Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = WS2/WO3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9947 KiB  
Article
Use of 2D Sulfide and Oxide Compounds as Functional Semiconducting Pigments in Protective Organic Coatings Containing Zinc Dust
by Miroslav Kohl, Karolína Boštíková, Stanislav Slang, Eva Schmidová and Andréa Kalendová
Coatings 2024, 14(8), 1009; https://doi.org/10.3390/coatings14081009 - 8 Aug 2024
Viewed by 800
Abstract
Within this study, the influence of particles of different types, natures, and sizes on the mechanical and corrosion resistance of pigmented systems containing spherical zinc was studied. For this study, prominent representatives from the group of transition metal dichalcogenides (MoS2, WS [...] Read more.
Within this study, the influence of particles of different types, natures, and sizes on the mechanical and corrosion resistance of pigmented systems containing spherical zinc was studied. For this study, prominent representatives from the group of transition metal dichalcogenides (MoS2, WS2), layered transition metal oxides (MoO3, WO3), and other semiconductor materials (ZnS and ZnO) were used. The layered ultra-thin structure of these particles was predisposed to provide enhanced mechanical and anti-corrosion performance. The mechanical properties of the studied coatings were tested using standardized mechanical tests, while the anti-corrosion performance of these coatings was studied using standardized cyclic corrosion tests and the linear polarization electrochemical technique. The results of the experimental techniques bring completely original knowledge about the action of these pigments in paint systems pigmented with zinc. The results of experimental techniques have shown enhancement and an increase in both mechanical and anti-corrosion performance when using these special types of inorganic pigments. In particular, with organic coatings pigmented with MoO3, there was an increase in mechanical resistance mainly due to its morphology and layered structure. In addition, a significant enhancement of the anti-corrosion efficiency was noted for this type of organic coating due to the enhancement of individual types of action mechanisms typical and proven for zinc-pigmented systems. These original findings can be used in the search for possibilities to reduce the zinc content in zinc-pigmented organic coatings. This partial replacement of zinc particles leads not only to a reduction in the zinc content in the system but also to a significant strengthening of the mechanical resistance and an increase in the corrosion efficiency of the system. Full article
Show Figures

Graphical abstract

13 pages, 4083 KiB  
Article
Hierarchical WS2-WO3 Nanohybrids with Flower-like p-n Heterostructures for Trimethylamine Detection
by Dan Meng, Shunjiang Ran, Lei Zhang, Xiaoguang San, Yue Zhang, Yu Zheng and Jian Qi
Nanomaterials 2024, 14(16), 1322; https://doi.org/10.3390/nano14161322 - 6 Aug 2024
Viewed by 867
Abstract
The detection of trimethylamine (TMA) is critically important due to its toxic and flammable nature, which poses significant risks to human health and the environment. However, achieving high response, rapid kinetics, selectivity, and low operating temperatures in TMA sensing remains challenging. In this [...] Read more.
The detection of trimethylamine (TMA) is critically important due to its toxic and flammable nature, which poses significant risks to human health and the environment. However, achieving high response, rapid kinetics, selectivity, and low operating temperatures in TMA sensing remains challenging. In this study, WS2/WO3 nanohybrids with flower-like hierarchical structures were synthesized via an in situ sulfurization process, utilizing varying amounts of thioacetamide to control the sulfurization state of WO3. These novel hierarchical WS2/WO3 nanohybrids exhibit remarkable selectivity towards TMA, as well as rapid response and recovery characteristics. Specially, the optimal WS2/WO3 sensor, composed of 5% WS2/WO3 nanohybrids, demonstrates exceptional TMA sensing performance, including a high response (19.45 at 10 ppm), good repeatability, reliable long-term stability, and a low theoretical detection limit (15.96 ppb). The superior sensing capabilities of the WS2/WO3 nanohybrids are attributed to the formation of p-n heterojunctions at the interface, the unique hierarchical structures, and the catalytic activity of WS2. Overall, this work provides a straightforward and versatile approach for synthesizing multifunctional nanomaterials by combining metal oxide micro-flowers with transition metal dichalcogenide nanoflakes for applications in monitoring TMA in complex environments. Full article
Show Figures

