Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = Tinto River

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 40498 KiB  
Technical Note
Diapiric Structures in the Tinto River Estuary (SW Spain) Caused by Artificial Load of an Industrial Stockpile
by Juan A. Morales, Berta M. Carro, José Borrego, Antonio J. Diosdado, María Eugenia Aguilar and Miguel A. González
Remote Sens. 2024, 16(8), 1465; https://doi.org/10.3390/rs16081465 - 20 Apr 2024
Viewed by 1901
Abstract
The mouth of the Tinto River is located on the southwest coast of the Iberian Peninsula in the northwest of the Gulf of Cadiz. The river flows into an estuarine system shared with the Odiel River, commonly known as the “Ría de Huelva”. [...] Read more.
The mouth of the Tinto River is located on the southwest coast of the Iberian Peninsula in the northwest of the Gulf of Cadiz. The river flows into an estuarine system shared with the Odiel River, commonly known as the “Ría de Huelva”. In the 1960s, a wide area of ancient salt marshes was transformed by a stockpile of industrial wastes of phosphogypsum, reaching a height of 35 m above the level of the salt marsh at its highest point. Two surveys using high-resolution seismic reflection in conjunction with a parametric profiler were carried out in 2016 and 2018. The purpose of these geophysical studies was the realization of a 3D model of the sedimentary units constituting the most recent filling of the estuary. The records present abundant extrusion structures located on the margins of the waste stockpiles, which break the visible stratification of the surficial units of the estuary. In some sectors, these structures have reached the estuarine surface and have, therefore, a morphological expression on the estuarine floor. The origin of these structures is interpreted as a vertical escape of fluidized sediments from lower units caused by overpressure from stacking. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology (Third Edition))
Show Figures

Figure 1

18 pages, 5054 KiB  
Article
Association of Acidotolerant Cyanobacteria to Microbial Mats below pH 1 in Acidic Mineral Precipitates in Río Tinto River in Spain
by Felipe Gómez, Nuria Rodríguez, José Antonio Rodríguez-Manfredi, Cristina Escudero, Ignacio Carrasco-Ropero, José M. Martínez, Marco Ferrari, Simone De Angelis, Alessandro Frigeri, Maite Fernández-Sampedro and Ricardo Amils
Microorganisms 2024, 12(4), 829; https://doi.org/10.3390/microorganisms12040829 - 19 Apr 2024
Viewed by 911
Abstract
This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining [...] Read more.
This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining the extremely low pH and the high concentration of heavy metals, while maintaining a high level of microbial diversity. These multi-layered mineral deposits are stable all year round and are characterized by a succession of thick greenish-blue and brownish layers mainly composed of natrojarosite. The temperature and absorbance above and below the mineral precipitates were followed and stable conditions were detected inside the mineral precipitates. Different methodologies, scanning and transmission electron microscopy, immunological detection, fluorescence in situ hybridization, and metagenomic analysis were used to describe the biodiversity existing in these microbial mats, demonstrating, for the first time, the existence of acid-tolerant cyanobacteria in a hyperacidic environment of below pH 1. Up to 0.46% of the classified sequences belong to cyanobacterial microorganisms, and 1.47% of the aligned DNA reads belong to the Cyanobacteria clade. Full article
(This article belongs to the Collection Microbial Life in Extreme Environments)
Show Figures

