystem Dynamics Investigation (GEDI) data, followed by a comprehensive large-scale analysis utilizing this approach. Before mapping, verifying and analyzing the accuracy and sensitivity of parameters that may affect the precision of GEDI data extraction, such as slope, aspect, and vegetation coverage, can aid in assessment and decision-making, enhancing inversion accuracy. Consequently, a random forest method based on parameter sensitivity analysis is developed to break through the constraints of traditional issues and achieve forest canopy height inversion. Sensitivity analysis of influencing parameters surpasses the uniform parameter calculation of traditional methods by differentiating the effects of various land use types, thereby enhancing the precision of height inversion. Moreover, potential factors affecting the accuracy of GEDI data, such as vegetation cover density, terrain complexity, and data acquisition conditions, are thoroughly analyzed and discussed. Subsequently, large-scale forest canopy height estimation is conducted by integrating vegetation cover Normalized Difference Vegetation Index (NDVI), sun altitude angle and terrain data, among other variables, and accuracy validation is performed using airborne LiDAR data. With an R2 value of 0.64 and an RMSE of 8.62, the mapping accuracy underscores the resilience of the proposed method in delineating forest canopy height within the Changbai Mountain forest domain. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

17 pages, 3833 KiB  
Article
ANADEM: A Digital Terrain Model for South America
by Leonardo Laipelt, Bruno Comini de Andrade, Walter Collischonn, Alexandre de Amorim Teixeira, Rodrigo Cauduro Dias de Paiva and Anderson Ruhoff
Remote Sens. 2024, 16(13), 2321; https://doi.org/10.3390/rs16132321 - 25 Jun 2024
Viewed by 1435
Abstract
Digital elevation models (DEMs) have a wide range of applications and play a crucial role in many studies. Numerous public DEMs, frequently acquired using radar and optical satellite imagery, are currently available; however, DEM datasets tend to exhibit elevation values influenced by vegetation [...] Read more.
Digital elevation models (DEMs) have a wide range of applications and play a crucial role in many studies. Numerous public DEMs, frequently acquired using radar and optical satellite imagery, are currently available; however, DEM datasets tend to exhibit elevation values influenced by vegetation height and coverage, compromising the accuracy of models in representing terrain elevation. In this study, we developed a digital terrain model for South America using a novel methodology to remove vegetation bias in the Copernicus DEM GLO-30 (COPDEM) model using machine learning, Global Ecosystem Dynamics Investigation (GEDI) elevation data, and multispectral remote sensing products. Our results indicate considerable improvements compared to COPDEM in representing terrain elevation, reducing average errors (BIAS) from 9.6 m to 1.5 m. Furthermore, we evaluated our product (ANADEM) by comparison with other global DEMs, obtaining more accurate results for different conditions of vegetation fraction cover and land use. As a publicly available and open-source dataset, ANADEM will play a crucial role in advancing studies that demand accurate terrain elevation representations at large scales. Full article
(This article belongs to the Special Issue Remote Sensing Data Fusion and Applications)
Show Figures

Figure 1

20 pages, 12475 KiB  
Article
Assessing Vertical Accuracy and Spatial Coverage of ICESat-2 and GEDI Spaceborne Lidar for Creating Global Terrain Models
by Maarten Pronk, Marieke Eleveld and Hugo Ledoux
Remote Sens. 2024, 16(13), 2259; https://doi.org/10.3390/rs16132259 - 21 Jun 2024
Viewed by 978
Abstract
Digital Elevation Models (DEMs) are a necessity for modelling many large-scale environmental processes. In this study, we investigate the potential of data from two spaceborne lidar altimetry missions, ICESat-2 and GEDI—with respect to their vertical accuracies and planimetric data collection patterns—as sources for [...] Read more.
Digital Elevation Models (DEMs) are a necessity for modelling many large-scale environmental processes. In this study, we investigate the potential of data from two spaceborne lidar altimetry missions, ICESat-2 and GEDI—with respect to their vertical accuracies and planimetric data collection patterns—as sources for rasterisation towards creating global DEMs. We validate the terrain measurements of both missions against airborne lidar datasets over three areas in the Netherlands, Switzerland, and New Zealand and differentiate them using land-cover classes. For our experiments, we use five years of ICESat-2 ATL03 data and four years of GEDI L2A data for a total of 252 million measurements. The datasets are filtered using parameter flags provided by the higher-level products ICESat-2 ATL08 and GEDI L3A. For all areas and land-cover classes combined, ICESat-2 achieves a bias of −0.11 m, an MAE of 0.43 m, and an RMSE of 0.93 m. From our experiments, we find that GEDI is less accurate, with a bias of 0.09 m, an MAE of 0.98 m, and an RMSE of 2.96 m. Measurements in open land-cover classes, such as “Cropland” and “Grassland”, result in the best accuracy for both missions. We also find that the slope of the terrain has a major influence on vertical accuracy, more so for GEDI than ICESat-2 because of its larger horizontal geolocation error. In contrast, we find little effect of either beam power or background solar radiation, nor do we find noticeable seasonal effects on accuracy. Furthermore, we investigate the spatial coverage of ICESat-2 and GEDI by deriving a DEM at different horizontal resolutions and latitudes. GEDI has higher spatial coverage than ICESat-2 at lower latitudes due to its beam pattern and lower inclination angle, and a derived DEM can achieve a resolution of 500 m. ICESat-2 only reaches a DEM resolution of 700 m at the equator, but it increases to almost 200 m at higher latitudes. When combined, a 500 m resolution lidar-based DEM can be achieved globally. Our results indicate that both ICESat-2 and GEDI enable accurate terrain measurements anywhere in the world. Especially in data-poor areas—such as the tropics—this has potential for new applications and insights. Full article
(This article belongs to the Section Remote Sensing and Geo-Spatial Science)
Show Figures

