Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = mixed working fluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1723 KiB  
Article
Characteristics of SO2 Removal and Heat Recovery of Flue Gas Based on a Hybrid Flue Gas Condenser
by Hyeonrok Choi, Won Yang, Yongwoon Lee and Changkook Ryu
Energies 2024, 17(19), 4799; https://doi.org/10.3390/en17194799 - 25 Sep 2024
Abstract
A flue gas condenser (FGC) system recovers heat from exhaust flue gases in energy production and chemical plants, reducing air pollution due to dust, SOx, and HCl. An FGC system is divided into indirect contact condenser (ICC) and direct contact condenser (DCC) types. [...] Read more.
A flue gas condenser (FGC) system recovers heat from exhaust flue gases in energy production and chemical plants, reducing air pollution due to dust, SOx, and HCl. An FGC system is divided into indirect contact condenser (ICC) and direct contact condenser (DCC) types. In an ICC, the exhaust gases do not mix with the working fluid, and a water film is formed during flue gas condensation for partial SOx removal. In a DCC, direct mixing of the exhaust flue gas with the cooling fluid (mainly water) occurs, with simultaneous absorption of SOx. In this study, we investigated the SO2 removal efficiency and heat recovery of an ICC, a DCC, and a DCC–ICC hybrid system, and compared the results of the hybrid system with those obtained for a single DCC type at the same liquid-to-gas (L/G) ratio. The SO2 removal characteristics of the hybrid system were examined based on the L/G ratio and absorbent-to-SO2 molar ratio. In the reference ICC-type FGC system, the exit temperature of the mixed gas was 28 °C, with the condensed water ratio and heat recovery efficiency being 80.9% and 93.4%, respectively. At an L/G ratio of 1.5–3.5, the SO2 removal efficiency of a single DCC was 31.5–65.9%, whereas that of the hybrid FGC system (with packing material) increased from 47.1% to 72.3%, which further increased to ~90% upon the addition of NaOH at a molar ratio of 0.7 and an L/G ratio of 1.5. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

9 pages, 3115 KiB  
Proceeding Paper
The Influence of Location of Coanda Surface Ribs on Fluidic Oscillator Performance
by Liaqat Hussain and Muhammad Mahabat Khan
Eng. Proc. 2024, 75(1), 3; https://doi.org/10.3390/engproc2024075003 - 19 Sep 2024
Abstract
Double feedback fluidic oscillators, which create oscillating fluid jets, are commonly used in flow control and thermal applications. The geometry of the Coanda surface affects the oscillation frequency, jet deflection angle, and pressure drop in the mixing chamber. This study numerically investigates the [...] Read more.
Double feedback fluidic oscillators, which create oscillating fluid jets, are commonly used in flow control and thermal applications. The geometry of the Coanda surface affects the oscillation frequency, jet deflection angle, and pressure drop in the mixing chamber. This study numerically investigates the impact of rib locations on the Coanda surface on jet characteristics. Air, with an inlet velocity of 55.8 m/s, is used as the working fluid. Three cases—full ribs, upper ribs, and lower ribs—are compared to a smooth Coanda surface. The full ribs case achieves an increased oscillation frequency of 820 Hz, compared to 355 Hz for the smooth case. However, the jet deflection angles decrease when ribs are present. The upper ribs case achieves a larger 41.5° deflection angle, while the full ribs case achieves a relatively lower 33.8° angle. Interestingly, adding ribs to the Coanda surface reduces the pressure drop in the oscillator. Oscillators with upper ribs achieve a 76.1% increase in FDPR compared to smooth cases, making them the best solution for enhancing the combined effect of jet oscillation frequency and deflection angle. Full article
Show Figures