Figure 1

10 pages, 4108 KiB  
Article
Polluted Rivers—A Case Study in Porto, Portugal
by Patrícia Lemos, Paulo Silva, Cátia A. Sousa and Abel J. Duarte
Ecologies 2024, 5(2), 188-197; https://doi.org/10.3390/ecologies5020012 - 6 Apr 2024
Viewed by 1201
Abstract
River contamination by microorganisms, or another chemical source, poses a serious threat to both the environment and public health. Taking immediate and appropriate actions is essential to mitigate the contamination and prevent further spread. As such, regular monitoring of these pollution agents is [...] Read more.
River contamination by microorganisms, or another chemical source, poses a serious threat to both the environment and public health. Taking immediate and appropriate actions is essential to mitigate the contamination and prevent further spread. As such, regular monitoring of these pollution agents is essential to act in time and control its minor extension. However, there is a lack of commitment to this emergent concern and respective actions around the world. This work aims to study the contamination of a Portuguese river (Tinto River) within Porto city (a highly populated urban area) regarding the total aerobic microorganisms, coliforms, and Enterococcus (as colony-forming units (CFUs) using specific solid culture media) and total organic matter (TOC). Different locations were considered along the Tinto River course (i.e., 14 locations within 11 km) and samples were collected on distinct days throughout September 2022. The overall results showed microbial contamination of aerobic microorganisms (up to 2 × 105 CFU/100 mL), total coliforms (up to 7 × 104 CFU/100 mL), Escherichia coli (up to 9 × 103 CFU/100 mL), and Enterococcus (up to 8 × 103 CFU/100 mL). The results also surpassed the maximum recommended values (MRVs) described in Portuguese decree-law no. 236/98 for irrigation waters. Moreover, TOC was found in a range of 4.54 mg/L to 57.2 mg/L. This work highlights the dangerous microbial contamination and higher amount of organic matter than would be expected for a surface water resource. Full article
(This article belongs to the Topic Marine Ecology, Environmental Stress and Management)
Show Figures

Figure 1

41 pages, 9547 KiB  
Article
Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches
by Carlos Pernas-Pleite, Amparo M. Conejo-Martínez, Paloma Fernández Freire, María José Hazen, Irma Marín and José P. Abad
Int. J. Mol. Sci. 2023, 24(22), 16183; https://doi.org/10.3390/ijms242216183 - 10 Nov 2023
Cited by 1 | Viewed by 1112
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. [...] Read more.
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

9 pages, 1172 KiB  
Communication
Sediments as Sentinels of Pollution Episodes in the Middle Estuary of the Tinto River (SW Spain)
by Luis Miguel Cáceres, Francisco Ruiz, Javier Bermejo, Lucía Fernández, María Luz González-Regalado, Joaquín Rodríguez Vidal, Manuel Abad, Tatiana Izquierdo, Antonio Toscano, Paula Gómez and Verónica Romero
Soil Syst. 2023, 7(4), 95; https://doi.org/10.3390/soilsystems7040095 - 24 Oct 2023
Viewed by 1560
Abstract
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted [...] Read more.
Estuaries are excellent environments for identifying pollution episodes that have affected river basins, as their sediments are the final destination of some of the pollutants. This paper studies the geochemical evolution of five elements (As, Co, Cu, Pb, Zn) in a core extracted from the middle estuary of the Tinto River (SW Spain). The results are based on facies interpretation, ICP atomic emission spectrometry analysis, the application of a regional background to obtain the geoaccumulation index and dating. The main objective of this communication is the detection of natural or anthropogenic pollution episodes in the middle estuary of the Tinto River (SW Spain). Four pollution episodes have been detected: (1) ~5.8 cal. kyr BP, probably caused by natural acid rock drainage processes derived from the oxidation of the Iberian Pyritic Belt deposits found in its drainage basin; (2) 4.7–4.5 kyr BP, coming from the first mining activities and characterized by a significant increase in the concentrations of the five elements analyzed; (3) 1850–1960 interval, coinciding with intensive mining and characterized by increasing values of As and, to a lesser extent, Pb (intensive mining); and (4) the second half of the 20th century, with high element concentrations from mining and industrial effluents. All episodes show an increase in their geochemical classes deduced from the geoaccumulation index. This communication can serve as an example for assessing the impact of different types of pollution in estuarine environments. Full article
(This article belongs to the Special Issue Research on Heavy Metals in Soils and Sediments)
Show Figures

