Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,771)

Search Parameters:
Keywords = bioassays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 844 KiB  
Article
Genomic and Pathological Characterization of Acute Hepatopancreatic Necrosis Disease (AHPND)-Associated Natural Mutant Vibrio parahaemolyticus Isolated from Penaeus vannamei Cultured in Korea
by Ye Bin Kim, Seon Young Park, Hye Jin Jeon, Bumkeun Kim, Mun-Gyeong Kwon, Su-Mi Kim, Jee Eun Han and Ji Hyung Kim
Animals 2024, 14(19), 2788; https://doi.org/10.3390/ani14192788 (registering DOI) - 26 Sep 2024
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is one of the most important diseases in the global shrimp industry. The emergence of mutant AHPND-associated V. parahaemolyticus (VpAHPND) strains has raised concerns regarding potential misdiagnosis and unforeseen pathogenicity. In this study, we [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND) is one of the most important diseases in the global shrimp industry. The emergence of mutant AHPND-associated V. parahaemolyticus (VpAHPND) strains has raised concerns regarding potential misdiagnosis and unforeseen pathogenicity. In this study, we report the first emergence of a type II (pirA, pirB+) natural mutant, VpAHPND (strain 20-082A3), isolated from cultured Penaeus vannamei in Korea. Phenotypic and genetic analyses revealed a close relationship between the mutant strain 20-082A3 and the virulent Korean VpAHPND strain 19-021-D1, which caused an outbreak in 2019. Detailed sequence analysis of AHPND-associated plasmids showed that plasmid pVp_20-082A3B in strain 20-082A3 was almost identical (>99.9%) to that of strain 19-021-D1. Moreover, strains 20-082A3 and 19-021-D1 exhibited the same multilocus sequence type (ST 413) and serotype (O1:Un-typeable K-serogroup), suggesting that the mutant strain is closely related to and may have originated from the virulent strain 19-021-D1. Similar to previous reports on the natural mutant VpAHPND, strain 20-082A3 did not induce AHPND-related symptoms or cause mortality in the shrimp bioassay. The emergence of a mutant strain which is almost identical to the virulent VpAHPND highlights the need for surveillance of the pathogen prevalent in Korea. Further investigations to elucidate the potential relationship between ST 413 and recent Korean VpAHPND isolates are needed. Full article
(This article belongs to the Special Issue Bacterial and Viral Diseases in Aquatic Animals)
16 pages, 3272 KiB  
Article
RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens
by Murtaza Khan, Changhee Han, Nakjung Choi and Juil Kim
Insects 2024, 15(10), 743; https://doi.org/10.3390/insects15100743 - 26 Sep 2024
Abstract
Carbamate insecticides have been used for over four decades to control brown planthopper, Nilaparvata lugens, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC50 values were [...] Read more.
Carbamate insecticides have been used for over four decades to control brown planthopper, Nilaparvata lugens, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC50 values were 3.08 for the susceptible strain, 10.06 for the 2015 strain, and 73.98 mg/L for the 2019 strain. Compared to the susceptible strain, the 2015 and 2019 strains exhibited resistance levels 3.27 and 24.02 times higher, respectively. To elucidate the reason for the varying levels of resistance to fenobucarb in these strains, mutations in the acetylcholinesterase 1 (ACE1) gene, the target gene of carbamate, were investigated, but no previously reported mutations were confirmed. Through RNA-seq analysis focusing on the expression of detoxification enzyme genes as an alternative resistance mechanism, it was found that the carboxylesterase gene Nl-EST1 was overexpressed 2.4 times in the 2015 strain and 4.7 times in the 2019 strain compared to the susceptible strain. This indicates a strong correlation between the level of resistance development in each strain and the expression level of Nl-EST1. Previously, Nl-EST1 was reported in an organophosphorus insecticide-resistant strain of Sri Lanka 2000. Thus, Nl-EST1 is crucial for developing resistance to organophosphorus and carbamate insecticides. Resistance-related genes such as Nl-EST1 could serve as expression markers for resistance diagnosis, and can apply to integrated resistance management of N. lugens. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Graphical abstract

