Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = bacitracin resistance genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 20130 KiB  
Article
A Novel Bacitracin-like Peptide from Mangrove-Isolated Bacillus paralicheniformis NNS4-3 against MRSA and Its Genomic Insights
by Namfa Sermkaew, Apichart Atipairin, Thamonwan Wanganuttara, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul, Jumpei Uchiyama and Nuttapon Songnaka
Antibiotics 2024, 13(8), 716; https://doi.org/10.3390/antibiotics13080716 - 30 Jul 2024
Cited by 1 | Viewed by 717
Abstract
The global rise of antimicrobial resistance (AMR) presents a critical challenge necessitating the discovery of novel antimicrobial agents. Mangrove microbes are valuable sources of new antimicrobial compounds. This study reports the discovery of a potent antimicrobial peptide (AMP) from Bacillus paralicheniformis NNS4-3, isolated [...] Read more.
The global rise of antimicrobial resistance (AMR) presents a critical challenge necessitating the discovery of novel antimicrobial agents. Mangrove microbes are valuable sources of new antimicrobial compounds. This study reports the discovery of a potent antimicrobial peptide (AMP) from Bacillus paralicheniformis NNS4-3, isolated from mangrove sediment, exhibiting significant activity against methicillin-resistant Staphylococcus aureus (MRSA). The AMP demonstrated a minimum inhibitory concentration ranging from 1 to 16 µg/mL in the tested bacteria and exhibited bactericidal effects at higher concentrations. Structural analysis revealed a bacitracin-like configuration and the peptide acted by disrupting bacterial membranes in a time- and concentration-dependent manner. The AMP maintained stability under heat, proteolytic enzymes, surfactants, and varying pH treatments. The ten biosynthetic gene clusters (BGCs) of secondary metabolites were found in the genome. Detailed sequence comparison of the predicted bacitracin BGC indicated distinct DNA sequences compared to previously reported strains. Although the antibiotic resistance genes were found, this strain was susceptible to antibiotics. Our findings demonstrated the potential of Bacillus paralicheniformis NNS4-3 and its AMP as a promising agent in combating AMR. The genetic information could be pivotal for future applications in the healthcare industry, emphasizing the need for continued exploration of marine microbial diversity in drug discovery. Full article
Show Figures

Figure 1

23 pages, 8306 KiB  
Article
Metagenomic and Culturomics Analysis of Microbial Communities within Surface Sediments and the Prevalence of Antibiotic Resistance Genes in a Pristine River: The Zaqu River in the Lancang River Source Region, China
by Yi Yan, Jialiang Xu, Wenmin Huang, Yufeng Fan, Zhenpeng Li, Mingkai Tian, Jinsheng Ma, Xin Lu and Jian Liang
Microorganisms 2024, 12(5), 911; https://doi.org/10.3390/microorganisms12050911 - 30 Apr 2024
Cited by 1 | Viewed by 1325
Abstract
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction [...] Read more.
Microbial communities inhabiting sedimentary environments in river source regions serve as pivotal indicators of pristine river ecosystems. While the correlation between antibiotic resistome and pathogenicity with core gut bacteria in humans is well established, there exists a significant knowledge gap concerning the interaction of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) with specific microbes in river source basins, often referred to as “terrestrial gut”. Understanding the microbial composition, including bacteria and resident genetic elements such as ARGs, HPB, Mobile Genetic Elements (MGEs), and Virulence Factors (VFs), within natural habitats against the backdrop of global change, is imperative. To address this gap, an enrichment-based culturomics complementary along with metagenomics was conducted in this study to characterize the microbial biobank and provide preliminary ecological insights into profiling the dissemination of ARGs in the Lancang River Source Basin. Based on our findings, in the main stream of the Lancang River Source Basin, 674 strains of bacteria, comprising 540 strains under anaerobic conditions and 124 under aerobic conditions, were successfully isolated. Among these, 98 species were identified as known species, while 4 were potential novel species. Of these 98 species, 30 were HPB relevant to human health. Additionally, bacA and bacitracin emerged as the most abundant ARGs and antibiotics in this river, respectively. Furthermore, the risk assessment of ARGs predominantly indicated the lowest risk rank (Rank Ⅳ) in terms of endangering human health. In summary, enrichment-based culturomics proved effective in isolating rare and unknown bacteria, particularly under anaerobic conditions. The emergence of ARGs showed limited correlation with MGEs, indicating minimal threats to human health within the main stream of the Lancang River Source Basin. Full article
(This article belongs to the Special Issue Bacterial and Antibiotic Resistance in the Environment)
Show Figures