Figure 1

16 pages, 836 KiB  
Article
Metal Pollution and Mining in the Iberian Pyrite Belt: New Remediation Technologies to Improve the Ecosystem Services of the River Basins
by Estefanía Bonnail, Sebastián Vera, Julián Blasco, Mercedes Conradi and T. Ángel DelValls
Water 2023, 15(7), 1302; https://doi.org/10.3390/w15071302 - 25 Mar 2023
Cited by 7 | Viewed by 2418
Abstract
The highly metal-contaminated Odiel-Tinto River basin, located in the Iberian Pyrite Belt (IPB), has been the focus of many environmental studies as a natural lab for biodiversity and environmentally catastrophic scenarios and as a reference site for mining places with similar conditions. This [...] Read more.
The highly metal-contaminated Odiel-Tinto River basin, located in the Iberian Pyrite Belt (IPB), has been the focus of many environmental studies as a natural lab for biodiversity and environmentally catastrophic scenarios and as a reference site for mining places with similar conditions. This study demonstrates the feasibility and effectiveness of two different technologies to recover ecosystems affected by acid mine drainage (AMD) in the area of IPB. The current study compiles results of two newest technologies for AMD remediation: passive remediation (dispersed alkaline substrate—DAS) and a new disruptive technology (Adiabatic Sonic Evaporation and Crystallization—ASE&C) that purifies the contaminated water, obtaining two by-products (high-quality water and metal conglomerates) that improve the general quality of the ecosystem including biodiversity by eliminating more than 90% of the contaminants from AMD and mining waters. The removal of contaminants, enhancement of AMD treatment efficiency, and offset operating costs were compared and analyzed for the different uses of the decontaminated effluents, including an old tailing pond failure, the Aznalcóllar mining spill. The efficiency of the removal of elements from the contaminated water is significant using both technologies, although the passive DAS does not still reach the international benchmark for some compounds (such as Fe, sulfates, and Mn); whereas ASE&C obtains distilled water fulfilling all the international benchmarks with conductivity values lower than 120 µS cm−1 or metal concentrations lower than µg/L. Both technologies are eco-friendly and cost-effective as a result of the generation of valuable by-products such as fresh water and metal conglomerates as potentially commercial products while remediating aquatic ecosystems impacted by mining activities. Full article
(This article belongs to the Special Issue Biodiversity and Ecosystem Services in Rivers)
Show Figures

Figure 1

21 pages, 3996 KiB  
Article
Fe (III)-Mediated Antioxidant Response of the Acidotolerant Microalga Coccomyxa onubensis
by María Robles, Rafael Torronteras, Carol Ostojic, Cinta Oria, María Cuaresma, Inés Garbayo, Francisco Navarro and Carlos Vílchez
Antioxidants 2023, 12(3), 610; https://doi.org/10.3390/antiox12030610 - 1 Mar 2023
Cited by 4 | Viewed by 1958
Abstract
Coccomyxa onubensis (C. onubensis) is an acidotolerant microalga isolated from Tinto River (Huelva), which contains high levels of metal cations in solution, mainly Fe (II) and (III), and Cu (II). Fe is more bioavailable at low pH, mainly because Fe (II) [...] Read more.
Coccomyxa onubensis (C. onubensis) is an acidotolerant microalga isolated from Tinto River (Huelva), which contains high levels of metal cations in solution, mainly Fe (II) and (III), and Cu (II). Fe is more bioavailable at low pH, mainly because Fe (II) and Fe (III) are far more soluble, especially Fe (III). For this reason, this study aims to evaluate both physiological and biochemical responses of C. onubensis when subjected to Fe (III)-induced stress. Changes in growth, photosynthetic viability and antioxidant responses to the induced oxidative stress were determined. The results obtained suggest that the addition of moderate Fe (III) levels to C. onubensis cultures results in improved growth and photosynthetic viability. Increases in the intracellular levels of the enzyme superoxide dismutase (SOD) and flavonoids, used as antioxidant response biomarkers, a point at Fe (III)-mediated oxidative stress induction. The apparent decrease in the content of other phenolic molecules and polyunsaturated fatty acids might be understood as a sign of antioxidant molecules' involvement in reactive oxygen species (ROS) scavenging. In conclusion, a noticeable antioxidant capacity displayed by C. onubensis allows the use of moderate Fe (III) levels to trigger the accumulation of valuable antioxidant molecules, allowing the production of cell extracts with potential anti-inflammatory activity. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Figure 1