16 pages, 973 KiB  
Article
Nematicidal and Insecticidal Compounds from the Laurel Forest Endophytic Fungus Phyllosticta sp.
by Carmen E. Díaz, María Fe Andrés, Patricia Bolaños and Azucena González-Coloma
Molecules 2024, 29(19), 4568; https://doi.org/10.3390/molecules29194568 - 26 Sep 2024
Viewed by 89
Abstract
The search for natural product-based biopesticides from endophytic fungi is an effective tool to find new solutions. In this study, we studied a pre-selected fungal endophyte, isolate YCC4, from the paleoendemism Persea indica, along with compounds present in the extract and the [...] Read more.
The search for natural product-based biopesticides from endophytic fungi is an effective tool to find new solutions. In this study, we studied a pre-selected fungal endophyte, isolate YCC4, from the paleoendemism Persea indica, along with compounds present in the extract and the identification of the insect antifeedant and nematicidal ones. The endophyte YCC4 was identified as Phyllosticta sp. by molecular analysis. The insect antifeedant activity was tested by choice bioassays against Spodoptera littoralis, Myzus persicae, and Rhopalosiphum padi, and the in vitro and in vivo mortality was tested against the root-knot nematode Meloidogyne javanica. Since the extract was an effective insect antifeedant, a strong nematicidal, and lacked phytotoxicity on tomato plants, a comprehensive chemical study was carried out. Two new metabolites, metguignardic acid (4) and (-)-epi-guignardone I (14), were identified along the known dioxolanones guignardic acid (1), ethyl guignardate (3), guignardianones A (5), C (2), D (7), and E (6), phenguignardic acid methyl ester (8), the meroterpenes guignardone A (9) and B (10), guignarenone B (11) and C (12), (-)-guignardone I (13), and phyllomeroterpenoid B (15). Among these compounds, 1 and 4 were effective antifeedants against S. littoralis and M. persicae, while 2 was only active on the aphid M. persicae. The nematicidal compounds were 4, 7, and 8. This is the first report on the insect antifeedant or nematicidal effects of these dioxolanone-type compounds. Since the insect antifeedant and nematicidal activity of the Phyllosticta sp. extract depend on the presence of dioxolanone components, future fermentation optimizations are needed to promote the biosynthesis of these compounds instead of meroterpenes. Full article
(This article belongs to the Special Issue Natural Products and Analogues with Promising Biological Profiles)
Show Figures

Graphical abstract

13 pages, 1008 KiB  
Article
Repellent Effects of Coconut Fatty Acid Methyl Esters and Their Blends with Bioactive Volatiles on Winged Myzus persicae (Sulzer) Aphids (Hemiptera: Aphididae)
by Félix Martín, Pedro Guirao and María Jesús Pascual-Villalobos
Insects 2024, 15(9), 731; https://doi.org/10.3390/insects15090731 - 23 Sep 2024
Viewed by 293
Abstract
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of [...] Read more.
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is one of the most important aphid crop pests, due to its direct damage and its ability to transmit viral diseases in crops. The objective is to test whether spraying nanoemulsions of botanical products repels winged individuals of M. persicae in a bioassay in culture chambers. The bioactive volatiles were applied on pepper plants at a dose of 0.2% alone or at 0.1% of each component in blends. A treated plant and a control plant were placed at each side of an entomological cage inside a growth chamber. The winged individuals were released between the plants, in a black-painted Petri dish suspended by wires in the upper half of the cage. The most repellent products were farnesol (repellency index, RI = 40.24%), (E)-anethole (RI = 30.85%) and coconut fatty acid methyl ester (coconut FAME) (RI = 28.93%), alone or in the following blends: farnesol + (E)-anethole + distilled lemon oil (RI = 36.55%) or (E)-anethole + distilled lemon oil + coconut FAME (RI = 30.63%). The observed effect of coconut FAME on aphids is the first report of this product having a repellent effect on a crop pest. Repellent substances for viral disease vectors should be further investigated to develop new strategies for plant protection. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

