Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,996)

Search Parameters:
Keywords = dynamic surface control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 35079 KiB  
Article
Energy Absorption Properties of 3D-Printed Polymeric Gyroid Structures for an Aircraft Wing Leading Edge
by Mats Overbeck, Sebastian Heimbs, Jan Kube and Christian Hühne
Aerospace 2024, 11(10), 801; https://doi.org/10.3390/aerospace11100801 (registering DOI) - 29 Sep 2024
Abstract
Laminar flow offers significant potential for increasing the energy efficiency of future transport aircraft. At the Cluster of Excellence SE2A—Sustainable and Energy-Efficient Aviation—the laminarization of the wing by means of hybrid laminar flow control (HLFC) is being investigated. The aim is [...] Read more.
Laminar flow offers significant potential for increasing the energy efficiency of future transport aircraft. At the Cluster of Excellence SE2A—Sustainable and Energy-Efficient Aviation—the laminarization of the wing by means of hybrid laminar flow control (HLFC) is being investigated. The aim is to maintain the boundary layer as laminar for up to 80% of the chord length of the wing. This is achieved by active suction on the leading edge and the rear part of the wing. The suction panels are constructed with a thin micro-perforated skin and a supporting open-cellular core structure. The mechanical requirements for this kind of sandwich structure vary depending on its position of usage. The suction panel on the leading edge must be able to sustain bird strikes, while the suction panel on the rear part must sustain bending loads from the deformation of the wing. The objective of this study was to investigate the energy absorption properties of a triply periodic minimal surface (TPMS) structure that can be used as a bird strike-resistant core in the wing leading edge. To this end, cubic-sheet-based gyroid specimens of different polymeric materials and different geometric dimensions were manufactured using additive manufacturing processes. The specimens were then tested under quasi-static compression and dynamic crushing loading until failure. It was found that the mechanical behavior was dependent on the material, the unit cell size, the relative density, and the loading rate. In general, the weight-specific energy absorption (SEA) at 50% compaction increased with increasing relative density. Polyurethane specimens exhibited an increase in SEA with increasing loading rate, as opposed to the specimens of the other investigated polymers. A smaller unit cell size induced a more consistent energy absorption, due to the higher plateau force. Full article
(This article belongs to the Special Issue Advanced Aerospace Composite Materials and Smart Structures)
Show Figures

Figure 1

23 pages, 4470 KiB  
Review
Physical Modeling of Structure and Dynamics of Concentrated, Tornado-like Vortices (A Review)
by Aleksey Yu. Varaksin and Sergei V. Ryzhkov
Aerospace 2024, 11(10), 800; https://doi.org/10.3390/aerospace11100800 (registering DOI) - 29 Sep 2024
Abstract
Physical modeling is essential for developing the theory of concentrated, tornado-like vortices. Physical modeling data are crucial for interpreting real tornado field measurements and mathematical modeling data. This review focuses on describing and analyzing the results of a physical modeling of the structure [...] Read more.
Physical modeling is essential for developing the theory of concentrated, tornado-like vortices. Physical modeling data are crucial for interpreting real tornado field measurements and mathematical modeling data. This review focuses on describing and analyzing the results of a physical modeling of the structure and dynamics of tornado-like vortices, which are laboratory analogs of the vortex structures observed in nature (such as “dust devils” and air tornadoes). This review discusses studies on various types of concentrated vortices in laboratory conditions: (i) wall-bounded, stationary, and tornado-like vortices, (ii) wall-free, quasi-stationary, and tornado-like vortices, and (iii) wall-free, non-stationary, and tornado-like vortices. In our opinion, further progress in the development of the theory of non-stationary concentrated tornado-like vortices will determine the possibility of setting up the following studies: conducting experiments in order to study the mechanisms of vortex generation near the surface, determining the factors contributing to the stabilization (strengthening) and destabilization (weakening) of the generated vortices, and to find methods and means of controlling vortices. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 35711 KiB  
Article
EELS-DARTS: A Planetary Snake Robot Simulator for Closed-Loop Autonomy Development
by Tristan D. Hasseler, Carl Leake, Aaron Gaut, Asher Elmquist, Robert Michael Swan, Rob Royce, Bryson Jones, Ben Hockman, Michael Paton, Guglielmo Daddi, Masahiro Ono, Rohan Thakker and Abhinandan Jain
Aerospace 2024, 11(10), 795; https://doi.org/10.3390/aerospace11100795 - 27 Sep 2024
Abstract
EELS-DARTS is a simulator designed for autonomy development and analysis of large degree of freedom snake-like robots for space exploration. A detailed description of the EELS-DARTS simulator design is presented. This includes the versatile underlying multibody dynamics representation used to model a variety [...] Read more.
EELS-DARTS is a simulator designed for autonomy development and analysis of large degree of freedom snake-like robots for space exploration. A detailed description of the EELS-DARTS simulator design is presented. This includes the versatile underlying multibody dynamics representation used to model a variety of distinct snake robot configurations as well as an anisotropic friction model for describing screw–ice interaction. Additional simulation components such as graphics, importable terrain, joint controllers, and perception are discussed. Methods for setting up and running simulations are discussed, including how a snake robot’s autonomy stack closes the commands and information loop with the simulation via ROS. Multiple use cases are described to illustrate how the simulation is used to aid and inform robot design, autonomy development, and field test use throughout the project’s life cycle. A validation analysis of the screw–ice contact model is performed for the surface mobility case. Lastly, an overview of simulation use for planning operations during a recent field test to the Athabasca Glacier in Canada is discussed. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