Figure 1

18 pages, 14051 KiB  
Article
Methods of Distributing the IF-WS2 Modifier for Its Introduction into the Structure of the Al2O3 Aluminum Oxide Coating
by Joanna Korzekwa, Mateusz Niedźwiedź, Grzegorz Dercz, Krzysztof Cwynar, Maciej Sowa, Marek Bara and Wojciech Simka
Coatings 2024, 14(7), 883; https://doi.org/10.3390/coatings14070883 - 15 Jul 2024
Viewed by 833
Abstract
The microstructures and structures of modified Al2O3/IF-WS2 coatings prepared on aluminum substrates are studied. Amorphous Al2O3 oxide coatings are obtained on EN AW 5251 aluminum alloy using the electrooxidation process. The quality of the IF-WS [...] Read more.
The microstructures and structures of modified Al2O3/IF-WS2 coatings prepared on aluminum substrates are studied. Amorphous Al2O3 oxide coatings are obtained on EN AW 5251 aluminum alloy using the electrooxidation process. The quality of the IF-WS2 nanopowder is of great importance in the process of its introduction into the nanopores of the Al2O3 oxide coating. Commercial nanopowder tends to agglomerate, and without appropriate pretreatment, it is difficult to introduce it into the nanopores of the coating. To improve the degree of fragmentation of the IF-WS2 nanopowder, an experiment was carried out to distribute the nanopowder in the presence of strong ultrasounds, and new conditions for introducing the powder into the nanopores were used. A two-level design of experiment (DOE) was used. The SEM examination made it possible to conclude that Method A contributed to a more even distribution of nanoparticles in the microstructure of Al2O3 coatings. GIXD analyses showed the presence of WO3 derived from the IF-WS2 modifier next to crystal structures derived from aluminum and WS2. Modification of coatings using Method A resulted in surfaces with lower contact angles measured with polar liquids and higher surface free energy compared to Method B. Full article
Show Figures

Figure 1

10 pages, 2525 KiB  
Article
Tailored Synthesis of Heterogenous 2D TMDs and Their Spectroscopic Characterization
by Jungtae Nam, Gil Yong Lee, Dong Yun Lee, Dongchul Sung, Suklyun Hong, A-Rang Jang and Keun Soo Kim
Nanomaterials 2024, 14(3), 248; https://doi.org/10.3390/nano14030248 - 23 Jan 2024
Viewed by 1286
Abstract
Two-dimensional (2D) vertical van der Waals heterostructures (vdWHs) show great potential across various applications. However, synthesizing large-scale structures poses challenges owing to the intricate growth parameters, forming unexpected hybrid film structures. Thus, precision in synthesis and thorough structural analysis are essential aspects. In [...] Read more.
Two-dimensional (2D) vertical van der Waals heterostructures (vdWHs) show great potential across various applications. However, synthesizing large-scale structures poses challenges owing to the intricate growth parameters, forming unexpected hybrid film structures. Thus, precision in synthesis and thorough structural analysis are essential aspects. In this study, we successfully synthesized large-scale structured 2D transition metal dichalcogenides (TMDs) via chemical vapor deposition using metal oxide (WO3 and MoO3) thin films and a diluted H2S precursor, individual MoS2, WS2 films and various MoS2/WS2 hybrid films (Type I: MoxW1−xS2 alloy; Type II: MoS2/WS2 vdWH; Type III: MoS2 dots/WS2). Structural analyses, including optical microscopy, Raman spectroscopy, transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy, and cross-sectional imaging revealed that the A1g and E2g modes of WS2 and MoS2 were sensitive to structural variations, enabling hybrid structure differentiation. Type II showed minimal changes in the MoS2′s A1g mode, while Types I and III exhibited a ~2.8 cm−1 blue shift. Furthermore, the A1g mode of WS2 in Type I displayed a 1.4 cm−1 red shift. These variations agreed with the TEM-observed microstructural features, demonstrating strain effects on the MoS2–WS2 interfaces. Our study provides insights into the structural features of diverse hybrid TMD materials, facilitating their differentiation through Raman spectroscopy. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