Figure 1

13 pages, 2369 KiB  
Article
Use of Selected Plant Extracts in Controlling and Neutralizing Toxins and Sporozoites Associated with Necrotic Enteritis and Coccidiosis
by Md Maruf Khan, Hyun S. Lillehoj, Youngsub Lee, Adedeji O. Adetunji, Paul C. Omaliko, Hye Won Kang and Yewande O. Fasina
Appl. Sci. 2024, 14(8), 3178; https://doi.org/10.3390/app14083178 - 10 Apr 2024
Viewed by 954
Abstract
Due to increasing concerns about the contamination of animal food products with antibiotic-resistant bacteria and their byproducts, phytogenic feed additives in animal diets have been explored as antibiotic alternatives. In this study, we investigated the effect of ginger root extract (GRE), green tea [...] Read more.
Due to increasing concerns about the contamination of animal food products with antibiotic-resistant bacteria and their byproducts, phytogenic feed additives in animal diets have been explored as antibiotic alternatives. In this study, we investigated the effect of ginger root extract (GRE), green tea extract (GTEC caffeinated and GTED decaffeinated), and onion peel combined (OPEC) on the activity of C. perfringens toxin genes and Eimeria tenella sporozoites. To this end, two Clostridium perfringens strains, CP19 and CP240 (Rollins Diagnostic Lab, Raleigh, NC, USA), were cultured (three replicates per treatment) as follows: without additives (Control), with Bacitracin Methylene Disalicylate (BMD), with GRE, with GTEC, with GTED, and, finally, with OPEC for 0, 2, 4, 6, 8, and 24 h. RNA was extracted to determine the expression of tpeL, alpha toxin (α-toxin), and NetB and we measured the protein concentration of NetB-positive C. perfringens toxin. Also, we evaluated the cytotoxic effect of green tea and ginger extracts on E. tenella sporozoites. Results show that phytogenic extracts, GRE, GTEC, and GTED, significantly reduced (p < 0.05) the level of expression of α-toxin gene compared to control; however, BMD treatment showed much less effect. Furthermore, NetB and tpeL encoding gene expression was significantly (p < 0.05) reduced by GRE and GTED, as well as BMD treatment, compared to the control. In contrast, GTEC treatment did not change the expression levels of these genes and was similar to control. With the CP240 strain, all the selected phytogenic extracts significantly reduced (p < 0.05) the expression of selected genes, except for OPEC, which was similar to control. GRE, GTEC, and GTED all reduced the viability of concentration of E. tenella sporozoites. Overall, our data show that these selected phytogenic extracts reduced the level of expression of toxin encoding genes associated with necrotic enteritis and decreased the viability of sporozoites which cause coccidiosis in broiler chicken. Full article
(This article belongs to the Special Issue Applied Microbial Biotechnology for Poultry Science)
Show Figures

Figure 1

12 pages, 514 KiB  
Article
Prevalence, Virulence, and Antimicrobial Resistance of Major Mastitis Pathogens Isolated from Taiwanese Dairy Farms
by Bigya Dhital, Shih-Te Chuang, Jui-Chun Hsieh, Ming-Hsiu Hsieh and Hsin-I Chiang
Antibiotics 2024, 13(1), 36; https://doi.org/10.3390/antibiotics13010036 - 30 Dec 2023
Viewed by 1960
Abstract
Mastitis, a highly prevalent disease in dairy cows, is responsible for massive financial losses due to decreased milk yield, milk quality, and costly medication. This research paper investigates antimicrobial susceptibility in cows and the role played by both resistance and virulence gene distribution [...] Read more.
Mastitis, a highly prevalent disease in dairy cows, is responsible for massive financial losses due to decreased milk yield, milk quality, and costly medication. This research paper investigates antimicrobial susceptibility in cows and the role played by both resistance and virulence gene distribution in bovine mastitis. A total of 984 raw milk samples were collected from five different dairy farms and cultured on sheep blood agar plates. Antimicrobial susceptibility was determined by disc diffusion, and corresponding resistance and virulence genes were detected by PCR. Among the collected milk samples, 73, 32, and 19 isolates of Streptococcus spp., Staphylococcus spp., and coliforms were identified, respectively. The antimicrobial susceptibility results showed that Streptococcus spp. were resistant to tetracycline (86.30%), neomycin (79.45%), and oxacillin (73.97%). Staphylococcus spp. were resistant to tetracycline (59.37%) and oxacillin (53.12%). Lastly, coliforms were resistant to oxacillin (100%) and bacitracin (68.42%). The genotyping results showed that Streptococcus spp. carried the resistance genes tetM (46.57%) against tetracycline, bcrB (41.09%) against bacitracin, and aph(3)-II (39.72%) against neomycin. Staphylococcus spp. carried the resistance genes bcrB (40.62%) and tetM (18.75%), and coliforms carried the resistance genes tetM (42.10%) and bcrB (57.89%). Moreover, 57.53%, 75.0%, and 63.15% of Streptococcus spp., Staphylococcus spp., and coliforms carried lmb, fib, and ompC virulence genes, respectively. All three tested bacterial genera showed no significant association between antimicrobial resistance genes and virulence factors, although they were negatively correlated (p > 0.05). The combination of resistance gene identification and susceptibility tests as components of the diagnosis of bovine mastitis can help in selecting effective antimicrobial agents to treat it. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