27 pages, 15237 KiB  
Article
Study on the Influence of Plugging Position and Fit on the Motion Stability of Precision Cross Roller Bearing
by Pu Dong, Rongjun Niu, Yushuo Wang, Ruifang Lv, Lanlan Li and Wenchao Xie
Machines 2024, 12(10), 678; https://doi.org/10.3390/machines12100678 - 27 Sep 2024
Abstract
This study addresses the issue of unsatisfactory smoothness in the movement of integrated internal and external cross roller bearings post-assembly, which compromises the movement flexibility of the finished bearing and fails to meet index requirements. Focusing on a specific type of precision cross [...] Read more.
This study addresses the issue of unsatisfactory smoothness in the movement of integrated internal and external cross roller bearings post-assembly, which compromises the movement flexibility of the finished bearing and fails to meet index requirements. Focusing on a specific type of precision cross roller bearing, this paper establishes a finite element explicit dynamic simulation model that takes into account the plugging position and matching relationship. A transient dynamic simulation of the roller blockage process was conducted, yielding insights into the contact pressure and deformation experienced by the roller and plug during this blockage. The results indicate that when both the taper pin are positioned centrally, and the plug matching clearance, plug sag and protruding amount, and plug rotation offset degrees are all set to 0 μm, the contact pressure between the roller and raceway, as well as the roller deformation displacement, are minimized. The plugging position and fit were subsequently validated through testing, which also measured the impact of these parameters on the roundness of the raceway surface and the bearing’s friction torque. The test findings corroborate that when the taper and pin are centrally aligned, and the stopper clearance is 5 μm, with the plug sag, protrusion, and offset all at 0 μm, the roundness of the raceway surface and the bearing’s friction torque reach their lowest values, thereby optimizing the stability of bearing motion. By comparing the simulation and experimental results, it is concluded that during bearing assembly, it is crucial to maintain the taper pin in a central position, control the plug matching clearance to approximately 5 μm, and ensure the plug sag, protrusion, and rotation offset amount are both at 0 μm. This approach guarantees optimal contact conditions and motion stability during operation. The findings of this research offer valuable design guidance for the selection of appropriate plugging positions and fits in precision cross roller bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