Figure 1

28 pages, 6098 KiB  
Review
Recent Advances in Numerical Simulation of Ejector Pumps for Vacuum Generation—A Review
by Jaber Sadeghiseraji, Mercè Garcia-Vilchez, Robert Castilla and Gustavo Raush
Energies 2024, 17(17), 4479; https://doi.org/10.3390/en17174479 - 6 Sep 2024
Abstract
This review paper provides an overview of recent advances in computational fluid dynamics (CFD) simulations of ejector pumps for vacuum generation. It examines various turbulence models, multiphase flow approaches, and numerical techniques employed to capture complex flow phenomena like shock waves, mixing, phase [...] Read more.
This review paper provides an overview of recent advances in computational fluid dynamics (CFD) simulations of ejector pumps for vacuum generation. It examines various turbulence models, multiphase flow approaches, and numerical techniques employed to capture complex flow phenomena like shock waves, mixing, phase transitions, and heat/mass transfer. Emphasis is placed on the comprehensive assessment of flow characteristics within ejectors, including condensation effects such as nucleation, droplet growth, and non-equilibrium conditions. This review highlights efforts in optimizing ejector geometries and operating parameters to enhance the entrainment ratio, a crucial performance metric for ejectors. The studies reviewed encompass diverse working fluids, flow regimes, and geometric configurations, underscoring the significance of ejector technology across various industries. While substantial progress has been made in developing advanced simulation techniques, several challenges persist, including accurate modeling of real gas behavior, phase change kinetics, and coupled heat/mass transfer phenomena. Future research efforts should focus on developing robust multiphase models, implementing advanced turbulence modeling techniques, integrating machine learning-based optimization methods, and exploring novel ejector configurations for emerging applications. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

31 pages, 22385 KiB  
Article
Enhancing Underground Thermal Environments in Cairo: The Role of Subway Entrance Geometry in Optimizing Natural Ventilation
by Omar Mohamed Abdelaziz, Xu Cui and Xiaozheng Sun
Buildings 2024, 14(9), 2785; https://doi.org/10.3390/buildings14092785 - 4 Sep 2024
Viewed by 139
Abstract
In rapidly urbanizing regions, enhancing passenger comfort in subway systems through sustainable methods is a critical challenge. This study introduces an innovative exploration of the impact of subway entrance geometry on natural ventilation and its subsequent effects on the thermal environment within Cairo’s [...] Read more.
In rapidly urbanizing regions, enhancing passenger comfort in subway systems through sustainable methods is a critical challenge. This study introduces an innovative exploration of the impact of subway entrance geometry on natural ventilation and its subsequent effects on the thermal environment within Cairo’s subway system. The primary objective is to identify optimal entrance configurations that maximize natural airflow, thereby improving passenger comfort and reducing energy consumption. Focusing on the newly constructed segments of the Cairo subway, the research employs a mixed-methods approach that integrates computational fluid dynamics (CFD) simulations with a questionnaire survey to evaluate interactions between various entrance designs and urban wind flow patterns. This dual approach allows for a comprehensive assessment of how different geometrical configurations influence the capture and distribution of prevailing winds. The results indicate that specific entrance geometries can significantly enhance ventilation efficiency by optimizing wind capture and distribution. The most effective designs demonstrated substantial improvements in air quality and thermal comfort, providing practical insights for subway systems in similar hot arid climates. The novelty of this research lies in its detailed analysis of architectural elements to leverage natural environmental conditions for improving indoor air quality and thermal comfort in public transit systems. The significance of this study is its contribution to the field of sustainable urban transport, offering a valuable framework for urban planners and engineers. By demonstrating how thoughtful design can lead to energy savings and enhanced passenger experiences, this research advances the discourse on sustainable urban infrastructure. This work not only enhances theoretical understanding but also provides actionable recommendations for creating more sustainable and comfortable public transit infrastructures. Full article
(This article belongs to the Topic Ventilation and Indoor Air Quality, 2nd Volume)
Show Figures

Figure 1

19 pages, 5468 KiB  
Article
Rheological Behavior of SiO2 Ceramic Slurry in Stereolithography and Its Prediction Model Based on POA-DELM
by Jie Zhang, Byung-Won Min, Hai Gu, Guoqing Wu and Weiwei Wu
Materials 2024, 17(17), 4270; https://doi.org/10.3390/ma17174270 - 29 Aug 2024
Cited by 1 | Viewed by 386
Abstract
Ceramic slurry is the raw material used in stereolithography, and its performance determines the printing quality. Rheological behavior, one of the most important physical factors in stereolithography, is critical in ceramic printing, significantly affecting the flow, spreading, and printing processes. The rheological behavior [...] Read more.
Ceramic slurry is the raw material used in stereolithography, and its performance determines the printing quality. Rheological behavior, one of the most important physical factors in stereolithography, is critical in ceramic printing, significantly affecting the flow, spreading, and printing processes. The rheological behavior of SiO2 slurry used in stereolithography technology is investigated in the current research using different powder diameters and temperatures. The results present the apparent non-Newtonian behavior. The yielding characteristics occur in all cases. For single-powder cases, the viscosity decreases when the powder diameter is increased. When the nano-sized and micro-sized powders are mixed in different proportions, a more significant proportion of micron-sized powders will decrease the viscosity. With an increase in the nano-sized powders, the slurry exhibits the shear thinning behavior; otherwise, the shear thickening behavior is observed. Thus, the prediction model is built based on the use of the pelican optimization algorithm-deep extreme learning machine (POA-DELM), and the model in then compared with the fitted and traditional models to validate the effectiveness of the method. A more accurate viscosity prediction model will contribute to better fluid dynamic simulation in future work. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