24 pages, 7372 KiB  
Article
Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle
by Aisha Naseer, Vivek Vikram Singh, Gothandapani Sellamuthu, Jiří Synek, Kanakachari Mogilicherla, Ladislav Kokoska and Amit Roy
Int. J. Mol. Sci. 2024, 25(18), 10209; https://doi.org/10.3390/ijms251810209 - 23 Sep 2024
Viewed by 304
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the [...] Read more.
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes. Full article
(This article belongs to the Special Issue Molecular Signalling in Multitrophic Systems Involving Arthropods)
Show Figures

Figure 1

32 pages, 4213 KiB  
Review
The Past, Present, and Future of Plant Activators Targeting the Salicylic Acid Signaling Pathway
by Misbah Naz, Dongqin Zhang, Kangcen Liao, Xulong Chen, Nazeer Ahmed, Delu Wang, Jingjiang Zhou and Zhuo Chen
Genes 2024, 15(9), 1237; https://doi.org/10.3390/genes15091237 - 23 Sep 2024
Viewed by 394
Abstract
Plant activators have emerged as promising alternatives to conventional crop protection chemicals for managing crop diseases due to their unique mode of action. By priming the plant’s innate immune system, these compounds can induce disease resistance against a broad spectrum of pathogens without [...] Read more.
Plant activators have emerged as promising alternatives to conventional crop protection chemicals for managing crop diseases due to their unique mode of action. By priming the plant’s innate immune system, these compounds can induce disease resistance against a broad spectrum of pathogens without directly inhibiting their proliferation. Key advantages of plant activators include prolonged defense activity, lower effective dosages, and negligible risk of pathogen resistance development. Among the various defensive pathways targeted, the salicylic acid (SA) signaling cascade has been extensively explored, leading to the successful development of commercial activators of systemic acquired resistance, such as benzothiadiazole, for widespread application in crop protection. While the action sites of many SA-targeting activators have been preliminarily mapped to different steps along the pathway, a comprehensive understanding of their precise mechanisms remains elusive. This review provides a historical perspective on plant activator development and outlines diverse screening strategies employed, from whole-plant bioassays to molecular and transgenic approaches. We elaborate on the various components, biological significance, and regulatory circuits governing the SA pathway while critically examining the structural features, bioactivities, and proposed modes of action of classical activators such as benzothiadiazole derivatives, salicylic acid analogs, and other small molecules. Insights from field trials assessing the practical applicability of such activators are also discussed. Furthermore, we highlight the current status, challenges, and future prospects in the realm of SA-targeting activator development globally, with a focus on recent endeavors in China. Collectively, this comprehensive review aims to describe existing knowledge and provide a roadmap for future research toward developing more potent plant activators that enhance crop health. Full article
(This article belongs to the Special Issue Genetic Insights into Plant-Pathogen Interactions)
Show Figures

Figure 1

15 pages, 4220 KiB  
Article
Exploring Quinazoline Nitro-Derivatives as Potential Antichagasic Agents: Synthesis and In Vitro Evaluation
by Citlali Vázquez, Audifás-Salvador Matus-Meza, Oswaldo Nuñez-Moreno, Brenda Michelle Barbosa-Sánchez, Victor Manuel Farías-Gutiérrez, Mariana Mendoza-Conde, Francisco Hernández-Luis and Emma Saavedra
Molecules 2024, 29(18), 4501; https://doi.org/10.3390/molecules29184501 - 23 Sep 2024
Viewed by 361
Abstract
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. The current antichagasic drugs nifurtimox and benznidazole have inconveniences of toxicity; therefore, the search for alternative therapeutic strategies is necessary. The present study reports the synthesis, drug-likeness predictions, and in vitro [...] Read more.
Trypanosoma cruzi is a protozoan parasite that causes Chagas disease in humans. The current antichagasic drugs nifurtimox and benznidazole have inconveniences of toxicity; therefore, the search for alternative therapeutic strategies is necessary. The present study reports the synthesis, drug-likeness predictions, and in vitro anti-trypanosome activity of a series of 14 quinazoline 2,4,6-triamine derivatives. All compounds were tested against T. cruzi (epimastigotes and trypomastigotes) and in HFF1 human foreskin fibroblasts. The bioassays showed that compounds 24 containing nitrobenzoyl substituents at 6-position of the quinazoline 2,4,6-triamine nucleus were the most potent on its antiprotozoal activity. The effect was observed at 24 h and it was preserved for at least 5 days. Also, compounds 24 were not toxic to the human control cells, showing high selectivity index. The quinazoline nitro derivatives have potential use as antichagasic agents. Full article
Show Figures