19 pages, 13402 KiB  
Article
The Impact of Land Use and Land Cover Changes on Ecosystem Services Value in Laos between 2000 and 2020
by Jun Ma, Jinliang Wang, Jianpeng Zhang, Suling He, Lanfang Liu and Xuzheng Zhong
Land 2024, 13(10), 1568; https://doi.org/10.3390/land13101568 - 27 Sep 2024
Abstract
Land use and land cover changes significantly affect the function and value of ecosystem services (ES). Exploring the spatial correspondence between changes in land cover and ES is conducive to optimizing the land use structure and increasing regional coordinated development. Thus, this study [...] Read more.
Land use and land cover changes significantly affect the function and value of ecosystem services (ES). Exploring the spatial correspondence between changes in land cover and ES is conducive to optimizing the land use structure and increasing regional coordinated development. Thus, this study aimed to examine changes in land use and land cover (30 × 30 m) in Laos between 2000 and 2020 and their effects on ecosystem services value (ESV) using the Global Surface Cover Database land use data for 2000 to 2020, ArcGIS technology, and the table of Costanza’s value coefficients. The study results indicated that forest (79.5%), cultivated land (10.6%), and grassland (8.3%) were the dominant land use types in Laos over the past two decades. The forest area decreased significantly, while there were increases in other land types, and the forest was transformed into cultivated land and grassland. ES in Laos was valued at about USD 140–150 billion, with forest contributing the most, followed by cultivated land and grassland. ESV over the last two decades in Laos has increased by USD 3.94 million. Large values were assigned to regulating services (40%) and supporting services (14%). The ESV of food production, soil formation, and water supply increased, and the ESV of climate regulation, genetic resources, and erosion control decreased. In addition, the elasticity value of artificial surfaces was more prominent, with a more evident impact on ESV. For future development, Laos should rationally plan land resources, develop sustainable industries, maintain the dynamic balance of second-category ESV, and achieve sustainable economic and ecological development. This study provides a scientific basis for revealing changes in ESV in Laos over the past two decades, maintaining the stability and sustainable development of the environment in Laos, and realizing the sustainable use and efficient management of the local environmental resources. Full article
Show Figures

Figure 1

17 pages, 1232 KiB  
Article
Dual-Layer Reinforcement Learning for Quadruped Robot Locomotion and Speed Control in Complex Environments
by Yilin Zhang, Jiayu Zeng, Huimin Sun, Honglin Sun and Kenji Hashimoto
Appl. Sci. 2024, 14(19), 8697; https://doi.org/10.3390/app14198697 - 26 Sep 2024
Abstract
Walking robots have been widely applied in complex terrains due to their good terrain adaptability and trafficability. However, in some environments (such as disaster relief, field navigation, etc.), although a single strategy can adapt to various environments, it is unable to strike a [...] Read more.
Walking robots have been widely applied in complex terrains due to their good terrain adaptability and trafficability. However, in some environments (such as disaster relief, field navigation, etc.), although a single strategy can adapt to various environments, it is unable to strike a balance between speed and stability. Existing control schemes like model predictive control (MPC) and traditional incremental control can manage certain environments. However, they often cannot balance speed and stability well. These methods usually rely on a single strategy and lack adaptability for dynamic adjustment to different terrains. To address this limitation, this paper proposes an innovative double-layer reinforcement learning algorithm. This algorithm combines Deep Double Q-Network (DDQN) and Proximal Policy Optimization (PPO), leveraging their complementary strengths to achieve both fast adaptation and high stability in complex terrains. This algorithm utilizes terrain information and the robot’s state as observations, determines the walking speed command of the quadruped robot Unitree Go1 through DDQN, and dynamically adjusts the current walking speed in complex terrains based on the robot action control system of PPO. The speed command serves as a crucial link between the robot’s perception and movement, guiding how fast the robot should walk depending on the environment and its internal state. By using DDQN, the algorithm ensures that the robot can set an appropriate speed based on what it observes, such as changes in terrain or obstacles. PPO then executes this speed, allowing the robot to navigate in real time over difficult or uneven surfaces, ensuring smooth and stable movement. Then, the proposed model is verified in detail in Isaac Gym. Wecompare the distances walked by the robot using six different control methods within 10 s. The experimental results indicate that the method proposed in this paper demonstrates excellent speed adjustment ability in complex terrains. On the designed test route, the quadruped robot Unitree Go1 can not only maintain a high walking speed but also maintain a high degree of stability when switching between different terrains. Ouralgorithm helps the robot walk 25.5 m in 10 s, outperforming other methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Its Application in Robotics)
Show Figures