27 pages, 5142 KiB  
Article
Anticancer Tungstenocenes with a Diverse Set of (O,O–), (O,S–) and (O,N–) Chelates—A Detailed Biological Study Using an Improved Evaluation via 3D Spheroid Models
by Klaudia Cseh, Iker Berasaluce, Valentin Fuchs, Alexandra Banc, Andreas Schweikert, Alexander Prado-Roller, Michaela Hejl, Debora Wernitznig, Gunda Koellensperger, Michael A. Jakupec, Wolfgang Kandioller, Michael S. Malarek and Bernhard K. Keppler
Pharmaceutics 2023, 15(7), 1875; https://doi.org/10.3390/pharmaceutics15071875 - 3 Jul 2023
Cited by 1 | Viewed by 2240
Abstract
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O–), (S,O) and (N,O) chelates are described. Complexes were characterized by 1H and 13C NMR, [...] Read more.
The synthesis, characterization and biological activity of tungstenocenes with varying biologically active (O,O–), (S,O) and (N,O) chelates are described. Complexes were characterized by 1H and 13C NMR, elemental analysis, ESI-mass spectrometry, FT-IR spectroscopy and X-ray diffraction analysis. The aqueous stability was studied by UV/Vis spectroscopy and the WIV to WV process by cyclic voltammetry. The cytotoxicity was determined by the MTT assay in A549, CH1/PA-1 and SW480 cancer cells as well as in IMR-90 human fibroblasts. Extensive biological evaluation was performed in three other human cancer cell lines (HCT116, HT29 and MCF-7) in monolayer and multicellular tumor spheroid cultures to better understand the mode of action. Lead compounds showed promising in vitro anticancer activity in all cancer cell lines. Further studies yielded important insights into apoptosis induction, ROS generation, different patterns in metal distribution (detected by LA-ICP-TOF-MS), changes in KI67 (proliferation marker) expression and DNA interactions. The results based on qualitative and quantitative research designs show that complexes containing (S,O–) chelates are more active than their (O,O–) and (N,O–) counterparts. The most striking results in spheroid models are the high antiproliferative capacity and the different distribution pattern of two complexes differing only in a W–S or W–O bond. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

12 pages, 3700 KiB  
Article
Ultrafast Mechanism of Material Removal in the Femtosecond Laser Ablation of WS2 and Its Diode Rectification Characteristics
by Kai Wang, Zhicheng Chen, Xu Wu, Changji Pan, Feifei Wang, Jiaxing Wang, Ke Zhang, Yang Yang and Jingya Sun
Crystals 2023, 13(5), 832; https://doi.org/10.3390/cryst13050832 - 17 May 2023
Viewed by 1635
Abstract
The study investigates the two different underlying ablation mechanisms of WS2 processed by femtosecond (fs) laser with different fluences. With increasing fluence, the saturable expansion of craters and the transformation of three distinct crater morphologies are found. The material response and the [...] Read more.
The study investigates the two different underlying ablation mechanisms of WS2 processed by femtosecond (fs) laser with different fluences. With increasing fluence, the saturable expansion of craters and the transformation of three distinct crater morphologies are found. The material response and the transfer and deposition of laser energy are tracked by using a plasma model based on the classical single rate equation model and the Drude model. The results of the numerical simulation and time-resolved transient reflectivity reveal the two different ablation mechanisms, which are coulomb explosion and phase explosion. The mechanism of material removal is distinguished by the critical threshold of 0.85 J/cm2. In addition, the internal ablation region exhibits a high concentration of defects and WO3 according to the results of Raman spectra, X-ray photoelectron spectra, and morphology-dependent photoluminescence mapping. Due to the high concentration with high fluence, the device of WS2/Si p-n junction exhibits a 2.6 times enhancement on the current under forward bias. The findings would be of value to engineer structures to tailor the optoelectronic response of WS2 and to develop potential future optoelectronic devices. Full article
Show Figures