Figure 1

41 pages, 12862 KiB  
Review
Forest Aboveground Biomass Estimation and Inventory: Evaluating Remote Sensing-Based Approaches
by Muhammad Nouman Khan, Yumin Tan, Ahmad Ali Gul, Sawaid Abbas and Jiale Wang
Forests 2024, 15(6), 1055; https://doi.org/10.3390/f15061055 - 18 Jun 2024
Viewed by 1006
Abstract
Remote sensing datasets offer robust approaches for gaining reliable insights into forest ecosystems. Despite numerous studies reviewing forest aboveground biomass estimation using remote sensing approaches, a comprehensive synthesis of synergetic integration methods to map and estimate forest AGB is still needed. This article [...] Read more.
Remote sensing datasets offer robust approaches for gaining reliable insights into forest ecosystems. Despite numerous studies reviewing forest aboveground biomass estimation using remote sensing approaches, a comprehensive synthesis of synergetic integration methods to map and estimate forest AGB is still needed. This article reviews the integrated remote sensing approaches and discusses significant advances in estimating the AGB from space- and airborne sensors. This review covers the research articles published during 2015–2023 to ascertain recent developments. A total of 98 peer-reviewed journal articles were selected under the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Among the scrutinized studies, 54 were relevant to spaceborne, 22 to airborne, and 22 to space- and airborne datasets. Among the empirical models used, random forest regression model accounted for the most articles (32). The highest number of articles utilizing integrated dataset approaches originated from China (24), followed by the USA (15). Among the space- and airborne datasets, Sentinel-1 and 2, Landsat, GEDI, and Airborne LiDAR datasets were widely employed with parameters that encompassed tree height, canopy cover, and vegetation indices. The results of co-citation analysis were also determined to be relevant to the objectives of this review. This review focuses on dataset integration with empirical models and provides insights into the accuracy and reliability of studies on AGB estimation modeling. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

19 pages, 11782 KiB  
Article
Forest 3D Radar Reflectivity Reconstruction at X-Band Using a Lidar Derived Polarimetric Coherence Tomography Basis
by Roman Guliaev, Matteo Pardini and Konstantinos P. Papathanassiou
Remote Sens. 2024, 16(12), 2146; https://doi.org/10.3390/rs16122146 - 13 Jun 2024
Viewed by 560
Abstract
Tomographic Synthetic Aperture Radar (SAR) allows the reconstruction of the 3D radar reflectivity of forests from a large(r) number of multi-angular acquisitions. However, in most practical implementations it suffers from limited vertical resolution and/or reconstruction artefacts as the result of non-ideal acquisition setups. [...] Read more.
Tomographic Synthetic Aperture Radar (SAR) allows the reconstruction of the 3D radar reflectivity of forests from a large(r) number of multi-angular acquisitions. However, in most practical implementations it suffers from limited vertical resolution and/or reconstruction artefacts as the result of non-ideal acquisition setups. Polarisation Coherence Tomography (PCT) offers an alternative to traditional tomographic techniques that allow the reconstruction of the low-frequency 3D radar reflectivity components from a small(er) number of multi-angular SAR acquisitions. PCT formulates the tomographic reconstruction problem as a series expansion on a given function basis. The expansion coefficients are estimated from interferometric coherence measurements between acquisitions. In its original form, PCT uses the Legendre polynomial basis for the reconstruction of the 3D radar reflectivity. This paper investigates the use of new basis functions for the reconstruction of X-band 3D radar reflectivity of forests derived from available lidar waveforms. This approach enables an improved 3D radar reflectivity reconstruction with enhanced vertical resolution, tailored to individual forest conditions. It also allows the translation from sparse lidar waveform vertical reflectivity information into continuous vertical reflectivity estimates when combined with interferometric SAR measurements. This is especially relevant for exploring the synergy of actual missions such as GEDI and TanDEM-X. The quality of the reconstructed 3D radar reflectivity is assessed by comparing simulated InSAR coherences derived from the reconstructed 3D radar reflectivity against measured coherences at different spatial baselines. The assessment is performed and discussed for interferometric TanDEM-X acquisitions performed over two tropical Gabonese rainforest sites: Mondah and Lopé. The results demonstrate that the lidar-derived basis provides more physically realistic vertical reflectivity profiles, which also produce a smaller bias in the simulated coherence validation, compared to the conventional Legendre polynomial basis. Full article
Show Figures