18 pages, 3036 KiB  
Article
Macroplastics and Microplastics in Intertidal Sediment of Vinces and Los Tintos Rivers, Guayas Province, Ecuador
by Rebecca Talbot, Maritza Cárdenas-Calle, James M Mair, Franklin López, Guillermo Cárdenas, Beatríz Pernía, Mark G. J. Hartl and Miguel Uyaguari
Microplastics 2022, 1(4), 651-668; https://doi.org/10.3390/microplastics1040045 - 7 Dec 2022
Cited by 6 | Viewed by 2539
Abstract
The composition, abundance and distribution of macroplastics (MAPs) and microplastics (MPs) in the Vinces and Los Tintos rivers were determined in three sites (Pueblo Nuevo, Santa Marianita, Los Tintos) from the low basin in the coastal province of Guayas, Ecuador. MAPS were recorded [...] Read more.
The composition, abundance and distribution of macroplastics (MAPs) and microplastics (MPs) in the Vinces and Los Tintos rivers were determined in three sites (Pueblo Nuevo, Santa Marianita, Los Tintos) from the low basin in the coastal province of Guayas, Ecuador. MAPS were recorded by visual census, covering a total distance of 140 m, and MPs were extracted in the intertidal sediments via density separation using a saturated NaCl solution, and these were counted using a stereomicroscope. A total of 940 plastic items were identified. The predominant debris was plastic with 85.2%, followed by manufactured materials and metals. The Vinces River contained the highest abundance of plastic in the locality of Pueblo Nuevo. The most abundant plastic was MPs. The most common MAPs were plastic bags (23%), food packaging (17%) and foamed plastic (8%). MP size classes quantified between 0.15 and 2.52 mm in intertidal, very fine sandy sediment and decreased in abundance with increasing grain size. The most common MPs were fibres (65.2%) (black (43.8%) and blue (25.8%)), and their distribution has a high correlation with population density and water flow direction: Santa Marianita 5.55 g−1, Pueblo Nuevo 7.39 g−1, Los Tintos 8.17−1. A significant abundance of fibres was identified in Pueblo Nuevo. The plastic spatial distribution revealed major plastic pollution in areas where recreational and tourism activities have been developed. Therefore, we recommend implementing awareness campaigns by educating businesses, residents and tourists on managing solid waste (especially plastic) and wastewater. Our results can serve as a baseline for future plastic monitoring in the area. Full article
(This article belongs to the Special Issue Microplastics in Marine Environment)
Show Figures

Figure 1

21 pages, 2668 KiB  
Article
Methodological Optimization of Supercritical Fluid Extraction of Valuable Bioactive Compounds from the Acidophilic Microalga Coccomyxa onubensis
by Mari Carmen Ruiz-Domínguez, Elena Medina, Francisca Salinas, Waldo Bugueño, Juan-Luis Fuentes, Carlos Vílchez, Inés Garbayo and Pedro Cerezal-Mezquita
Antioxidants 2022, 11(7), 1248; https://doi.org/10.3390/antiox11071248 - 25 Jun 2022
Cited by 8 | Viewed by 1664
Abstract
Microalgae grow in diverse environments and possess a great biotechnological potential as they contain useful bioactive compounds. These bioactive compounds can be obtained by selective and energy-efficient extraction methods. Various industries are using the supercritical fluid extraction (SFE) method to extract these valuable [...] Read more.
Microalgae grow in diverse environments and possess a great biotechnological potential as they contain useful bioactive compounds. These bioactive compounds can be obtained by selective and energy-efficient extraction methods. Various industries are using the supercritical fluid extraction (SFE) method to extract these valuable bioactive compounds. Hence, for the first time, we evaluated the effects of SFE on the recovery of bioactive and antioxidant compounds using Coccomyxa onubensis, a eukaryotic acidophilic microalga of potential relevance which can be used in the field of nutraceutical and functional foods. It was isolated from the Tinto River (Pyritic Belt, Huelva, Spain), a mining region in Spain. Variables such as extraction yield, lutein purity (LP) and recovery (LR), total phenols, and antioxidant capacity (Trolox equivalents antioxidant capacity method) were studied using a Box–Behnken design based on a response surface methodology along with the overall extraction curve fitted to a spline linear model. The effects of temperature (30, 50, and 70 °C), pressure (25, 40, and 55 MPa), and the percentage of co-solvent (0, 25%, and 50% v/v ethanol) on SFE were analyzed, resulting in the co-solvent and temperature as the most significant factors followed by the pressure. Under 70 °C, 40 MPa, and 50% v/v ethanol, C. onubensis reached a maximum of 66.98% of LR. The extracts were richest in total phenols and showed the maximum antioxidant activity (36.08 mg GAEs/g extracts and 2.237 mmol TE/g extracts, respectively) under similar pressure and co-solvent percentage values and different temperatures (30 and 70 °C, respectively). The extracts obtained in this study may have potential applications in the food, nutraceutical, and cosmetic industries. SFE is a highly efficient method to valorize microorganisms living in extreme environments, which are so far unexplored using green extraction methods. Full article
Show Figures