Graphical abstract

9 pages, 4308 KiB  
Article
Structural and Optical Properties of Tungsten Disulfide Nanoscale Films Grown by Sulfurization from W and WO3
by Pangihutan Gultom, Jiang-Yan Chiang, Tzu-Tai Huang, Jung-Chuan Lee, Shu-Hsuan Su and Jung-Chung Andrew Huang
Nanomaterials 2023, 13(7), 1276; https://doi.org/10.3390/nano13071276 - 4 Apr 2023
Cited by 5 | Viewed by 2797
Abstract
Tungsten disulfide (WS2) was prepared from W metal and WO3 by ion beam sputtering and sulfurization in a different number of layers, including monolayer, bilayer, six-layer, and nine-layer. To obtain better crystallinity, the nine-layer of WS2 was also prepared [...] Read more.
Tungsten disulfide (WS2) was prepared from W metal and WO3 by ion beam sputtering and sulfurization in a different number of layers, including monolayer, bilayer, six-layer, and nine-layer. To obtain better crystallinity, the nine-layer of WS2 was also prepared from W metal and sulfurized in a furnace at different temperatures (800, 850, 900, and 950 °C). X-ray diffraction revealed that WS2 has a 2-H crystal structure and the crystallinity improved with increasing sulfurization temperature, while the crystallinity of WS2 sulfurized from WO3 (WS2-WO3) is better than that sulfurized from W-metal (WS2-W). Raman spectra show that the full-width at half maximum (FWHM) of WS2-WO3 is narrower than that of WS2-W. We demonstrate that high-quality monocrystalline WS2 thin films can be prepared at wafer scale by sulfurization of WO3. The photoluminescence of the WS2 monolayer is strongly enhanced and centered at 1.98 eV. The transmittance of the WS2 monolayer exceeds 80%, and the measured band gap is 1.9 eV, as shown by ultraviolet-visible-infrared spectroscopy. Full article
(This article belongs to the Special Issue Processing, Surfaces and Interfaces of Nanomaterials)
Show Figures

Figure 1

13 pages, 5798 KiB  
Article
High Temperature Tribological Performance of Steel/Copper Friction Pairs Lubricated with a Modified C-WS2-(Fe3O4 + TiN) Nanoadditives in Non-Copper Coated Solid Wires
by Hong Li, Jing Zhu, Zisong Chen, Zhuoxin Li and Bo Meng
Nanomaterials 2022, 12(12), 2091; https://doi.org/10.3390/nano12122091 - 17 Jun 2022
Cited by 3 | Viewed by 1518
Abstract
In this study, four kinds of nanoparticles, graphite, WS2, Fe3O4, and TiN, were used as lubricating additives for steel/copper friction pairs to solve the problem of welding contact tube wear with non-copper-coated solid wire at high temperature. [...] Read more.
In this study, four kinds of nanoparticles, graphite, WS2, Fe3O4, and TiN, were used as lubricating additives for steel/copper friction pairs to solve the problem of welding contact tube wear with non-copper-coated solid wire at high temperature. The single and composite nanoparticles have excellent dispersion stability in absolute ethanol under the action of the compound surfactant NaSTA + OA + PVP (i.e., sodium stearate, oleic acid, and polyvinylpyrrolidone). The tribological test results showed that the maximum decrement, with reference to the average coefficient of friction and wear volumes, were measured with nanoparticle concentration in 1:1:1 ratio at 300 °C. Compared with dry friction, the average friction coefficient and wear volume are reduced by 74.3% and 84.8%, respectively, which may be attributed to the formation of a stable tribo-film mainly composed of C–O, Fe2O3, WO3, TiO2, TiNxOy composite on the worn surface. Therefore, it is considered that the combined lubrication effects of the ball-bearing effect, repairing of worn surfaces, and the tribo-film resulted in the lowest friction and wear. Full article
Show Figures

