Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = HTHS-viscosity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2189 KiB  
Article
Experimental Study on the Application of Cellulosic Biopolymer for Enhanced Oil Recovery in Carbonate Cores under Harsh Conditions
by Afeez Gbadamosi, Xianmin Zhou, Mobeen Murtaza, Muhammad Shahzad Kamal, Shirish Patil, Dhafer Al Shehri and Assad Barri
Polymers 2022, 14(21), 4621; https://doi.org/10.3390/polym14214621 - 31 Oct 2022
Cited by 7 | Viewed by 1559
Abstract
Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology [...] Read more.
Polymer flooding is used to improve the viscosity of an injectant, thereby decreasing the mobility ratio and improving oil displacement efficiency in the reservoir. Thanks to their environmentally benign nature, natural polymers are receiving prodigious attention for enhanced oil recovery. Herein, the rheology and oil displacement properties of okra mucilage were investigated for its enhanced oil recovery potential at a high temperature and high pressure (HTHP) in carbonate cores. The cellulosic polysaccharide used in the study is composed of okra mucilage extracted from okra (Abelmoschus esculentus) via a hot water extraction process. The morphological property of okra mucilage was characterized with Fourier transform infrared (FTIR), while the thermal stability was investigated using a thermogravimetric analyzer (TGA). The rheological property of the okra mucilage was investigated for seawater salinity and high-temperature conditions using a TA rheometer. Finally, an oil displacement experiment of the okra mucilage was conducted in a high-temperature, high-pressure core flooding equipment. The TGA analysis of the biopolymer reveals that the polymeric solution was stable over a wide range of temperatures. The FTIR results depict that the mucilage is composed of galactose and rhamnose constituents, which are essentially found in polysaccharides. The polymer exhibited pseudoplastic behavior at varying shear rates. The viscosity of okra mucilage was slightly reduced when aged in seawater salinity and at a high temperature. Nonetheless, the cellulosic polysaccharide exemplified sufficiently good viscosity under high-temperature and high-salinity (HTHS) conditions. Finally, the oil recovery results from the carbonate core plug reveal that the okra mucilage recorded a 12.7% incremental oil recovery over waterflooding. The mechanism of its better displacement efficiency is elucidated Full article
Show Figures

Figure 1

19 pages, 6404 KiB  
Article
A Novel ZnO Nanoparticles Enhanced Surfactant Based Viscoelastic Fluid Systems for Fracturing under High Temperature and High Shear Rate Conditions: Synthesis, Rheometric Analysis, and Fluid Model Derivation
by Mahesh Chandra Patel, Mohammed Abdalla Ayoub, Anas Mohammed Hassan and Mazlin Bt Idress
Polymers 2022, 14(19), 4023; https://doi.org/10.3390/polym14194023 - 26 Sep 2022
Cited by 11 | Viewed by 2030
Abstract
Surfactant-based viscoelastic (SBVE) fluids are innovative nonpolymeric non-newtonian fluid compositions that have recently gained much attention from the oil industry. SBVE can replace traditional polymeric fracturing fluid composition by mitigating problems arising during and after hydraulic fracturing operations are performed. In this study, [...] Read more.
Surfactant-based viscoelastic (SBVE) fluids are innovative nonpolymeric non-newtonian fluid compositions that have recently gained much attention from the oil industry. SBVE can replace traditional polymeric fracturing fluid composition by mitigating problems arising during and after hydraulic fracturing operations are performed. In this study, SBVE fluid systems which are entangled with worm-like micellar solutions of cationic surfactant: cetrimonium bromide or CTAB and counterion inorganic sodium nitrate salt are synthesized. The salt reagent concentration is optimized by comparing the rheological characteristics of different concentration fluids at 25 °C. The study aims to mitigate the primary issue concerning these SBVE fluids: significant drop in viscosity at high temperature and high shear rate (HTHS) conditions. Hence, the authors synthesized a modified viscoelastic fluid system using ZnO nanoparticle (NPs) additives with a hypothesis of getting fluids with improved rheology. The rheology of optimum fluids of both categories: with (0.6 M NaNO3 concentration fluid) and without (0.8 M NaNO3 concentration fluid) ZnO NPs additives were compared for a range of shear rates from 1 to 500 Sec−1 at different temperatures from 25 °C to 75 °C to visualize modifications in viscosity values after the addition of NPs additives. The rheology in terms of viscosity was higher for the fluid with 1% dispersed ZnO NPs additives at all temperatures for the entire range of shear rate values. Additionally, rheological correlation function models were derived for the synthesized fluids using statistical analysis methods. Subsequently, Herschel–Bulkley models were developed for optimum fluids depending on rheological correlation models. In the last section of the study, the pressure-drop estimation method is described using given group equations for laminar flow in a pipe depending on Herschel–Bulkley-model parameters have been identified for optimum fluids are consistency, flow index and yield stress values. Full article
Show Figures