1016 KiB  
Proceeding Paper
Identification and Characterization of Potential Chalky Soil Plant Growth-Promoting Bacteria (PGPR) Isolated from the Rhizosphere of Chamaecytisus ruthenicus (Russian Broom)
by Zekarias A. Asfha, Yulia Kocharovskaya, Nataliya E. Suzina, Tatiana N. Abashina, Valentina N. Polivtseva, Yanina Delegan and Inna P. Solyanikova
Biol. Life Sci. Forum 2024, 31(1), 8; https://doi.org/10.3390/ECM2023-16472 - 30 Nov 2023
Viewed by 394
Abstract
Plant growth-promoting rhizospheric bacteria (PGPR) are well known for their significant roles in agriculture and the environment. In our previous study, 23 chalky soil bacterial isolates were obtained from the rhizosphere of Chamaecytisus ruthenicus. In total, seven out of them were reported [...] Read more.
Plant growth-promoting rhizospheric bacteria (PGPR) are well known for their significant roles in agriculture and the environment. In our previous study, 23 chalky soil bacterial isolates were obtained from the rhizosphere of Chamaecytisus ruthenicus. In total, seven out of them were reported for their potential effect on plant growth. However, the identification and further characterization of those chalky soil bacteria have not been completed yet. Therefore, the purpose of the present study is to identify and characterize chalky soil rhizospheric bacteria (seven previously investigated and one additional bacteria). A total of eight bacterial isolates were cultured in LB and other growth media to investigate their morphological behavior, antibiotic sensitivity or resistance status, and their effect on plant growth. Moreover, 16S rRNA gene sequencing was used to identify those potent bacterial isolates. The results of the present study demonstrate that all bacterial isolates obtained stable morphology in the three types of growth media. However, four bacterial isolates (Z11, Z12, Z15 and Z44) showed color change. The antibiotic test result also revealed that all the tested bacterial isolates except Z11 and Z24 were resistant to both ampicillin (10 μg) and oxacillin (1 μg), whereas all bacterial isolates were sensitive to polymyxin (300 units), amoxicillin (20 μg), vancomycin (30 μg), ceftazidime (30 μg), erythromycin (15 μg), ciprofloxacin (5 μg), bacitracin (10 units) and streptomycin (30 μg). The result of the growth stimulation effect revealed that few bacterial isolates had a stimulation effect on the germination rate of oats and lentils, on the shoot length of maize and oats, on the root length of wheats, maize and lentils, on the fresh weight of wheats and oats or on the dry weight of oat seeds. Furthermore, the 16S rRNA gene sequence analysis result revealed that the bacterial isolates belonged to Streptomycetes spp. and Jantinobacterium sp. To conclude, the potential chalky soil rhizospheric bacteria have a substantial impact on agriculture and the environment. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Microbiology)
Show Figures