Figure 1

13 pages, 3217 KiB  
Article
A Novel Compound from the Phenylsulfonylpiperazine Class: Evaluation of In Vitro Activity on Luminal Breast Cancer Cells
by Fernanda Cardoso da Silva, Ana Clara Cassiano Martinho, Helen Soares Valença Ferreira, Raoni Pais Siqueira, Vinicius Marques Arruda, Joyce Ferreira da Costa Guerra, Maria Laura dos Reis de Souza, Emanuelly Silva Landin, Celso de Oliveira Rezende Júnior and Thaise Gonçalves de Araújo
Molecules 2024, 29(18), 4471; https://doi.org/10.3390/molecules29184471 - 20 Sep 2024
Viewed by 282
Abstract
Breast cancer (BC) is the most common cancer in women, and is characterized by its histological and molecular heterogeneity. Luminal BC is an estrogen receptor-positive subtype, with varied clinical courses. Although BC patients are eligible for hormone therapy, both early and late relapses [...] Read more.
Breast cancer (BC) is the most common cancer in women, and is characterized by its histological and molecular heterogeneity. Luminal BC is an estrogen receptor-positive subtype, with varied clinical courses. Although BC patients are eligible for hormone therapy, both early and late relapses still occur, and thus there is a demand for new cytotoxic and selective treatment strategies for these patients. In the present study, inspired by the structure of phenylsulfonylpiperazine, a series of 20 derivatives were tested in bioassays against MCF7, MDA-MB-231 and MDA-MB-453 BC cells to discover new hit compounds. After 48 h of treatment, 12 derivatives impaired cell viability and presented significant IC50 values against at least one of the tumor lineages. Overall, the luminal BC cell line MCF7 was more sensitive to treatments. Compound 3, (4-(1H-tetrazol-1-yl)phenyl)(4-((4-chlorophenyl)sulfonyl)piperazin-1-yl)methanone, was the most promising, with IC50 = 4.48 μM and selective index (SI) = 35.6 in MCF7 cells. Compound 3 also presented significant antimigratory and antiproliferative activities against luminal BC cells, possibly by affecting the expression of genes involved in the epithelial–mesenchymal transition mechanism, upregulating E-Cadherin transcripts (CDH1). Our findings suggest that phenylsulfonylpiperazine derivatives are potential candidates for the development of new therapies, especially those targeting luminal BC. Full article
Show Figures

Figure 1

15 pages, 7154 KiB  
Article
Bioassay-Guided Isolation and Identification of Xanthine Oxidase Inhibitory Constituents from the Fruits of Chaenomeles speciosa (Sweet) Nakai
by Kui Li, Ruoling Xu, Mengting Kuang, Wei Ma and Ning Li
Molecules 2024, 29(18), 4468; https://doi.org/10.3390/molecules29184468 - 20 Sep 2024
Viewed by 406
Abstract
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a traditional Chinese herbal medicine that possesses not only abundant nutritional value but also significant medicinal properties. The extracts of C. speciosa fruits effectively reduce urate levels, but the specific chemical constituents responsible for [...] Read more.
Chaenomeles speciosa (Sweet) Nakai (C. speciosa) is a traditional Chinese herbal medicine that possesses not only abundant nutritional value but also significant medicinal properties. The extracts of C. speciosa fruits effectively reduce urate levels, but the specific chemical constituents responsible for this effect in C. speciosa fruits are still unknown. Therefore, this study aims to investigate and analyze the structure–activity relationships of these constituents to better understand their ability to lower uric acid. Activity-guided fractionation and purification processes were used to isolate compounds with xanthine oxidase (XO) inhibitory activity from C. speciosa fruits, resulting in three extracts: petroleum ether, ethyl acetate, and n-butanol. The ethyl acetate and n-butanol fractions showed strong activity and underwent further separation and purification using chromatographic techniques. Twenty-four compounds were isolated and identified, with nine showing potent activity, including chlorogenic acid, methyl chlorogenate, butyl chlorogenate, ethyl chlorogenate, cryptochlorogenic acid methyl ester, caffeic acid, p-coumaric acid, benzoic acid and protocatechuic acid. The docking analysis showed that these compounds interacted with amino acid residues in the active site of XO through hydrogen bonding and hydrophobic interactions. These findings suggest that these compounds help reduce uric acid in C. speciosa, supporting further investigation into their mechanism of action. Full article
Show Figures