Figure 1

12 pages, 3842 KiB  
Article
Hydrochemical Characterization of an Acid Mine Effluent from Concepcion Mine Using Classical Statistic and Fuzzy Logic Techniques
by María Santisteban, Ana Teresa Luís, José Antonio Grande, Javier Aroba, José Miguel Dávila, Aguasanta Miguel Sarmiento, Juan Carlos Fortes, Francisco Cordoba and Ángel Mariano Rodriguez-Pérez
Minerals 2022, 12(4), 464; https://doi.org/10.3390/min12040464 - 11 Apr 2022
Cited by 2 | Viewed by 1727
Abstract
This work focuses on the physical-chemical characterization of a mining effluent affected by acid mine drainage (AMD) from its source to the confluence in the Odiel river, one of the most polluted rivers by AMD worldwide, in order to understand the reactions involved [...] Read more.
This work focuses on the physical-chemical characterization of a mining effluent affected by acid mine drainage (AMD) from its source to the confluence in the Odiel river, one of the most polluted rivers by AMD worldwide, in order to understand the reactions involved in the modifications in the chemical characteristics of water and precipitates resulting from water–rock–atmosphere interaction in an environment highly affected by mining activity without corrective measures. The channel starts in an open pit lake through one of the Concepción Mine main galleries, located in the Iberian Pyrite Belt, about 10 km northwest of Rio Tinto mining complex (southwest Spain). This gallery intercepts one of the largest and oldest underground mining work locations called “gallery Carmen”, allowing the exit of AMD affected waters. This channel is the first AMD polluting source in the Odiel basin. Thus, at the end of the rainy season, we conducted water sampling along this channel, from its source to its mouth, to further analyse its characterization and interpret the cause–effect relationships through the application of Fuzzy Logic and classical statistics tools. The interdependent relationship between the measured physicochemical parameters are set in order to propose a model, capable of describing the evolution of contaminants in response to the processes and reactions taking place within the affected channel and the Odiel river. The present work concluded the existence of natural attenuation processes for the mining channel, despite the entrances of other drainages in the AMD channel with different hydrochemical characteristics imposing modifications on it. This indicates that these media have a high vulnerability to external stimuli. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

21 pages, 5636 KiB  
Article
REE Geochemistry of Neogene–Holocene Sediments of La Fontanilla Cove (Tinto Estuary, SW Spain)
by Maria Isabel Prudêncio, Francisco Ruiz, Rosa Marques, Maria Isabel Dias, Joaquín Rodríguez Vidal, Ana Luísa Rodrigues, Luis Miguel Cáceres, María Luz González-Regalado, Juan Manuel Muñoz, Manuel Pozo, Paula Gómez, Antonio Toscano, Manuel Abad, Tatiana Izquierdo, Marta Arroyo, Verónica Romero and Gabriel Gómez
Minerals 2022, 12(4), 417; https://doi.org/10.3390/min12040417 - 29 Mar 2022
Cited by 4 | Viewed by 2269
Abstract
The Tinto and Odiel rivers (SW Spain) drain from a vast sulfide mining district and join at a 20-km-long estuary that enters the Atlantic Ocean. In this work, the contents of rare earth elements (REE) and fractionation in Neogene–Holocene sediment cores from La [...] Read more.
The Tinto and Odiel rivers (SW Spain) drain from a vast sulfide mining district and join at a 20-km-long estuary that enters the Atlantic Ocean. In this work, the contents of rare earth elements (REE) and fractionation in Neogene–Holocene sediment cores from La Fontanilla cove (Tinto estuary) were studied. The sediments were collected from a depth of 18 m at different distances from the recent river flow and were analyzed for new information on the temporal development of the REE load in the sediment column. Results show that the ∑ REE is higher in the finer sediments and during periods of mining activity from prehistoric to recent times. Marine influence appears to increase the light REE (LREE) relative to the heavy REE (HREE). The REE patterns of these estuarine sediments show convex curvatures in the MREE relative to the LREE and HREE, indicating the presence of acid-mixing processes between the fluvial waters affected by acid mine drainage (AMD) and seawater, as well as the precipitation of poorly crystalline mineral phases. Significant positive Eu anomalies were found in ebb-tide channels and marsh deposits, which can reflect the mineralogical composition and/or a strong localized salinity gradient combined with organic matter degradation. Sedimentological characteristics of the deposits appear to play the main role in accumulation and fractionation of the REE. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