Figure 1

17 pages, 1457 KiB  
Article
High Incidence of Multiple-Drug-Resistant Pheromone-Responsive Plasmids and Transmissions of VanA-Type Vancomycin-Resistant Enterococcus faecalis between Livestock and Humans in Taiwan
by Haruyoshi Tomita, Jang-Jih Lu and Yasuyoshi Ike
Antibiotics 2023, 12(12), 1668; https://doi.org/10.3390/antibiotics12121668 - 27 Nov 2023
Cited by 1 | Viewed by 1293
Abstract
A total of seventy VanA-type vancomycin-resistant enterococci (VRE) isolates obtained in Taiwan in the early 2000s were retrospectively characterized. Forty isolates were obtained from human patients and thirty from livestock. Of these VRE isolates, twenty-three (57.5%) of the human VRE and thirty (100%) [...] Read more.
A total of seventy VanA-type vancomycin-resistant enterococci (VRE) isolates obtained in Taiwan in the early 2000s were retrospectively characterized. Forty isolates were obtained from human patients and thirty from livestock. Of these VRE isolates, twenty-three (57.5%) of the human VRE and thirty (100%) of the livestock VRE were Enterococcus faecalis, and the remaining seventeen (42.5%) of the human VRE were E. faecium. Of the 53 E. faecalis isolates, twenty-two (96%) of the human VRE and thirty (100%) of the livestock VRE exhibited a high level of resistance to vancomycin and sensitivity to teicoplanin. They also had three amino acid substitutions in the N-terminal region of the deduced VanS sequence. The vancomycin resistance of all of the 22 human isolates, and 20 of the 30 livestock isolates, transferred to E. faecalis FA2-2 at a frequency of 10−5 to 10−3 per donor cell in broth. Each of the transconjugants responded to E. faecalis pheromone (i.e., E. faecalis FA2-2 culture filtrate), indicating that the conjugative plasmids were pheromone-responsive plasmids. Three of the conjugative plasmids originated from human isolates, and five plasmids from livestock isolates were corresponded and classified as type A plasmid. Two plasmids originated from human isolates and six plasmids from livestock isolates were corresponded and classified as type B plasmid. E. faecalis FA2-2 containing either the type A or type B plasmid responded to the synthetic pheromone cAD1. The type A and type B plasmids transferred between E. faecalis FA2-2 and JH2SS at a frequency of about 10−2 per donor cell and conferred vancomycin, bacitracin, and erythromycin resistances. The complete DNA sequence of the representative type A plasmid pTW9 (85,068 bp) showed that the plasmid carried a Tn1546-like element encoding vanA-type resistance, erythromycin resistance (ermB), and bacitracin resistance (bcrABDR). The plasmid contained the regulatory region found in the pheromone-responsive plasmid and encoded the genes traA, traD and iad1, which are the key negative regulatory elements, and traE1, a key positive regulator of plasmid pAD1, indicating that plasmid pTW9 was pAD1-type pheromone-responsive plasmid. PFGE analysis of SmaI-digested chromosomal DNAs showed that several E. faecalis strains harboring an identical type A pheromone-responsive plasmid were indistinguishable, and that these were identified both in human and livestock isolates, indicating the transmissions of the VRE strains between livestock and humans. These data showed that the multiple-drug-resistant pheromone-responsive conjugative plasmids have been widely spread in both human and livestock VRE, and there was high potential for transfers of VRE from food animals to humans in Taiwan in the early 2000s. Full article
Show Figures

Figure 1

15 pages, 2474 KiB  
Article
Metagenomic Analysis Reveals Variations in Gut Microbiomes of the Schistosoma mansoni-Transmitting Snails Biomphalaria straminea and Biomphalaria glabrata
by Peipei Li, Jinni Hong, Mingrou Wu, Zhanhong Yuan, Dinghao Li, Zhongdao Wu, Xi Sun and Datao Lin
Microorganisms 2023, 11(10), 2419; https://doi.org/10.3390/microorganisms11102419 - 28 Sep 2023
Cited by 3 | Viewed by 1485
Abstract
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To [...] Read more.
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To gain insights into the biological characteristics of these freshwater intermediate hosts, we conducted metagenomic sequencing on Biomphalaria straminea and B. glabrata to investigate variations in their gut microbiota. This study revealed that the dominant members of the gut microbiota in B. glabrata belong to the phyla Bacteroidetes and Proteobacteria, which were also found to be the top two most abundant gut bacteria in B. straminea. We identified Firmicutes, Acidovorax and Bosea as distinctive gut microbes in B. straminea, while Aeromonas, Cloacibacterium and Chryseobacterium were found to be dependent features of the B. glabrata gut microbiota. We observed significant differences in the community structures and bacterial functions of the gut microbiota between the two host species. Notably, we found a distinctive richness of antibiotic resistance genes (ARGs) associated with various classes of antibiotics, including bacitracin, chloramphenicol, tetracycline, sulfonamide, penicillin, cephalosporin_ii and cephalosporin_i, fluoroquinolone, aminoglycoside, beta-lactam, multidrug and trimethoprim, in the digestive tracts of the snails. Furthermore, this study revealed the potential correlations between snail gut microbiota and the infection rate of S. mansoni using Spearman correlation analysis. Through metagenomic analysis, our study provided new insights into the gut microbiota of Biomphalaria snails and how it is influenced by host species, thereby enhancing our understanding of variant patterns of gut microbial communities in intermediate hosts. Our findings may contribute to future studies on gastropod–microbe interactions and may provide valuable knowledge for developing snail control strategies to combat schistosomiasis in the future. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