Figure 1

10 pages, 4783 KiB  
Article
Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator
by Kazuto Sazawa, Yeasna Shanjana, Kazuharu Sugawara and Hideki Kuramitz
Electrochem 2024, 5(3), 370-379; https://doi.org/10.3390/electrochem5030024 - 19 Sep 2024
Viewed by 583
Abstract
An electrochemical bioassay based on rotating droplet electrochemistry by using an electron-transfer mediator was developed for the evaluation of a wide variety of pollutants such as antibiotics, heavy metals, and pesticides in the water environment. Ferricyanide was used as an electron-transfer mediator for [...] Read more.
An electrochemical bioassay based on rotating droplet electrochemistry by using an electron-transfer mediator was developed for the evaluation of a wide variety of pollutants such as antibiotics, heavy metals, and pesticides in the water environment. Ferricyanide was used as an electron-transfer mediator for obtaining the catalytic response of Escherichia coli. The electrochemical response of E. coli was measured via hydrodynamic chronoamperometry in a microdroplet on a screen-printed carbon electrode (SPCE). The constructed electrode system successfully evaluates the catalytic response of E. coli solution in the presence of ferricyanide. An assay for antibiotic toxicity on E. coli was carried out. The EC50 for ampicillin, sulfamonomethoxine, chlorotetracycline, tetracycline, and oxytetracycline evaluated by the pre-incubation method were 0.26, 0.77, 5.25, 18.5, and 19.0 µM, respectively. The toxicity order was ampicillin > sulfamonomethoxine > chlorotetracycline > tetracycline > oxytetracycline. The proposed method can be used to evaluate the antibiotic toxicities in different real samples, such as pond water, powder, and raw milk. Recoveries were found in the range of 90 and 99%. The developed methods do not require additional incubation time to evaluate toxicity. Full article
Show Figures

Figure 1

13 pages, 3622 KiB  
Article
Allelopathic Activity of Leaf Wastes of Liriodendron tulipifera for Sustainable Management
by Hisashi Kato-Noguchi, Kota Hayashi, Arihiro Iwasaki and Kiyotake Suenaga
Appl. Sci. 2024, 14(18), 8437; https://doi.org/10.3390/app14188437 - 19 Sep 2024
Viewed by 322
Abstract
Logging operations of Liriodendron tulipifera L., as timber trees, and fallen leaves in autumn from ornamental trees produce a large amount of leaf waste. In this study, the allelopathy of L. tulipifera fresh and fallen leaves was investigated for the development of potential [...] Read more.
Logging operations of Liriodendron tulipifera L., as timber trees, and fallen leaves in autumn from ornamental trees produce a large amount of leaf waste. In this study, the allelopathy of L. tulipifera fresh and fallen leaves was investigated for the development of potential applications of leaf waste. The extracts of fresh and fallen leaves of L. tulipifera showed growth inhibitory activity against weed species, Vulpia myuros (L.) C.C.Gmel., Echinochloa crus-galli (L.) P.Beauv., and Lolium multiflorum Lam., under laboratory conditions. The powder of L. tulipifera fresh and fallen leaves also inhibited the germination of E. crus-galli under greenhouse conditions. A potent allelochemical was isolated from fresh and fallen leaf extracts through a bioassay-guided separation process, and was identified as lipiferolide. Lipiferolide inhibited the growth of L. multiflorum and Lepidum sativum in a concentration-dependent manner. This investigation suggests that the leaf waste of L. tulipifera from logging operations and fallen leaves is potentially useful for the purpose of weed control, such as through the use of soil additive materials from leaves or the creation of foliar spray from leaf extracts. The development of weed control materials using L. tulipifera leaf waste may be a means with which to minimize waste, reducing environmental impacts and economic concerns. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