Figure 1

26 pages, 6642 KiB  
Article
Performance of the Earth Explorer 11 SeaSTAR Mission Candidate for Simultaneous Retrieval of Total Surface Current and Wind Vectors
by Adrien C. H. Martin, Christine P. Gommenginger, Daria Andrievskaia, Petronilo Martin-Iglesias and Alejandro Egido
Remote Sens. 2024, 16(19), 3556; https://doi.org/10.3390/rs16193556 - 24 Sep 2024
Abstract
Interactions between ocean surface currents, winds and waves at the atmosphere-ocean interface are key controls of lateral and vertical exchanges of water, heat, carbon, gases and nutrients in the global Earth System. The SeaSTAR satellite mission concept proposes to better quantify and understand [...] Read more.
Interactions between ocean surface currents, winds and waves at the atmosphere-ocean interface are key controls of lateral and vertical exchanges of water, heat, carbon, gases and nutrients in the global Earth System. The SeaSTAR satellite mission concept proposes to better quantify and understand these important dynamic processes by measuring two-dimensional fields of total surface current and wind vectors with unparalleled spatial and temporal resolution (1 × 1 km2 or finer, 1 day) and unmatched precision over one continuous wide swath (100 km or more). This paper presents a comprehensive numerical analysis of the expected performance of the Earth Explorer 11 (EE11) SeaSTAR mission candidate in the case of idealised and realistic 2D ocean currents and wind fields. A Bayesian framework derived from satellite scatterometry is adapted and applied to SeaSTAR’s bespoke inversion scheme that simultaneously retrieves total surface current vectors (TSCV) and ocean surface vector winds (OSVW). The results confirm the excellent performance of the EE11 SeaSTAR concept, with Root Mean Square Errors (RMSE) for TSCV and OSVW at 1 × 1 km2 resolution consistently better than 0.1 m/s and 0.4 m/s, respectively. The analyses highlight some performance degradation in some relative wind directions, particularly marked at near range and low wind speeds. Retrieval uncertainties are also reported for several variations around the SeaSTAR baseline three-azimuth configuration, indicating that RMSEs improve only marginally (by ∼0.01 m/s for TSCV) when including broadside Radial Surface Velocity or broadside dual-polarisation data in the inversion. In contrast, our results underscore (a) the critical need to include broadside Normalised Radar Cross Section data in the inversion; (b) the rapid performance degradation when broadside incidence angles become steeper than 20° from nadir; and (c) the benefits of maintaining ground squint angle separation between fore and aft lines-of-sight close to 90°. The numerical results are consistent with experimental performance estimates from airborne data and confirm that the EE11 SeaSTAR concept satisfies the requirements of the mission objectives. Full article
Show Figures

Figure 1

14 pages, 3706 KiB  
Article
Influence of Tire Parameters on Contact Patch and Axle Force Generation against Short Obstacles Using DOE Approach
by Vikas Birajdar, Seyed Jamaleddin Mostafavi Yazdi, Madhu Kandampadath, Mohammad Behroozi and Javad Baqersad
Vehicles 2024, 6(4), 1690-1703; https://doi.org/10.3390/vehicles6040081 - 24 Sep 2024
Abstract
Understanding the behavior of tires on uneven and varied road surfaces poses a substantial challenge for vehicle ride engineers. To accurately predict road load forces on the axle, various numerical ride models must be utilized to incorporate a realistic road enveloping algorithm. This [...] Read more.
Understanding the behavior of tires on uneven and varied road surfaces poses a substantial challenge for vehicle ride engineers. To accurately predict road load forces on the axle, various numerical ride models must be utilized to incorporate a realistic road enveloping algorithm. This algorithm filters the geometries of uneven surfaces and must be seamlessly integrated with a rigid ring model. The complexity of predicting and calculating dynamic tire response increases with varying obstacle dimensions. A two-dimensional, five-degree-of-freedom rigid ring ride model based on Short Wavelength Intermediate Frequency (SWIFT) has been developed, employing a tandem cam enveloping algorithm to filter short wavelength road obstacles. Selecting generalized cam parameters to ensure high accuracy and an enhanced runtime performance poses a challenge in specific ride simulations. A design of experiments (DOE) approach is used to identify key control factors related to the quasi-static tandem cam enveloping model and dynamic rigid ring model, which significantly affect the enveloping response. DOE findings suggest optimization strategies for selecting tire parameters to achieve a high test-to-simulation correlation with improved computational efficiency. Additionally, the study confirms the robustness of these predictions against external noise factors, including variations in tires and road conditions. Full article
(This article belongs to the Special Issue Feature Papers on Advanced Vehicle Technologies)
Show Figures