14 pages, 2136 KiB  
Article
Bioactive Compounds in Sarcocornia and Arthrocnemum, Two Wild Halophilic Genera from the Iberian Peninsula
by Irene Sánchez-Gavilán, Esteban Ramírez Chueca and Vicenta de la Fuente García
Plants 2021, 10(10), 2218; https://doi.org/10.3390/plants10102218 - 19 Oct 2021
Cited by 8 | Viewed by 2601
Abstract
(1) Background: this study describes bioactive compounds in the following halophytes: Sarcocornia (S. alpini, S. pruinosa, and S. perennis) and Arthrocnemum (A. macrostachyum). The material comes from: coastal marshes in Tinto River, Guadiana River, and some interior [...] Read more.
(1) Background: this study describes bioactive compounds in the following halophytes: Sarcocornia (S. alpini, S. pruinosa, and S. perennis) and Arthrocnemum (A. macrostachyum). The material comes from: coastal marshes in Tinto River, Guadiana River, and some interior provinces from the Iberian Peninsula. (2) Methods: the techniques used were Folin–Ciocalteu, GC-MS, and ESI-MS/MS. (3) Results: Five phenolic acids were found in Sarcocornia: trans-cinnamic, salicylic, veratric, coumaric, and caffeic acids. In addition, in Arthronemum, ferulic acid was also detected. The obtained flavonoids were cyanidin-3-O-arabinoside, luteolin-7-glucoside, dihydroquercetin, and p-coumaroyl-glucoside. They also presented fatty acids, such as palmitic, linoleic, and oleic acids in Sarcocornia, while palmitic, linolenic, and stearic acids were the main fatty acids in A. macrostachyum. (4) Conclusions: the high diversity of the compounds identified confirms the relation between nutritional interest and salt tolerance in halophytes. Full article
Show Figures

Figure 1

32 pages, 14593 KiB  
Article
Hydrogeochemical Variability of the Acidic Springs in the Rio Tinto Headwaters
by Christopher John Allman, David Gómez-Ortiz, Andrea Burke, Ricardo Amils, Nuria Rodriguez and David Fernández-Remolar
Water 2021, 13(20), 2861; https://doi.org/10.3390/w13202861 - 13 Oct 2021
Cited by 4 | Viewed by 2522
Abstract
Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, [...] Read more.
Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, typical pH of ~2.33, and contain elevated concentrations of heavy metals that are produced by acid rock drainage (ARD). ARD is a natural phenomenon that results from chemolithoautotrophs metabolizing the sulfide ore. Mining has amplified the magnitude of the acidity and concentrations of heavy metals evidenced within sedimentary cores from the Huelva estuary. Acidity, redox state, hydrochemistry and isotopic analyses were examined for the purpose of characterizing the subsurface flows and determining the interconnectivity of the groundwaters. Previous studies have documented the geochemistry of the springs, dating a select few, yet many springs remain uncharacterized. Acidity presented spatial variability throughout the field area, caused by extensive sulfide interactions which generated and modified the pH. Redox exhibited a large range of values due to oxygen diffusivity though the fracture network. The surrounding geology is highly heterogeneous because of intensive deformation during the Variscan and Tertiary periods, and this heterogeneity is shown in the varied aqueous chemistry. Fractionation patterns observed in δ2H and δ18O values predominantly reflected enrichment by intensive evaporation and depletion in δ18O as a result of the proposed sulfatic-water model for Rio Tinto’s hydrogeology. The analysis illustrates minimal hydrologic interconnectivity, evidenced by the extensive physical and chemical contrasts within such a small proximity. Full article
Show Figures