Figure 1

15 pages, 19955 KiB  
Article
Core Shell Nanostructure: Impregnated Activated Carbon as Adsorbent for Hydrogen Sulfide Adsorption
by Nurul Noramelya Zulkefli, Rajeevelosana Seladorai, Mohd Shahbudin Masdar, Nabilah Mohd Sofian and Wan Nor Roslam Wan Isahak
Molecules 2022, 27(3), 1145; https://doi.org/10.3390/molecules27031145 - 8 Feb 2022
Cited by 7 | Viewed by 2789
Abstract
This study focuses on the synthesis, characterization, and evaluation of the performance of core shell nanostructure adsorbent for hydrogen sulfide (H2S) capture. Commercial coconut shell activated carbon (CAC) and commercial mixed gas of 5000 ppm H2S balanced N2 [...] Read more.
This study focuses on the synthesis, characterization, and evaluation of the performance of core shell nanostructure adsorbent for hydrogen sulfide (H2S) capture. Commercial coconut shell activated carbon (CAC) and commercial mixed gas of 5000 ppm H2S balanced N2 were used. With different preparation techniques, the CAC was modified by core shell impregnation with zinc oxide (ZnO), titanium oxide (TiO2), potassium hydroxide (KOH), and zinc acetate (ZnAC2). The core structure was prepared with CAC impregnated by single chemical and double chemical labelled with ZnAC2-CAC (single chemical), ZnAC2/KOH-CAC, ZnAC2/ZnO-CAC, and ZnAC2/TiO2-CAC. Then, the prepared core was layered either with KOH, TiO2, NH3, or TEOS for the shell. The synthesized adsorbents were characterized in physical and chemical characterization through scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET) analyzers. Operation of the adsorber column takes place at ambient temperature, with absolute pressure at 1.5 bar. The H2S gas was fed into the column at 5.5 L/min and the loaded adsorbents were 150 g. The performance of synthesized adsorbent was analyzed through the adsorbent’s capability in capturing H2S gas. Based on the results, ZnAc2/ZnO/CAC_WOS shows a better adsorption capacity with 1.17 mg H2S/g and a 53% increment compared to raw CAC. However, the degradation of the adsorbents was higher compared to ZnAc2/ZnO/CAC_OS and to ZnAc2/ZnO/CAC_WS ZnAc2/ZnO/CAC_OS. The presence of silica as a shell has potentially increased the adsorbent’s stability in several cycles of adsorption-desorption. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

13 pages, 5888 KiB  
Article
Hierarchical Nanoflowers of Colloidal WS2 and Their Potential Gas Sensing Properties for Room Temperature Detection of Ammonia
by Siziwe S. Gqoba, Rafael Rodrigues, Sharon Lerato Mphahlele, Zakhele Ndala, Mildred Airo, Paul Olawale Fadojutimi, Ivo A. Hümmelgen, Ella C. Linganiso, Makwena J. Moloto and Nosipho Moloto
Processes 2021, 9(9), 1491; https://doi.org/10.3390/pr9091491 - 25 Aug 2021
Cited by 5 | Viewed by 2288
Abstract
A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflowers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature. The gas sensing performance of the WS2 nanoflowers was measured using an [...] Read more.
A one-step colloidal synthesis of hierarchical nanoflowers of WS2 is reported. The nanoflowers were used to fabricate a chemical sensor for the detection of ammonia vapors at room temperature. The gas sensing performance of the WS2 nanoflowers was measured using an in-house custom-made gas chamber. SEM analysis revealed that the nanoflowers were made up of petals and that the nanoflowers self-assembled to form hierarchical structures. Meanwhile, TEM showed the exposed edges of the petals that make up the nanoflower. A band gap of 1.98 eV confirmed a transition from indirect-to-direct band gap as well as a reduction in the number of layers of the WS2 nanoflowers. The formation of WS2 was confirmed by XPS and XRD with traces of the oxide phase, WO3. XPS analysis also confirmed the successful capping of the nanoflowers. The WS2 nanoflowers exhibited a good response and selectivity for ammonia. Full article
Show Figures

Figure 1

16 pages, 4821 KiB  
Article
On the Use of Pulsed UV or Visible Light Activated Gas Sensing of Reducing and Oxidising Species with WO3 and WS2 Nanomaterials
by Ernesto González, Juan Casanova-Chafer, Aanchal Alagh, Alfonso Romero, Xavier Vilanova, Selene Acosta, Damien Cossement, Carla Bittencourt and Eduard Llobet
Sensors 2021, 21(11), 3736; https://doi.org/10.3390/s21113736 - 27 May 2021
Cited by 3 | Viewed by 3231
Abstract
This paper presents a methodology to quantify oxidizing and reducing gases using n-type and p-type chemiresistive sensors, respectively. Low temperature sensor heating with pulsed UV or visible light modulation is used together with the application of the fast Fourier transform (FFT) to extract [...] Read more.
This paper presents a methodology to quantify oxidizing and reducing gases using n-type and p-type chemiresistive sensors, respectively. Low temperature sensor heating with pulsed UV or visible light modulation is used together with the application of the fast Fourier transform (FFT) to extract sensor response features. These features are further processed via principal component analysis (PCA) and principal component regression (PCR) for achieving gas discrimination and building concentration prediction models with R2 values up to 98% and RMSE values as low as 5% for the total gas concentration range studied. UV and visible light were used to study the influence of the light wavelength in the prediction model performance. We demonstrate that n-type and p-type sensors need to be used together for achieving good quantification of oxidizing and reducing species, respectively, since the semiconductor type defines the prediction model’s effectiveness towards an oxidizing or reducing gas. The presented method reduces considerably the total time needed to quantify the gas concentration compared with the results obtained in a previous work. The use of visible light LEDs for performing pulsed light modulation enhances system performance and considerably reduces cost in comparison to previously reported UV light-based approaches. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