Figure 1

19 pages, 9820 KiB  
Article
Impact of Shape Transformation of Programmable 3D Structures on UV Print Quality
by Matej Pivar and Deja Muck
Polymers 2024, 16(19), 2685; https://doi.org/10.3390/polym16192685 - 24 Sep 2024
Abstract
The field of 3D and 4D printing is advancing rapidly, offering new ways to control the transformation of programmable 3D structures in response to external stimuli. This study examines the impact of 3D printing parameters, namely the UV ink thickness (applied using a [...] Read more.
The field of 3D and 4D printing is advancing rapidly, offering new ways to control the transformation of programmable 3D structures in response to external stimuli. This study examines the impact of 3D printing parameters, namely the UV ink thickness (applied using a UV inkjet printer on pre-3D-printed programmable structures) and thermal activation, on the dimensional and surface changes to high-stress (HS) and low-stress (LS) programmable samples and on print quality. The results indicate that HS samples shrink in the longitudinal direction, while expanding in terms of their height and width, whereas LS samples exhibit minimal dimensional changes due to lower programmed stress. The dynamic mechanical analysis shows that UV ink, particularly cyan and CMYK overprints, reduces the shrinkage in HS samples by acting as a resistive layer. Thicker ink films further reduce the dimensional changes in HS samples. Thermal activation increases the surface roughness of HS structures, leading to the wrinkling of UV ink films, while LS structures are less affected. The surface gloss decreases significantly in HS structures after UV ink application; however, thermal activation has little impact on LS structures. UV ink adhesion remains strong across both HS and LS samples, suggesting that UV inks are ideal for printing on programmable 3D structures, where the colour print quality and precise control of the shape transformation are crucial. Full article
Show Figures

Figure 1

19 pages, 11477 KiB  
Article
Design of an FPGA-Based Controller for Fast Scanning Probe Microscopy
by Leonardo Gregorat, Marco Cautero, Sergio Carrato, Dario Giuressi, Mirco Panighel, Giuseppe Cautero and Friedrich Esch
Sensors 2024, 24(18), 6108; https://doi.org/10.3390/s24186108 - 21 Sep 2024
Abstract
Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even [...] Read more.
Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes—such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential—often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes. This instrument not only significantly accelerates the acquisition of atomic-scale images by orders of magnitude but also enables the tracking of moving features such as adatoms, vacancies, or clusters across the surface (“atom tracking”) due to the parallel execution of sophisticated control and acquisition algorithms and the fast exchange of data with an external processor. Each of these measurement modes requires a complex series of operations within the FPGA that are explained in detail. Full article
(This article belongs to the Special Issue Application of FPGA-Based Sensor Systems)
Show Figures