17 pages, 9490 KiB  
Article
Comparison of the Effects of Feeding Compound Probiotics and Antibiotics on Growth Performance, Gut Microbiota, and Small Intestine Morphology in Yellow-Feather Broilers
by Yuyan Feng, Xiaoting Wu, Dan Hu, Canyang Wang, Qu Chen and Yingdong Ni
Microorganisms 2023, 11(9), 2308; https://doi.org/10.3390/microorganisms11092308 - 13 Sep 2023
Cited by 1 | Viewed by 2153
Abstract
This study was devoted to the comparison of the probiotic effect of compound probiotics to antibiotics as a feed additive for chicken. Two hundred and seventy newly hatched yellow-feather broilers were randomly divided into three groups: the control group (Con), probiotics (Pb), and [...] Read more.
This study was devoted to the comparison of the probiotic effect of compound probiotics to antibiotics as a feed additive for chicken. Two hundred and seventy newly hatched yellow-feather broilers were randomly divided into three groups: the control group (Con), probiotics (Pb), and antibiotics group (Ab). The Pb group received compound probiotics (Bifidobacterium, Lactobacillus acidophilus, Streptococcus faecalis, and yeast) via drinking water for 24 days. The Ab group received antibiotics (zinc bacitracin and colistin sulfate) in their diet for 24 days. All broilers were slaughtered on day 42. Compared with the Con group, the body weight was significantly increased on days 13, 28, and 42 in the Pb group (p < 0.05), and markedly increased on day 28 in the Ab group (p < 0.05). Compared with the Ab group, the body weight of the broilers in the Pb group increased significantly on day 13 (p < 0.05). Compared to the Con and Pb groups, the antibiotics treatment reduced the feed intake (p < 0.05), but there was no significant difference in the feed conversion ratio between the Ab and Pb groups (p > 0.05). The feed conversion ratio of the broilers treated with antibiotics or probiotics significantly decreased compared to the Con group (p < 0.05). The depth of duodenum, jejunum, and ileum crypts in the Pb group decreased significantly compared to the Con and Ab group (p < 0.05). The ratio of the villi length to crypt depth of duodenum, jejunum, and ileum epithelium was significantly increased in the Pb group compared to the Con group (p < 0.05). The genera Bacteroides and Barnesiella were the most significantly enriched bacteria in the Ab and Pb groups, respectively (p < 0.05). The expression of the genes related to antibiotic resistance was significantly decreased in the Pb group compared to the Ab group (p < 0.05). Although both compound probiotics and antibiotics can improve growth performance, antibiotics increased the abundance of harmful bacteria and drug-resistant genes, while probiotics increased Barnesiella abundance, which is related to a decrease in the drug-resistant gene expression. Moreover, the probiotics treatment improved small intestinal morphology and fecal emissions, while antibiotics have no significant effect on these indicators, indicating a bright future for probiotics as an alternative to feed antibiotics in the yellow-feather broiler industry. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

21 pages, 2859 KiB  
Article
Molecular Characterization and Antimicrobial Susceptibilities of Corynebacterium pseudotuberculosis Isolated from Caseous Lymphadenitis of Smallholder Sheep and Goats
by Hend M. El Damaty, Azza S. El-Demerdash, Norhan K. Abd El-Aziz, Sarah G. Yousef, Ahmed A. Hefny, Etab M. Abo Remela, Asmaa Shaker and Ibrahim Elsohaby
Animals 2023, 13(14), 2337; https://doi.org/10.3390/ani13142337 - 18 Jul 2023
Cited by 9 | Viewed by 2571
Abstract
Caseous lymphadenitis (CLA) is a bacterial infection caused by Corynebacterium pseudotuberculosis (C. pseudotuberculosis) that affects sheep and goats, leading to abscess formation in their lymph nodes. The present study aimed to isolate and identify C. pseudotuberculosis from CLA in smallholder sheep [...] Read more.
Caseous lymphadenitis (CLA) is a bacterial infection caused by Corynebacterium pseudotuberculosis (C. pseudotuberculosis) that affects sheep and goats, leading to abscess formation in their lymph nodes. The present study aimed to isolate and identify C. pseudotuberculosis from CLA in smallholder sheep and goats, and determine the resistance patterns, virulence, and resistance genes of the isolates. Additionally, genotypic and phylogenetic analysis of the isolates was conducted using ERIC-PCR and DNA sequencing techniques. A cross-sectional study examined 220 animals (130 sheep and 90 goats) from 39 smallholder flocks for clinical signs of CLA. Fifty-four (24.54%) animals showed CLA-compatible lesions, confirmed by C. pseudotuberculosis isolation and PCR identification. Sheep had a lower infection rate of CLA (18.46%) compared with goats (33.3%). Antimicrobial susceptibility testing of 54 C. pseudotuberculosis isolates to 24 antimicrobial drugs revealed that they were 100% resistant to bacitracin and florfenicol, while none of the isolates were resistant to norfloxacin. A high resistance rate was observed for penicillin and erythromycin (92.6% each). Interestingly, 16.7% of C. pseudotuberculosis isolates recovered from sheep showed vancomycin resistance. Molecular characterization of C. pseudotuberculosis isolates revealed that PLD, PIP, and FagA virulence genes were present in all examined isolates. However, the FagB, FagC, and FagD genes were detected in 24 (100%), 20 (83%), and 18 (75%) of the sheep isolates, and 26 (87%), 26 (87%), and 18 (60%) of the goat isolates, respectively. The β-lactam resistance gene was present in all isolates. Furthermore, 83% of the sheep isolates carried the aminoglycoside (aph(3″)-lb), chloramphenicol (cat1), and bacitracin (bcrA) resistance genes. Among the isolates recovered from goats, 73% were found to contain macrolides (ermX), sulfonamide (sul1), and bacitracin (bcrA) resistance genes. It is worrisome that the glycopeptide (vanA) resistance gene was detected in 8% of the sheep isolates as a first report. ERIC-PCR genotyping of 10 multi-drug-resistant C. pseudotuberculosis isolates showed a high similarity index of 83.6% between isolates from sheep and goats. Nucleotide sequence analysis of partial 16S rRNA sequences of C. pseudotuberculosis revealed 98.83% similarity with biovar Ovis of globally available reference sequences on the Genbank database. Overall, our findings might indicate that C. pseudotuberculosis infection in smallholders in Egypt might be underestimated despite the significant financial impact on animal husbandry and potential health hazards it poses. Moreover, this study highlights the importance of implementing a sustainable control strategy and increasing knowledge and awareness among smallholder breeders to mitigate the economic impact of CLA. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