Figure 1

24 pages, 12363 KiB  
Article
Upscaling Forest Canopy Height Estimation Using Waveform-Calibrated GEDI Spaceborne LiDAR and Sentinel-2 Data
by Junjie Wang, Xin Shen and Lin Cao
Remote Sens. 2024, 16(12), 2138; https://doi.org/10.3390/rs16122138 - 13 Jun 2024
Cited by 1 | Viewed by 842
Abstract
Forest canopy height is a fundamental parameter of forest structure, and plays a pivotal role in understanding forest biomass allocation, carbon stock, forest productivity, and biodiversity. Spaceborne LiDAR (Light Detection and Ranging) systems, such as GEDI (Global Ecosystem Dynamics Investigation), provide large-scale estimation [...] Read more.
Forest canopy height is a fundamental parameter of forest structure, and plays a pivotal role in understanding forest biomass allocation, carbon stock, forest productivity, and biodiversity. Spaceborne LiDAR (Light Detection and Ranging) systems, such as GEDI (Global Ecosystem Dynamics Investigation), provide large-scale estimation of ground elevation, canopy height, and other forest parameters. However, these measurements may have uncertainties influenced by topographic factors. This study focuses on the calibration of GEDI L2A and L1B data using an airborne LiDAR point cloud, and the combination of Sentinel-2 multispectral imagery, 1D convolutional neural network (CNN), artificial neural network (ANN), and random forest (RF) for upscaling estimated forest height in the Guangxi Gaofeng Forest Farm. First, various environmental (i.e., slope, solar elevation, etc.) and acquisition parameters (i.e., beam type, Solar elevation, etc.) were used to select and optimize the L2A footprint. Second, pseudo-waveforms were simulated from the airborne LiDAR point cloud and were combined with a 1D CNN model to calibrate the L1B waveform data. Third, the forest height extracted from the calibrated L1B waveforms and selected L2A footprints were compared and assessed, utilizing the CHM derived from the airborne LiDAR point cloud. Finally, the forest height data with higher accuracy were combined with Sentinel-2 multispectral imagery for an upscaling estimation of forest height. The results indicate that through optimization using environmental and acquisition parameters, the ground elevation and forest canopy height extracted from the L2A footprint are generally consistent with airborne LiDAR data (ground elevation: R2 = 0.99, RMSE = 4.99 m; canopy height: R2 = 0.42, RMSE = 5.16 m). Through optimizing, ground elevation extraction error was reduced by 45.5% (RMSE), and the canopy height extraction error was reduced by 30.3% (RMSE). After training a 1D CNN model to calibrate the forest height, the forest height information extracted using L1B has a high accuracy (R2 = 0.84, RMSE = 3.13 m). Compared to the optimized L2A data, the RMSE was reduced by 2.03 m. Combining the more accurate L1B forest height data with Sentinel-2 multispectral imagery and using RF and ANN for the upscaled estimation of the forest height, the RF model has the highest accuracy (R2 = 0.64, RMSE = 4.59 m). The results show that the extrapolation and inversion of GEDI, combined with multispectral remote sensing data, serve as effective tools for obtaining forest height distribution on a large scale. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