Graphical abstract

53 pages, 2443 KiB  
Review
Updated Perceptions on Polymer-Based Enhanced Oil Recovery toward High-Temperature High-Salinity Tolerance for Successful Field Applications in Carbonate Reservoirs
by Anas M. Hassan, Emad W. Al-Shalabi and Mohammed A. Ayoub
Polymers 2022, 14(10), 2001; https://doi.org/10.3390/polym14102001 - 13 May 2022
Cited by 35 | Viewed by 3403
Abstract
The aging of the existing reservoirs makes the hydrocarbon extraction shift toward newer reserves, and harsh conditioned carbonates, which possess high temperature and high salinity (HTHS). Conventional polymer-flooding fails in these HTHS carbonates, due to precipitation, viscosity loss, and polymer adsorption. Therefore, to [...] Read more.
The aging of the existing reservoirs makes the hydrocarbon extraction shift toward newer reserves, and harsh conditioned carbonates, which possess high temperature and high salinity (HTHS). Conventional polymer-flooding fails in these HTHS carbonates, due to precipitation, viscosity loss, and polymer adsorption. Therefore, to counteract these challenges, novel polymer-based cEOR alternatives employ optimized polymers, polymer–surfactant, and alkali–surfactant–polymer solutions along with hybrid methods, which have shown a potential to target the residual or remaining oils in carbonates. Consequently, we investigate novel polymers, viz., ATBS, Scleroglucan, NVP-based polymers, and hydrophobic associative polymers, along with bio-polymers. These selected polymers have shown low shear sensitivity, low adsorption, and robust thermal/salinity tolerance. Additionally, adding an alkali-surfactant to polymer solution produces a synergy effect of improved mobility control, wettability alteration, and interfacial-tension reduction. Thus, enhancing the displacement and sweep efficiencies. Moreover, low-salinity water can precondition high-salinity reservoirs before polymer flooding (hybrid method), to decrease polymer adsorption and viscosity loss. Thus, this paper is a reference for novel polymers, and their hybrid techniques, to improve polymer-based cEOR field applications under HTHS conditions in carbonates. Additionally, the recommendations can assist in project designs with reasonable costs and minimal environmental impact. The implication of this work will aid in supplementing the oil and gas energy sector growth, making a positive contribution to the Middle Eastern economy. Full article
Show Figures

Graphical abstract

20 pages, 4717 KiB  
Article
Experimental Investigation of the Viscosity Parameters Ranges—Case Study of Engine Oils in the Selected Viscosity Grade
by Artur Wolak, Grzegorz Zając, Kamil Fijorek, Piotr Janocha and Arkadiusz Matwijczuk
Energies 2020, 13(12), 3152; https://doi.org/10.3390/en13123152 - 17 Jun 2020
Cited by 5 | Viewed by 5286
Abstract
The primary objective of the research was to compare the viscosity parameters of the same viscosity grade engine oils, as declared by the manufacturers, to the actual laboratory measurements. The secondary objective was to briefly investigate (1) what kind of information oil manufacturers [...] Read more.
The primary objective of the research was to compare the viscosity parameters of the same viscosity grade engine oils, as declared by the manufacturers, to the actual laboratory measurements. The secondary objective was to briefly investigate (1) what kind of information oil manufacturers provide in the product data sheets of the studied oils, and (2) the potential savings resulting from the use of the energy efficient oils. The study material consisted of 42 selected synthetic engine oils that belong to the 5W-30 viscosity grade. Stabinger SVM 3001 viscometer was used to determine kinematic viscosity at −20 °C, 40 °C, 100 °C and 130 °C. The HTHS (high temperature high shear), CCS (cold cranking simulator), FTIR (Fourier-transform infrared spectroscopy) and GC (Gas Chromatography) measurements were also performed for the samples that had the lowest and the highest kinematic viscosity. Large differences (5–25%) between oil producers’ declarations and the results of laboratory tests were found. Although all of the engine oils tested met the 5W-30 grade standards, the high variability of viscosity measurements needs to be reported. The difference between the oil with the highest and the oil with the lowest kinematic viscosity at −20 °C was 11,804 mm2/s. The outlying temperature-related viscosity profiles were recovered using Mahalanobis distances which identified 16 out of 42 analyzed oil samples as atypical. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