22 pages, 6893 KiB  
Article
Microbiome of Ceca from Broiler Chicken Vaccinated or Not against Coccidiosis and Fed Berry Pomaces
by Chongwu Yang, Quail Das, Muhammad A. Rehman, Xianhua Yin, Julie Shay, Martin Gauthier, Calvin Ho-Fung Lau, Kelly Ross and Moussa S. Diarra
Microorganisms 2023, 11(5), 1184; https://doi.org/10.3390/microorganisms11051184 - 30 Apr 2023
Cited by 2 | Viewed by 2327
Abstract
American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two [...] Read more.
American cranberry (Vaccinium macrocarpon) and lowbush/wild blueberry (V. angustifolium) pomace are polyphenol-rich products having potentially beneficial effects in broiler chickens. This study investigated the cecal microbiome of broiler-vaccinated or non-vaccinated birds against coccidiosis. Birds in each of the two groups (vaccinated or non-vaccinated) were fed a basal non-supplemented diet (NC), a basal diet supplemented with bacitracin (BAC), American cranberry (CP), and lowbush blueberry (BP) pomace alone or in combination (CP + BP). At 21 days of age, cecal DNA samples were extracted and analyzed using both whole-metagenome shotgun sequencing and targeted-resistome sequencing approaches. Ceca from vaccinated birds showed a lower abundance of Lactobacillus and a higher abundance of Escherichia coli than non-vaccinated birds (p < 0.05). The highest and lowest abundance of L. crispatus and E. coli, respectively, were observed in birds fed CP, BP, and CP + BP compared to those from NC or BAC treatments (p < 0.05). Coccidiosis vaccination affected the abundance of virulence genes (VGs) related to adherence, flagella, iron utilization, and secretion system. Toxin-related genes were observed in vaccinated birds (p < 0.05) in general, with less prevalence in birds fed CP, BP, and CP + BP than NC and BAC (p < 0.05). More than 75 antimicrobial resistance genes (ARGs) detected by the shotgun metagenomics sequencing were impacted by vaccination. Ceca from birds fed CP, BP, and CP + BP showed the lowest (p < 0.05) abundances of ARGs related to multi-drug efflux pumps, modifying/hydrolyzing enzyme and target-mediated mutation, when compared to ceca from birds fed BAC. Targeted metagenomics showed that resistome from BP treatment was distant to other groups for antimicrobials, such as aminoglycosides (p < 0.05). Significant differences in the richness were observed between the vaccinated and non-vaccinated groups for aminoglycosides, β-lactams, lincosamides, and trimethoprim resistance genes (p < 0.05). Overall, this study demonstrated that dietary berry pomaces and coccidiosis vaccination significantly impacted cecal microbiota, virulome, resistome, and metabolic pathways in broiler chickens. Full article
(This article belongs to the Special Issue Gut Microbiome of Farm Animals in Health and Disease 2.0)
Show Figures