17 pages, 8776 KiB  
Article
Design and Evaluation the Anti-Wear Property of Inorganic Fullerene Tungsten Disulfide as Additive in PAO6 Oil
by Wenting Chen, Kunyapat Thummavichai, Xiaorong Chen, Guangsheng Liu, Xuefeng Lv, Linyi Zhang, Ding Chen, Santosh Kr. Tiwari, Nannan Wang and Yanqiu Zhu
Crystals 2021, 11(5), 570; https://doi.org/10.3390/cryst11050570 - 20 May 2021
Cited by 6 | Viewed by 2532
Abstract
Inorganic fullerene-like tungsten disulfide particles have been proved to have good anti-friction and anti-wear properties as lubricating materials. As far as we know, however, when it is used as a lubricant additive, its behavior and action mechanism in the friction process are rarely [...] Read more.
Inorganic fullerene-like tungsten disulfide particles have been proved to have good anti-friction and anti-wear properties as lubricating materials. As far as we know, however, when it is used as a lubricant additive, its behavior and action mechanism in the friction process are rarely studied. Herein, IF–WS2 particles were synthesized by a Chemical Vapor Deposition (CVD) method. The effect of IF–WS2 particle concentrations in the PAO6 oil on the tribological behaviors was investigated with a four-ball wear machine at both 75 and 100 °C. Additionally, the analyzed morphology and composition of nanomaterials and worn surfaces were analyzed by Scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The friction behavior in actual working conditions was studied by a wear testing machine. The experimental results show that compared with the original PAO6 oil, at a dispersion of 0.25 wt% in PAO6 oil, the IF–WS2 particles showed the best performance in terms of coefficient of friction, wear scar diameter and wear mass, which significantly reduced by 27%, 43% and 87%, respectively. At the same time, in the process of friction, it was found that IF–WS2 particles accumulated in the depressions to fill the scratches, and adsorption films and chemical films, including FeS2, WS2 and WO3, were formed on the worn surfaces to avoid the direct contact among the friction pairs more effectively, resulting in the improved anti-wear performances. Additionally, the addition of IF–WS2 particles effectively delayed the rise of lubricating oil temperature. In addition, dispersant span 80 can effectively improve the dispersion and stability of IF–WS2 in PAO6. This work provides us for understanding the effective lubrication mechanism of IF–WS2 particles in more detail and having a new acknowledge of the comprehensive performance of IF–WS2/PAO6 oil. Full article
Show Figures

Figure 1

9 pages, 2869 KiB  
Article
Facile Synthesis of N-Doped WS2 Nanosheets as an Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction in Acidic Media
by Arpan Kumar Nayak, Enhbayar Enhtuwshin, So Jung Kim and HyukSu Han
Catalysts 2020, 10(11), 1238; https://doi.org/10.3390/catal10111238 - 26 Oct 2020
Cited by 15 | Viewed by 3206
Abstract
Transition metal chalcogenides have been widely studied as a promising electrocatalyst for the hydrogen evolution reaction (HER) in acidic conditions. Among various transition metal chalcogenides, tungsten disulfide (WS2) is a distinguishable candidate due to abundant active sites and good electrical properties. [...] Read more.
Transition metal chalcogenides have been widely studied as a promising electrocatalyst for the hydrogen evolution reaction (HER) in acidic conditions. Among various transition metal chalcogenides, tungsten disulfide (WS2) is a distinguishable candidate due to abundant active sites and good electrical properties. Herein, we report a facile and selective synthetic method to synthesize WS2 with an intriguing two-dimensional nanostructure by using cysteine (C3H7NO2S) as a chemical agent. In addition, nitrogen can be incorporated during chemical synthesis from cysteine, which may be helpful for enhancing the HER. The electrocatalytic activity of N-doped WS2 exhibits a promising HER in acidic conditions, which are not only higher than W18O49 nanowires and hex-WO3 nanowires, but also comparable to the benchmark Pt/C. Moreover, excellent electrocatalytic stability is also demonstrated for acidic HER during long-term tests, thus highlighting its potential use of practical applications as an electrolyzer. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