27 pages, 2265 KiB  
Article
Polymer Flow in Porous Media: Relevance to Enhanced Oil Recovery
by Arne Skauge, Nematollah Zamani, Jørgen Gausdal Jacobsen, Behruz Shaker Shiran, Badar Al-Shakry and Tormod Skauge
Colloids Interfaces 2018, 2(3), 27; https://doi.org/10.3390/colloids2030027 - 10 Jul 2018
Cited by 86 | Viewed by 8736
Abstract
Polymer flooding is one of the most successful chemical EOR (enhanced oil recovery) methods, and is primarily implemented to accelerate oil production by sweep improvement. However, additional benefits have extended the utility of polymer flooding. During the last decade, it has been evaluated [...] Read more.
Polymer flooding is one of the most successful chemical EOR (enhanced oil recovery) methods, and is primarily implemented to accelerate oil production by sweep improvement. However, additional benefits have extended the utility of polymer flooding. During the last decade, it has been evaluated for use in an increasing number of fields, both offshore and onshore. This is a consequence of (1) improved polymer properties, which extend their use to HTHS (high temperature high salinity) conditions and (2) increased understanding of flow mechanisms such as those for heavy oilmobilization. A key requirement for studying polymer performance is the control and prediction of in-situ porous medium rheology. The first part of this paper reviews recent developments in polymer flow in porous medium, with a focus on polymer in-situ rheology and injectivity. The second part of this paper reports polymer flow experiments conducted using the most widely applied polymer for EOR processes, HPAM (partially hydrolyzed polyacrylamide). The experiments addressed highrate, near-wellbore behavior (radial flow), reservoir rate steady-state flow (linear flow) and the differences observed in terms of flow conditions. In addition, the impact of oil on polymer rheology was investigated and compared to single-phase polymer flow in Bentheimer sandstone rock material. Results show that the presence of oil leads to a reduction in apparent viscosity. Full article
(This article belongs to the Special Issue Colloids and Interfaces in Oil Recovery)
Show Figures

Figure 1

4033 KiB  
Article
Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol
by David E. Sander, Christoph Knauder, Hannes Allmaier, Slavitsa Damjanović-Le Baleur and Philippe Mallet
Lubricants 2017, 5(2), 9; https://doi.org/10.3390/lubricants5020009 - 7 Apr 2017
Cited by 16 | Viewed by 10318
Abstract
With the increasing pressure to reduce emissions, friction reduction is always an up-to-date topic in the automotive industry. Among the various possibilities to reduce mechanical friction, the usage of a low-viscosity lubricant in the engine is one of the most effective and most [...] Read more.
With the increasing pressure to reduce emissions, friction reduction is always an up-to-date topic in the automotive industry. Among the various possibilities to reduce mechanical friction, the usage of a low-viscosity lubricant in the engine is one of the most effective and most economic options. Therefore, lubricants of continuously lower viscosity are being developed and offered on the market that promise to reduce engine friction while avoiding deleterious mixed lubrication and wear. In this work, a 1.6 L downsized Diesel engine is used on a highly accurate engine friction test-rig to determine the potential for friction reduction using low viscosity lubricants under realistic operating conditions including high engine loads. In particular, two hydrocarbon-based lubricants, 0W30 and 0W20, are investigated as well as a novel experimental lubricant, which is based on a polyalkylene glycol base stock. Total engine friction is measured for all three lubricants, which show a general 5% advantage for the 0W20 in comparison to the 0W30 lubricant. The polyalkylene glycol-based lubricant, however, shows strongly reduced friction losses, which are about 25% smaller than for the 0W20 lubricant. As the 0W20 and the polyalkylene glycol-based lubricant have the same HTHS-viscosity , the findings contradict the common understanding that the HTHS-viscosity is the dominant driver related to the friction losses. Full article
Show Figures

Figure 1

925 KiB  
Article
Analysis of the Journal Bearing Friction Losses in a Heavy-Duty Diesel Engine
by Christoph Knauder, Hannes Allmaier, David Emanuel Sander, Stefan Salhofer, Franz Markus Reich and Theodor Sams
Lubricants 2015, 3(2), 142-154; https://doi.org/10.3390/lubricants3020142 - 2 Apr 2015
Cited by 38 | Viewed by 9224
Abstract
Internal combustion engines (ICE) for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction [...] Read more.
Internal combustion engines (ICE) for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction in the ICE. Through a combination of measurements and validated simulation methods the journal bearing friction losses of a state-of-the-art heavy-duty Diesel engine are investigated for a large range of real world operating conditions. To this task recently developed and extensively validated simulation methods are used together with realistic lubricant models that consider the Non-Newtonian behaviour as well as the piezoviscous effect. In addition, the potential for further friction reduction with the use of ultra-low viscosity lubricants is explored. The results reveal a potential of about 8% friction reduction in the journal bearings using a 0W20 ultra-low viscosity oil with an HTHS-viscosity (The HTHS-viscosity is defined as the dynamic viscosity of the lubricant measured at 150 °C and at a shear rate of 106 s Full article
(This article belongs to the Special Issue Friction and Lubrication of Bearings)
Show Figures

Figure 1

Back to TopTop