Figure 1

16 pages, 3093 KiB  
Article
A First Insight into the Microbial and Viral Communities of Comau Fjord—A Unique Human-Impacted Ecosystem in Patagonia (42 S)
by Sergio Guajardo-Leiva, Katterinne N. Mendez, Claudio Meneses, Beatriz Díez and Eduardo Castro-Nallar
Microorganisms 2023, 11(4), 904; https://doi.org/10.3390/microorganisms11040904 - 30 Mar 2023
Cited by 1 | Viewed by 2146
Abstract
While progress has been made in surveying the oceans to understand microbial and viral communities, the coastal ocean and, specifically, estuarine waters, where the effects of anthropogenic activity are greatest, remain partially understudied. The coastal waters of Northern Patagonia are of interest since [...] Read more.
While progress has been made in surveying the oceans to understand microbial and viral communities, the coastal ocean and, specifically, estuarine waters, where the effects of anthropogenic activity are greatest, remain partially understudied. The coastal waters of Northern Patagonia are of interest since this region experiences high-density salmon farming as well as other disturbances such as maritime transport of humans and cargo. Here, we hypothesized that viral and microbial communities from the Comau Fjord would be distinct from those collected in global surveys yet would have the distinctive features of microbes from coastal and temperate regions. We further hypothesized that microbial communities will be functionally enriched in antibiotic resistance genes (ARGs) in general and in those related to salmon farming in particular. Here, the analysis of metagenomes and viromes obtained for three surface water sites showed that the structure of the microbial communities was distinct in comparison to global surveys such as the Tara Ocean, though their composition converges with that of cosmopolitan marine microbes belonging to Proteobacteria, Bacteroidetes, and Actinobacteria. Similarly, viral communities were also divergent in structure and composition but matched known viral members from North America and the southern oceans. Microbial communities were functionally enriched in ARGs dominated by beta-lactams and tetracyclines, bacitracin, and the group macrolide–lincosamide–streptogramin (MLS) but were not different from other communities from the South Atlantic, South Pacific, and Southern Oceans. Similarly, viral communities were characterized by exhibiting protein clusters similar to those described globally (Tara Oceans Virome); however, Comau Fjord viromes displayed up to 50% uniqueness in their protein content. Altogether, our results indicate that microbial and viral communities from the Comau Fjord are a reservoir of untapped diversity and that, given the increasing anthropogenic impacts in the region, they warrant further study, specifically regarding resilience and resistance against antimicrobials and hydrocarbons. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 6320 KiB  
Article
Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78
by Dan Wang, Verena Poinsot, Wangxi Li, Yusheng Lu, Chong Liu, Yaying Li, Kaizhi Xie, Lili Sun, Chaohong Shi, Huanlong Peng, Wanling Li, Changmin Zhou and Wenjie Gu
Genes 2023, 14(2), 392; https://doi.org/10.3390/genes14020392 - 2 Feb 2023
Cited by 4 | Viewed by 2236
Abstract
Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains [...] Read more.
Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for P. mucilaginosus G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the pelADEFG compared with other 40 Paenibacillus species suggests that Pel may be specific biofilm matrix component in P. mucilaginosus. Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other Paenibacillus strains. The current study can benefit for understanding the plant growth-promoting traits of P. mucilaginosus as well as its potential application in agriculture as PGPR. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 2882 KiB  
Article
Experimental Evolution of Copper Resistance in Escherichia coli Produces Evolutionary Trade-Offs in the Antibiotics Chloramphenicol, Bacitracin, and Sulfonamide
by Sada M. Boyd, Kristen L. Rhinehardt, Akamu J. Ewunkem, Scott H. Harrison, Misty D. Thomas and Joseph L. Graves
Antibiotics 2022, 11(6), 711; https://doi.org/10.3390/antibiotics11060711 - 25 May 2022
Cited by 5 | Viewed by 2765
Abstract
The rise in antimicrobial resistant bacteria have prompted the need for antibiotic alternatives. To address this problem, significant attention has been given to the antimicrobial use and novel applications of copper. As novel applications of antimicrobial copper increase, it is important to investigate [...] Read more.
The rise in antimicrobial resistant bacteria have prompted the need for antibiotic alternatives. To address this problem, significant attention has been given to the antimicrobial use and novel applications of copper. As novel applications of antimicrobial copper increase, it is important to investigate how bacteria may adapt to copper over time. Here, we used experimental evolution with re-sequencing (EER-seq) and RNA-sequencing to study the evolution of copper resistance in Escherichia coli. Subsequently, we tested whether copper resistance led to rifampicin, chloramphenicol, bacitracin, and/or sulfonamide resistance. Our results demonstrate that E. coli is capable of rapidly evolving resistance to CuSO4 after 37 days of selection. We also identified multiple de novo mutations and differential gene expression patterns associated with copper, most notably those mutations identified in the cpx gene. Furthermore, we found that the copper resistant bacteria had decreased sensitivity when compared to the ancestors in the presence of chloramphenicol, bacitracin, and sulfonamide. Our data suggest that the selection of copper resistance may inhibit growth in the antimicrobials tested, resulting in evolutionary trade-offs. The results of our study may have important implications as we consider the antimicrobial use of copper and how bacteria may respond to increased use over time. Full article
Show Figures