Figure 1

18 pages, 7525 KiB  
Article
Fixed-Time Anti-Saturation Tracking Control for Agile Missiles with Multiple Actuators
by Jiaxun Li and Jianqiao Yu
Aerospace 2024, 11(9), 779; https://doi.org/10.3390/aerospace11090779 - 20 Sep 2024
Abstract
This paper investigates the fixed-time tracking control problem for agile missiles with multiple heterogeneous actuators in the presence of saturation constraints and external disturbances. To reduce the turning radius and promote maneuvering envelope, a novel combination scheme for blended actuators is introduced in [...] Read more.
This paper investigates the fixed-time tracking control problem for agile missiles with multiple heterogeneous actuators in the presence of saturation constraints and external disturbances. To reduce the turning radius and promote maneuvering envelope, a novel combination scheme for blended actuators is introduced in this paper, consisting of a flexible mechanism control system (FCS), reaction-jet control system (RCS), and aerodynamic control. Based on the proposed nonsingular terminal sliding mode surface, a fixed-time anti-saturation controller with an auxiliary system is presented first to ensure global fixed-time stability and to compensate for the adverse effects of input saturation. Subsequently, a fixed-time disturbance observer is constructed to estimate uncertainties and lumped disturbances, and to address the chattering problem. To assign the total virtual control command to different actuators, a control allocation based on dynamic programming considering actuator dynamics is established. Finally, detailed numerical simulations and comparisons are provided to verify the effectiveness and superiority of the proposed control scheme. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 10209 KiB  
Article
An Attitude Determination and Sliding Mode Control Method for Agile Whiskbroom Scanning Maneuvers of Microsatellites
by Xinyan Yang, Zhaoming Li, Lei Li and Yurong Liao
Aerospace 2024, 11(9), 778; https://doi.org/10.3390/aerospace11090778 - 20 Sep 2024
Abstract
Microsatellites have significantly impacted space missions by offering advanced technology at a low cost. This study introduces an attitude determination and control algorithm for agile whiskbroom scanning maneuvers in microsatellites to enable wide-swath target detection for low-Earth-orbit microsatellites. First, an angular velocity calculation [...] Read more.
Microsatellites have significantly impacted space missions by offering advanced technology at a low cost. This study introduces an attitude determination and control algorithm for agile whiskbroom scanning maneuvers in microsatellites to enable wide-swath target detection for low-Earth-orbit microsatellites. First, an angular velocity calculation model for agile whiskbroom scanning is established. A methodology has been developed to calculate the maximum available time for whiskbroom scanning from one side of the sub-satellite point to the other while ensuring the seamless joining of adjacent strips to avoid missing targets. Thereafter, a gyro- and magnetometer-based cubature Kalman filter is put forward for microsatellite attitude estimation. Furthermore, for attitude control, a hybrid manipulation law capable of preventing singularities and escaping singularity surfaces is designed to ensure high-precision torque output from the control moment gyroscopes (CMGs) used as actuators. The benefits of the linear sliding mode and fast terminal sliding mode are integrated, and a non-singular sliding surface is designed, yielding a non-singular fast terminal sliding mode attitude control algorithm for tracking the desired trajectory. This algorithm effectively suppresses chattering and enhances dynamic performance without using a switching term. A semi-physical simulation experiment system is also conducted on the ground to validate the proposed algorithm’s high-precision tracking of the planned whiskbroom scanning path. The experimental results demonstrate an attitude angle control accuracy of 4 × 10−2 degrees and angular velocity control accuracy of 0.01°/s and thus the effectiveness of the proposed algorithm. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

13 pages, 5562 KiB  
Article
Advancing Thermochromic Glass Durability: Reinforcing Thermosensitive Hydrogels with Enhanced Adhesion Techniques
by Dewei Qian, Suili Peng, Tao Zhang, Liang Qin and Weijia Wen
J. Compos. Sci. 2024, 8(9), 371; https://doi.org/10.3390/jcs8090371 - 20 Sep 2024
Abstract
The growing use of glass in architecture has driven research into reducing its energy consumption. Thermochromic (TC) glass technology shows promise for enhancing building energy efficiency by regulating solar heat dynamically. Although TC glass helps reduce heat radiation, additional solutions like Low-E or [...] Read more.
The growing use of glass in architecture has driven research into reducing its energy consumption. Thermochromic (TC) glass technology shows promise for enhancing building energy efficiency by regulating solar heat dynamically. Although TC glass helps reduce heat radiation, additional solutions like Low-E or vacuum glass are needed to control heat convection and conduction. Low-E glass, while effective in lowering heat transfer, may increase surface temperature. Thermo-sensitive hydrogels, known for their light-scattering properties at high temperatures, have been explored to complement TC glass. However, their stability at elevated temperatures remains a challenge, especially for applications requiring durability under varying weather conditions. This study proposes enhancing the adhesion between hydrogel and glass by introducing silica–oxygen bonds. As a result, TC glass demonstrates stable performance over 100 cycles within temperature ranges from 85 °C to 30 °C in summer and 40 °C to −20 °C in winter. Furthermore, by incorporating ethylene glycol, the freezing point of TC glass is reduced to −26 °C, rendering it suitable for use in colder regions. The implementation of TC glass effectively addresses the dual requirements of summer shading and winter heating in areas with both cold winters and hot summers, significantly reducing building energy consumption. This study contributes substantially to developing advanced intelligent building materials, paving the way for more sustainable architectural designs. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution)
Show Figures