22 pages, 7233 KiB  
Article
High-Resolution Canopy Height Mapping: Integrating NASA’s Global Ecosystem Dynamics Investigation (GEDI) with Multi-Source Remote Sensing Data
by Cesar Alvites, Hannah O’Sullivan, Saverio Francini, Marco Marchetti, Giovanni Santopuoli, Gherardo Chirici, Bruno Lasserre, Michela Marignani and Erika Bazzato
Remote Sens. 2024, 16(7), 1281; https://doi.org/10.3390/rs16071281 - 5 Apr 2024
Cited by 2 | Viewed by 2504
Abstract
Accurate structural information about forests, including canopy heights and diameters, is crucial for quantifying tree volume, biomass, and carbon stocks, enabling effective forest ecosystem management, particularly in response to changing environmental conditions. Since late 2018, NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission has [...] Read more.
Accurate structural information about forests, including canopy heights and diameters, is crucial for quantifying tree volume, biomass, and carbon stocks, enabling effective forest ecosystem management, particularly in response to changing environmental conditions. Since late 2018, NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission has monitored global canopy structure using a satellite Light Detection and Ranging (LiDAR) instrument. While GEDI has collected billions of LiDAR shots across a near-global range (between 51.6°N and >51.6°S), their spatial distribution remains dispersed, posing challenges for achieving complete forest coverage. This study proposes and evaluates an approach that generates high-resolution canopy height maps by integrating GEDI data with Sentinel-1, Sentinel-2, and topographical ancillary data through three machine learning (ML) algorithms: random forests (RF), gradient tree boost (GB), and classification and regression trees (CART). To achieve this, the secondary aims included the following: (1) to assess the performance of three ML algorithms, RF, GB, and CART, in predicting canopy heights, (2) to evaluate the performance of our canopy height maps using reference canopy height from canopy height models (CHMs), and (3) to compare our canopy height maps with other two existing canopy height maps. RF and GB were the top-performing algorithms, achieving the best 13.32% and 16% root mean squared error for broadleaf and coniferous forests, respectively. Validation of the proposed approach revealed that the 100th and 98th percentile, followed by the average of the 75th, 90th, 95th, and 100th percentiles (AVG), were the most accurate GEDI metrics for predicting real canopy heights. Comparisons between predicted and reference CHMs demonstrated accurate predictions for coniferous stands (R-squared = 0.45, RMSE = 29.16%). Full article
(This article belongs to the Special Issue Vegetation Structure Monitoring with Multi-Source Remote Sensing Data)
Show Figures

Figure 1

22 pages, 28455 KiB  
Article
Urban Above-Ground Biomass Estimation Using GEDI Laser Data and Optical Remote Sensing Images
by Xuedi Zhao, Wenmin Hu, Jiang Han, Wei Wei and Jiaxing Xu
Remote Sens. 2024, 16(7), 1229; https://doi.org/10.3390/rs16071229 - 30 Mar 2024
Cited by 3 | Viewed by 1128
Abstract
Accurate estimating of above-ground biomass (AGB) of vegetation in urbanized areas is essential for urban ecosystem services. NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission can obtain precise terrestrial vegetation structure, which is very useful for AGB estimation in large forested areas. However, the [...] Read more.
Accurate estimating of above-ground biomass (AGB) of vegetation in urbanized areas is essential for urban ecosystem services. NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission can obtain precise terrestrial vegetation structure, which is very useful for AGB estimation in large forested areas. However, the spatial heterogeneity and sparse distribution of vegetation in urban areas lead to great uncertainty in AGB estimation. This study proposes a method for estimating vegetation heights by fusing GEDI laser observations with features extracted from optical images. GEDI is utilized to extract the accurate vegetation canopy height, and the optical images are used to compensate for the spatial incoherence of GEDI. The correlation between the discrete vegetation heights of GEDI observations and image features is constructed using Random Forest (RF) to obtain the vegetation canopy heights in all vegetated areas, thus estimating the AGB. The results in Xuzhou of China using GEDI observations and image features from Sentinel-2 and Landsat-8 satellites indicate that: (1) The method of combining GEDI laser observation data with optical images is effective in estimating AGB, and its estimation accuracy (R2 = 0.58) is higher than that of using only optical images (R2 = 0.45). (2) The total AGB in the shorter vegetation region is higher than the other two in the broadleaf forest and the coniferous forest, but the AGB per unit area is the lowest in the shorter vegetation area at 33.60 Mg/ha, and it is the highest in the coniferous forest at 46.60 Mg/ha. And the highest average AGB occurs in October–December at 59.55 Mg/ha in Xuzhou. (3) The near-infrared band has a greater influence on inverted AGB, followed by textural features. Although more precise information about vegetation should be considered, this paper provides a new method for the AGB estimation and also a way for the evaluation and utilization of urban vegetation space. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Figure 1