Figure 1

16 pages, 1920 KiB  
Article
Qipengyuania pacifica sp. nov., a Novel Carotenoid-Producing Marine Bacterium of the Family Erythrobacteraceae, Isolated from Sponge (Demospongiae), and Antimicrobial Potential of Its Crude Extract
by Sanaullah Tareen, Chandra Risdian, Mathias Müsken and Joachim Wink
Diversity 2022, 14(4), 295; https://doi.org/10.3390/d14040295 - 14 Apr 2022
Cited by 7 | Viewed by 2924
Abstract
A marine Alphaproteobacterium designated as strain NZ-96T was isolated in February 2021, from a sponge species (Demospongiae) collected in muddy sediments with boulders and old chimneys in Otago/Canterbury Slope, Pacific Ocean, New Zealand. The isolate was found to be Gram-negative, [...] Read more.
A marine Alphaproteobacterium designated as strain NZ-96T was isolated in February 2021, from a sponge species (Demospongiae) collected in muddy sediments with boulders and old chimneys in Otago/Canterbury Slope, Pacific Ocean, New Zealand. The isolate was found to be Gram-negative, rod-shaped, aerobic, motile, and produced yellow-colored colonies. The isolate was positive for alkaline phosphatase, leucine arylamidase, trypsin, catalase, and oxidase and negative for α-galactosidase and urease. It was resistant to many antibiotics including hygromycin, trimethoprim, spectinomycin, ampicillin, oxytetracycline, cephalosporin, bacitracin, and polymyxin. The 16S rRNA gene-based phylogenetic analyses exhibited that strain NZ-96T belonged to the genus Qipengyuania and showed 98.3–98.8% 16S rRNA gene sequence similarity to its closest relatives. The major respiratory quinone was ubiquinone-10 (Q-10). The polar lipid profile consisted of phosphatidylcholine, sphingoglycolipid, phosphatidylglycerol, one unknown polar lipid, and three unknown glycolipids. The major fatty acids were C18:1ω12t, C16:0, C16:1ω7c, C17:1ω6c, C16:02-OH, and C14:0 2-OH. Carotenoid were produced. The crude extract showed pronounced activity against Staphylococcus aureus Newman and Bacillus subtilis DSM 10. Pairwise ANI and dDDH values of strain NZ-96T and closely related phylogenetic hits were below the threshold values of 95% and 70%, respectively. Genes for trehalose biosynthesis, aspartate-semialdehyde dehydrogenase, flagellar biosynthesis, fatty acid biosynthesis, and antibiotics resistance were present, which aids in isolate survival in a sea or ocean environment. The DNA G+C content was 60.8% (by genome). Based on data obtained by the polyphasic approach, strain NZ-96T (= DSM 112811T = NCCB 100842T) represents a novel species of the genus Qipengyuania, for which the name Qipengyuania pacifica sp. nov. is proposed. Full article
Show Figures

Figure 1

14 pages, 1580 KiB  
Article
Bacterial Hosts and Genetic Characteristics of Antibiotic Resistance Genes in Wastewater Treatment Plants of Xinjiang (China) Revealed by Metagenomics
by Ziteng Liu, Junqin Yao, Huiying Ma, Abudukelimu Rukeya, Zenghui Liang, Wenyan Du and Yinguang Chen
Appl. Sci. 2022, 12(6), 3100; https://doi.org/10.3390/app12063100 - 18 Mar 2022
Cited by 9 | Viewed by 4126
Abstract
Antibiotic resistance genes (ARGs) pose a widespread concern for human health and wastewater treatment plants (WWTPs) are considered to be a major source of ARG transmission. In this paper, the potential hosts and genetic characteristics of ARGs in the influent, activated sludge and [...] Read more.
Antibiotic resistance genes (ARGs) pose a widespread concern for human health and wastewater treatment plants (WWTPs) are considered to be a major source of ARG transmission. In this paper, the potential hosts and genetic characteristics of ARGs in the influent, activated sludge and effluent of WWTPs in Xinjiang were studied by metagenomics. Bacitracin resistance gene (bacA), beta-lactamase gene (class A beta-lactamase), multidrug resistance genes (mexD, qacEdelta1), and sulfonamide resistance genes (sul1, and sul2) are persistent antibiotic resistance genes (PARGs). The potential hosts of ARGs were mainly pathogens, with Escherichia coli (12.9%), Acinetobacter johnsonii (8.94%), and Klebsiella pneumoniae (5.30%) accounting for the highest proportions. Chromosomal sequences and plasmid sequences accounted for 42.0% and 22.6% of ARG-carrying contigs (ACCs) in the influent, respectively. Meanwhile, the effluent contained 58.3% of ACCs in plasmids and 8.30% in chromosomes. Bacitracin resistance genes and multidrug resistance genes were mainly carried by chromosomes, while resistance genes for macrolide–lincosamide–streptogramin (MLS), vancomycin, sulfonamide, beta-lactam, tetracycline, chloramphenicol, and aminoglycoside were mainly carried by plasmids. ICEPae690-sul1-qacEdelta1 and ICEPmiChn3-sul2 were stable coexistence structures and heighten the transfer potential of ARGs in the environment. This study provided a clearer picture of host bacterial sources and genetic context of ARGs in the environment. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

Back to TopTop