12 pages, 3853 KiB  
Communication
In Situ Wet Etching of MoS2@dWO3 Heterostructure as Ultra-Stable Highly Active Electrocatalyst for Hydrogen Evolution Reaction
by Xintian Liu and Congwei Wang
Catalysts 2020, 10(9), 977; https://doi.org/10.3390/catal10090977 - 31 Aug 2020
Cited by 9 | Viewed by 4620
Abstract
Electrocatalysts featuring robust structure, excellent catalytic activity and strong stability are highly desirable, but challenging. The rapid development of two-dimensional transition metal chalcogenide (such as WO3, MoS2 and WS2) nanostructures offers a hopeful strategy to increase the active [...] Read more.
Electrocatalysts featuring robust structure, excellent catalytic activity and strong stability are highly desirable, but challenging. The rapid development of two-dimensional transition metal chalcogenide (such as WO3, MoS2 and WS2) nanostructures offers a hopeful strategy to increase the active edge sites and expedite the efficiency of electronic transport for hydrogen evolution reaction. Herein, we report a distinctive strategy to construct two-dimensional MoS2@dWO3 heterostructure nanosheets by in situ wet etching. Synthesized oxygen-incorporated MoS2-was loaded on the surface of defective WO3 square nanoframes with abundant oxygen vacancies. The resulting nanocomposite exhibits a low overpotential of 191 mV at 10 mA cm−2 and a very low Tafel slope of 42 mV dec−1 toward hydrogen evolution reaction. The long-term cyclic voltammetry cycling of 5000 cycles and more than 80,000 s chronoamperometry tests promises its outstanding stability. The intimate and large interfacial contact between MoS2 and WO3, favoring the charge transfer and electron–hole separation by the synergy of defective WO3 and oxygen-incorporated MoS2, is believed the decisive factor for improving the electrocatalytic efficiency of the nanocomposite. Moreover, the defective WO3 nanoframes with plentiful oxygen vacancies could serve as an anisotropic substrate to promote charge transport and oxygen incorporation into the interface of MoS2. This work provides a unique methodology for designing and constructing excellently heterostructure electrocatalysts for hydrogen evolution reaction. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 1906 KiB  
Article
Mimicking of Phase I Metabolism Reactions of Molindone by HLM and Photocatalytic Methods with the Use of UHPLC-MS/MS
by Maciej Gawlik, Vladimir Savic, Milos Jovanovic and Robert Skibiński
Molecules 2020, 25(6), 1367; https://doi.org/10.3390/molecules25061367 - 17 Mar 2020
Cited by 5 | Viewed by 3067
Abstract
Establishing the metabolism pathway of the drug undergoing the hepatic biotransformation pathway is one of the most important aspects in the preclinical discovery process since the presence of toxic or reactive metabolites may result in drug withdrawal from the market. In this study, [...] Read more.
Establishing the metabolism pathway of the drug undergoing the hepatic biotransformation pathway is one of the most important aspects in the preclinical discovery process since the presence of toxic or reactive metabolites may result in drug withdrawal from the market. In this study, we present the structural elucidation of six, not described yet, metabolites of an antipsychotic molecule: molindone. The elucidation of metabolites was supported with a novel photocatalytical approach with the use of WO3 and WS2 assisted photochemical reactions. An UHPLC-ESI-Q-TOF combined system was used for the registration of all obtained metabolite profiles as well as to record the high resolution fragmentation spectra of the observed transformation products. As a reference in the in vitro metabolism simulation method, the incubation with human liver microsomes was used. Chemometric comparison of the obtained profiles pointed out the use of the WO3 approach as being more convenient in the field of drug metabolism studies. Moreover, the photocatalysis was used in the direction of the main drug metabolite synthesis in order to further isolation and characterization. Full article
Show Figures

Figure 1

Back to TopTop