Figure 1

22 pages, 2746 KiB  
Article
Robust Design of Two-Level Non-Integer SMC Based on Deep Soft Actor-Critic for Synchronization of Chaotic Fractional Order Memristive Neural Networks
by Majid Roohi, Saeed Mirzajani, Ahmad Reza Haghighi and Andreas Basse-O’Connor
Fractal Fract. 2024, 8(9), 548; https://doi.org/10.3390/fractalfract8090548 - 20 Sep 2024
Abstract
In this study, a model-free  PIφ-sliding mode control ( PIφ-SMC) methodology is proposed to synchronize a specific class of chaotic fractional-order memristive neural network systems (FOMNNSs) with delays and input saturation. The fractional-order Lyapunov stability theory is [...] Read more.
In this study, a model-free  PIφ-sliding mode control ( PIφ-SMC) methodology is proposed to synchronize a specific class of chaotic fractional-order memristive neural network systems (FOMNNSs) with delays and input saturation. The fractional-order Lyapunov stability theory is used to design a two-level  PIφ-SMC which can effectively manage the inherent chaotic behavior of delayed FOMNNSs and achieve finite-time synchronization. At the outset, an initial sliding surface is introduced. Subsequently, a robust  PIφ-sliding surface is designed as a second sliding surface, based on proportional–integral (PI) rules. The finite-time asymptotic stability of both surfaces is demonstrated. The final step involves the design of a dynamic-free control law that is robust against system uncertainties, input saturations, and delays. The independence of control rules from the functions of the system is accomplished through the application of the norm-boundedness property inherent in chaotic system states. The soft actor-critic (SAC) algorithm based deep Q-Learning is utilized to optimally adjust the coefficients embedded in the two-level  PIφ-SMC controller’s structure. By maximizing a reward signal, the optimal policy is found by the deep neural network of the SAC agent. This approach ensures that the sliding motion meets the reachability condition within a finite time. The validity of the proposed protocol is subsequently demonstrated through extensive simulation results and two numerical examples. Full article
Show Figures

Figure 1

22 pages, 12585 KiB  
Article
Reinforcement Learning-Based Turning Control of Asymmetric Swept-Wing Drone Soaring in an Updraft
by Yunxiang Cui, De Yan and Zhiqiang Wan
Drones 2024, 8(9), 498; https://doi.org/10.3390/drones8090498 - 18 Sep 2024
Abstract
Soaring drones can use updrafts to reduce flight energy consumption like soaring birds. With control surfaces that are similar to those of soaring birds, the soaring drone achieves roll control through asymmetric sweepback of the wing on one side. This will result in [...] Read more.
Soaring drones can use updrafts to reduce flight energy consumption like soaring birds. With control surfaces that are similar to those of soaring birds, the soaring drone achieves roll control through asymmetric sweepback of the wing on one side. This will result in asymmetry of the drone. The moment of inertia and the inertial product will change with the sweepback of the wing, causing nonlinearity and coupling in its dynamics, which is difficult to solve through traditional research methods. In addition, unlike general control objectives, the objective of this study was to enable the soaring drone to follow the soaring strategy. The soaring strategy determines the horizontal direction of the drone based on the vertical wind situation without the need for active control of the vertical movement of the drone. In essence, it is a horizontal trajectory tracking task. Therefore, based on the layout and aerodynamic data of the soaring drone, reinforcement learning was adopted in this study to construct a six-degree-of-freedom dynamic model and a control flight training simulation environment for the soaring drone with asymmetric deformation control surfaces. We compared the impact of key factors such as different state spaces and reward functions on the training results. The turning control agent was obtained, and trajectory-tracking simulations were conducted. Full article
Show Figures

Figure 1

Back to TopTop