Figure 1

12 pages, 1677 KiB  
Article
Bioactive Compounds in Salicornia patula Duval-Jouve: A Mediterranean Edible Euhalophyte
by Irene Sánchez-Gavilán, Esteban Ramírez and Vicenta de la Fuente
Foods 2021, 10(2), 410; https://doi.org/10.3390/foods10020410 - 12 Feb 2021
Cited by 13 | Viewed by 3315
Abstract
Many halophytes have great nutritional and functional potential, providing chemical compounds with biological properties. Salicornia patula Duval-Jouve is a common euhalophyte from saline Mediterranean territories (Spain, Portugal, France, and Italy). In the present work we quantified for the first time the bioactive compounds [...] Read more.
Many halophytes have great nutritional and functional potential, providing chemical compounds with biological properties. Salicornia patula Duval-Jouve is a common euhalophyte from saline Mediterranean territories (Spain, Portugal, France, and Italy). In the present work we quantified for the first time the bioactive compounds in S. patula (total phenolic compounds and fatty acids), from Iberian Peninsula localities: littoral-coastal Tinto River basin areas (southwest Spain, the Huelva province), and mainland continental territories (northwest and central Spain, the Valladolid and Madrid provinces). Five phenolic acids including caffeic, coumaric, veratric, salicylic, and transcinnamic have been found with differences between mainland and coastal saltmarshes. S. patula contain four flavonoids: quercetin-3-O-rutinoside, kaempferol/luteolin, apigenin 7-glucoside, and pelargonidin-3-O-rutinoside. These last two glycosylated compounds are described for the first time in this genus of Chenopodiaceae. The fatty acid profile described in S. patula stems contains palmitic, oleic, and linoleic acids in high concentrations, while stearic and long-chain fatty acids were detected in low amounts. These new findings confirm that S. patula is a valuable source of bioactive compounds from Mediterranean area. Full article
Show Figures

Figure 1

25 pages, 16141 KiB  
Article
UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters
by Hernan Flores, Sandra Lorenz, Robert Jackisch, Laura Tusa, I. Cecilia Contreras, Robert Zimmermann and Richard Gloaguen
Minerals 2021, 11(2), 182; https://doi.org/10.3390/min11020182 - 9 Feb 2021
Cited by 35 | Viewed by 8286
Abstract
The exposure of metal sulfides to air or water, either produced naturally or due to mining activities, can result in environmentally damaging acid mine drainage (AMD). This needs to be accurately monitored and remediated. In this study, we apply high-resolution unmanned aerial system [...] Read more.
The exposure of metal sulfides to air or water, either produced naturally or due to mining activities, can result in environmentally damaging acid mine drainage (AMD). This needs to be accurately monitored and remediated. In this study, we apply high-resolution unmanned aerial system (UAS)-based hyperspectral mapping tools to provide a useful, fast, and non-invasive method for the monitoring aspect. Specifically, we propose a machine learning framework to integrate visible to near-infrared (VNIR) hyperspectral data with physicochemical field data from water and sediments, together with laboratory analyses to precisely map the extent of acid mine drainage in the Tintillo River (Spain). This river collects the drainage from the western part of the Rio Tinto massive sulfide deposit and discharges large quantities of acidic water with significant amounts of dissolved metals (Fe, Al, Cu, Zn, amongst others) into the Odiel River. At the confluence of these rivers, different geochemical and mineralogical processes occur due to the interaction of very acidic water (pH 2.5–3.0) with neutral water (pH 7.0–8.0). This complexity makes the area an ideal test site for the application of hyperspectral mapping to characterize both rivers and better evaluate contaminated water bodies with remote sensing imagery. Our approach makes use of a supervised random forest (RF) regression for the extended mapping of water properties, using the samples collected in the field as ground-truth and training data. The resulting maps successfully estimate the concentration of dissolved metals and related physicochemical properties in water, and trace associated iron species (e.g., jarosite, goethite) within sediments. These results highlight the capabilities of UAS-based hyperspectral data to monitor water bodies in mining environments, by mapping their hydrogeochemical properties, using few field samples. Hence, we have demonstrated that our workflow allows the rapid discrimination and mapping of AMD contamination in water, providing an essential basis for monitoring and subsequent remediation. Full article
(This article belongs to the Special Issue Pollutants in Acid Mine Drainage)
Show Figures

Graphical abstract

Back to TopTop