2913 KiB  
Proceeding Paper
Evaluation of CartoDEM with the Ice, Cloud, and Land Elevation Satellite-2 and Global Ecosystem Dynamics Investigation Spaceborne LiDAR Datasets for Parts of Plain Region in Moga District, Punjab
by Ashutosh Bhardwaj, Hari Shanker Srivastava and Raghavendra Pratap Singh
Environ. Sci. Proc. 2024, 29(1), 73; https://doi.org/10.3390/ECRS2023-16887 - 27 Mar 2024
Cited by 1 | Viewed by 337
Abstract
The CartoDEM Version 3 Release 1 openly accessible datasets are currently the most reliable datasets for relatively plain regions in India specifically. The aim of the presented study is to evaluate CartoDEM with respect to two openly accessible spaceborne LiDAR datasets from two [...] Read more.
The CartoDEM Version 3 Release 1 openly accessible datasets are currently the most reliable datasets for relatively plain regions in India specifically. The aim of the presented study is to evaluate CartoDEM with respect to two openly accessible spaceborne LiDAR datasets from two LiDAR sensors: the Advanced Topographic Laser Altimeter System (ATLAS) on board the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI) over the International Space Station (ISS). The differences and deviations were computed for CartoDEM and LiDAR footprint elevations for the two datasets, namely, ICESat-2 and GEDI. The difference values were filtered for footprints with differences between 0 and 2.5 in the DEM and LiDAR elevation values. Besides this, an overall estimate was also calculated for the elevation values obtained over the surface, i.e., the ground, as well as objects such as the trees or buildings. The RMSEs were observed to be 1.16 m and 1.74 m for the ICESat-2 and GEDI datasets for the points/footprints on the terrain, whereas when considering similar parameters for the two datasets, the RMSEs were found to be 1.78 m and 5.48 m for the ICESat-2 and GEDI footprints on the surface (terrain/object), respectively. This study reveals that CartoDEM is highly accurate in the plain regions when validated with respect to the ICESat-2 datasets, which work via the photon counting technique. Further, it was observed that ICESat-2’s performance is better than that of the GEDI mission for terrain height. Thus, it was observed that the spaceborne LiDAR datasets from ICESat-2 can be utilized for the validation of DEMs and can be useful for applications where an input to a DEM is required for engineering or modeling applications. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

33 pages, 12234 KiB  
Article
Generating Wall-to-Wall Canopy Height Information from Discrete Data Provided by Spaceborne LiDAR System
by Nova D. Doyog and Chinsu Lin
Forests 2024, 15(3), 482; https://doi.org/10.3390/f15030482 - 5 Mar 2024
Viewed by 1140
Abstract
Provision of multi-temporal wall-to-wall canopy height information is one of the initiatives to combat deforestation and is necessary in strategizing forest conversion and reforestation initiatives. This study generated wall-to-wall canopy height information of the subtropical forest of Lishan, Taiwan, using discrete data provided [...] Read more.
Provision of multi-temporal wall-to-wall canopy height information is one of the initiatives to combat deforestation and is necessary in strategizing forest conversion and reforestation initiatives. This study generated wall-to-wall canopy height information of the subtropical forest of Lishan, Taiwan, using discrete data provided by spaceborne LiDARs, wall-to-wall passive and active remote sensing imageries, topographic data, and machine learning (ML) regression models such as gradient boosting (GB), k-nearest neighbor (k-NN), and random forest (RF). ICESat-2- and GEDI-based canopy height data were used as training data, and medium-resolution passive satellite image (Sentinel-2) data, active remote sensing data such as synthetic aperture radar (SAR), and topographic data were used as regressors. The ALS-based canopy height was used to validate the models’ performance using root mean square error (RMSE) and percentage RMSE (PRMSE) as validation criteria. Notably, GB displayed the highest accuracy among the regression models, followed by k-NN and then RF. Using the GEDI-based canopy height as training data, the GB model can achieve optimum accuracy with an RMSE/PRMSE of 8.00 m/31.59%, k-NN can achieve an RMSE/PRMSE of as low as 8.05 m/31.78%, and RF can achieve optimum RMSE/PRMSE of 8.16 m/32.24%. If using ICESat-2 data, GB can have an optimum RMSE/PRMSE of 13.89 m/54.86%; k-NN can have an optimum RMSE/PRMSE of 14.32 m/56.56%, while RF can achieve an RMSE/PRMSE of 14.72 m/58.14%. Additionally, integrating Sentinel-1 with Sentinel-2 data improves the accuracy of canopy height modeling. Finally, the study underlined the crucial relevance of correct canopy height estimation for sustainable forest management, as well as the potential ramifications of poor-quality projections on a variety of biological and environmental factors. Full article
Show Figures

Figure 1

Back to TopTop