24 pages, 17126 KiB  
Article
Characteristics of a Spray-Dried Porcine Blood Meal for Aedes aegypti Mosquitoes
by Alexander R. Weaver, Nagarajan R. Rajagopal, Roberto M. Pereira, Philip G. Koehler, Andrew J. MacIntosh, Rebecca W. Baldwin and Christopher D. Batich
Insects 2024, 15(9), 716; https://doi.org/10.3390/insects15090716 - 19 Sep 2024
Viewed by 413
Abstract
Research into mosquito-borne illnesses faces hurdles because feeding fresh animal blood to rear female mosquitoes presents logistical, economic, and safety challenges. In this study, a shelf-stable additive (spray-dried porcine blood; SDPB) hypothesized to supply accessible hemoglobin was evaluated within an alternative meal (AM) [...] Read more.
Research into mosquito-borne illnesses faces hurdles because feeding fresh animal blood to rear female mosquitoes presents logistical, economic, and safety challenges. In this study, a shelf-stable additive (spray-dried porcine blood; SDPB) hypothesized to supply accessible hemoglobin was evaluated within an alternative meal (AM) containing whey powder and PBS for rearing the yellow fever mosquito Aedes aegypti. LC–MS/MS proteomics, microbial assays, and particle reduction techniques confirmed and characterized the functionality of hemoglobin in SDPB, while engorgement, fecundity, egg viability, and meal stability bioassays assessed AM performance. Chemical assays supported hemoglobin as the phagostimulant in SDPB with aggregates partially solubilized in the AM that can be more accessible via particle reduction. Unpaired two-tailed t-tests indicate that the AM stimulates oogenesis (t11 = 13.6, p = 0.003) and is stable under ambient (1+ y; t12 = 0.576, p = 0.575) and aqueous (14 d; t12 = 0.515, p = 0.639) conditions without decreasing fecundity. Egg hatch rates for the ninth generation of AM-reared Ae. aegypti were 50–70+%. With further development, this meal may serve as a platform for mass rearing or studying effects of nutritional additives on mosquito fitness due to its low cost and stability. Future work may examine tuning spray drying parameters and resulting impacts on hemoglobin agglomeration and feeding. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 5319 KiB  
Article
Synthesis, Herbicidal Activity, and Molecular Mode of Action Evaluation of Novel Quinazolinone—Phenoxypropionate Hybrids Containing a Diester Moiety
by Shumin Wang, Na Li, Shibo Han, Shuyue Fu, Ke Chen, Wenjing Cheng and Kang Lei
Agronomy 2024, 14(9), 2124; https://doi.org/10.3390/agronomy14092124 - 18 Sep 2024
Viewed by 379
Abstract
To develop aryloxyphenoxypropionate herbicides with novel structure and improved activity, a total of twenty-eight novel quinazolinone–phenoxypropionate derivatives containing a diester moiety were designed and synthesized. The herbicidal bioassay results in the greenhouse showed that QPEP-I-4 exhibited excellent herbicidal activity against E. crusgalli, [...] Read more.
To develop aryloxyphenoxypropionate herbicides with novel structure and improved activity, a total of twenty-eight novel quinazolinone–phenoxypropionate derivatives containing a diester moiety were designed and synthesized. The herbicidal bioassay results in the greenhouse showed that QPEP-I-4 exhibited excellent herbicidal activity against E. crusgalli, D. sanguinalis, S. alterniflora, E. indica, and P. alopecuroides with inhibition rates >80% at a dosage of 150 g ha−1 and displayed higher crop safety to G. hirsutum, G. max, and A. hypogaea than the commercial herbicide quizalofop-p-ethyl. Studying the herbicidal mechanism by phenotypic observation, membrane permeability evaluation, and transcriptomic analysis revealed that a growth inhibition of plants by QPPE-I-4 was the result from damage of the plants’ biomembrane. The evaluation of ACCase activity in vivo indicated that QPPE-I-4 could inhibit ACCase and may be a new type of ACCase inhibitor. The present work indicated that QPPE-I-4 could represent a lead compound for further developing novel AOPP herbicides. Full article
Show Figures

Figure 1

24 pages, 11508 KiB  
Article
Discovery and Optimization of Ergosterol Peroxide Derivatives as Novel Glutaminase 1 Inhibitors for the Treatment of Triple-Negative Breast Cancer
by Ran Luo, Haoyi Zhao, Siqi Deng, Jiale Wu, Haijun Wang, Xiaoshan Guo, Cuicui Han, Wenkang Ren, Yinglong Han, Jianwen Zhou, Yu Lin and Ming Bu
Molecules 2024, 29(18), 4375; https://doi.org/10.3390/molecules29184375 - 14 Sep 2024
Viewed by 517
Abstract
In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 [...] Read more.
In this study, novel ergosterol peroxide (EP) derivatives were synthesized and evaluated to assess their antiproliferative activity against four human cancer cell lines (A549, HepG2, MCF-7, and MDA-MB-231). Compound 3g exhibited the most potent antiproliferative activity, with an IC50 value of 3.20 µM against MDA-MB-231. This value was 5.4-fold higher than that of the parental EP. Bioassay optimization further identified 3g as a novel glutaminase 1 (GLS1) inhibitor (IC50 = 3.77 µM). In MDA-MB-231 cells, 3g reduced the cellular glutamate levels by blocking the glutamine hydrolysis pathway, which triggered reactive oxygen species production and induced caspase-dependent apoptosis. Molecular docking indicated that 3g interacts with the reaction site of the variable binding pocket by forming multiple interactions with GLS1. In a mouse model of breast cancer, 3g showed remarkable therapeutic effects at a dose of 50 mg/kg, with no apparent toxicity. Based on these results, 3g could be further evaluated as a novel GLS1 inhibitor for triple-negative breast cancer (TNBC) therapy. Full article
(This article belongs to the Special Issue Bioactivity of Natural Compounds: From Plants to Humans)
Show Figures

Graphical abstract

18 pages, 2447 KiB  
Article
Profiling Metabolites with Antifungal Activities from Endophytic Plant-Beneficial Strains of Pseudomonas chlororaphis Isolated from Chamaecytisus albus (Hack.) Rothm.
by Wojciech Sokołowski, Monika Marek-Kozaczuk, Piotr Sosnowski, Ewa Sajnaga, Monika Elżbieta Jach and Magdalena Anna Karaś
Molecules 2024, 29(18), 4370; https://doi.org/10.3390/molecules29184370 - 14 Sep 2024
Viewed by 321
Abstract
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus [...] Read more.
Fungal phytopathogens represent a large and economically significant challenge to food production worldwide. Thus, the application of biocontrol agents can be an alternative. In the present study, we carried out biological, metabolomic, and genetic analyses of three endophytic isolates from nodules of Chamaecytisus albus, classified as Pseudomonas chlororaphis acting as antifungal agents. The efficiency of production of their diffusible and volatile antifungal compounds (VOCs) was verified in antagonistic assays with the use of soil-borne phytopathogens: B. cinerea, F. oxysporum, and S. sclerotiorum. Diffusible metabolites were identified using chromatographic and spectrometric analyses (HPTLC, GC-MS, and LC-MS/MS). The phzF, phzO, and prnC genes in the genomes of bacterial strains were confirmed by PCR. In turn, the plant growth promotion (PGP) properties (production of HCN, auxins, siderophores, and hydrolytic enzymes, phosphate solubilization) of pseudomonads were bioassayed. The data analysis showed that all tested strains have broad-range antifungal activity with varying degrees of antagonism. The most abundant bioactive compounds were phenazine derivatives: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, and diketopiperazine derivatives as well as ortho-dialkyl-aromatic acids, pyrrolnitrin, siderophores, and HCN. The results indicate that the tested P. chlororaphis isolates exhibit characteristics of biocontrol organisms; therefore, they have potential to be used in sustainable agriculture and as commercial postharvest fungicides to be used in fruits and vegetables. Full article
(This article belongs to the Topic Natural Products in Crop Pest Management)
Show Figures

Figure 1

Back to TopTop