14 pages, 2498 KiB  
Article
The Impact of Varying Pasture Levels on the Metabolomic Profile of Bovine Ruminal Fluid
by Claire Connolly, Mark Timlin, Sean A. Hogan, Tom F. O’Callaghan, André Brodkorb, Michael O’Donovan, Deirdre Hennessy, Ellen Fitzpatrick, Kieran McCarthy, John P. Murphy and Lorraine Brennan
Metabolites 2024, 14(9), 476; https://doi.org/10.3390/metabo14090476 - 28 Aug 2024
Viewed by 508
Abstract
A pasture or concentrate-based dietary regime impacts a variety of factors including both ruminal health and function, and consequently milk production and quality. The objective of this study was to examine the effect of feeding differing pasture levels on the metabolite composition of [...] Read more.
A pasture or concentrate-based dietary regime impacts a variety of factors including both ruminal health and function, and consequently milk production and quality. The objective of this study was to examine the effect of feeding differing pasture levels on the metabolite composition of bovine ruminal fluid. Ruminal fluid was obtained from rumen-cannulated spring-calving cows (N = 9, Holstein-Friesian breed, average lactation number = 5) fed one of three diets across a full lactation season. Group 1 (pasture) consumed perennial ryegrass supplemented with 5% concentrates; group 2 received a total mixed ration (TMR) diet; and group 3 received a partial mixed ration (PMR) diet which included pasture and a TMR. Samples were taken at two timepoints: morning and evening. Metabolomic analysis was performed using nuclear magnetic resonance (1H-NMR) spectroscopy. Statistical analysis revealed significant changes across the dietary regimes in both morning and evening samples, with distinct alterations in the metabolite composition of ruminal fluid from pasture-fed cows (FDR-adjusted p-value < 0.05). Acetate and butyrate were significantly higher in samples derived from a pasture-based diet whereas sugar-related metabolites were higher in concentrate-based samples. Furthermore, a distinct diurnal impact on the metabolite profile was evident. This work lays the foundation for understanding the complex interaction between dietary regime and ruminal health. Full article
Show Figures

Graphical abstract

27 pages, 9805 KiB  
Article
Optimization Design of a Polyimide High-Pressure Mixer Based on SSA-CNN-LSTM-WOA
by Guo Yang, Guangzhong Hu, Xianguo Tuo, Yuedong Li and Jing Lu
Actuators 2024, 13(8), 303; https://doi.org/10.3390/act13080303 - 8 Aug 2024
Viewed by 564
Abstract
Foam mixers are classified as low-pressure and high-pressure types. Low-pressure mixers rely on agitator rotation, facing cleaning challenges and complex designs. High-pressure mixers are simple and require no cleaning but struggle with uneven mixing for high-viscosity substances. Traditionally, increasing the working pressure resolved [...] Read more.
Foam mixers are classified as low-pressure and high-pressure types. Low-pressure mixers rely on agitator rotation, facing cleaning challenges and complex designs. High-pressure mixers are simple and require no cleaning but struggle with uneven mixing for high-viscosity substances. Traditionally, increasing the working pressure resolved this, but material quality limits it at higher pressures. To address the issues faced by high-pressure mixers when handling high-viscosity materials and to further improve the mixing performance of the mixer, this study focuses on a polyimide high-pressure mixer, identifying four design variables: impingement angle, inlet and outlet diameters, and impingement pressure. Using a Full Factorial Design of Experiments (DOE), the study investigates the impacts of these variables on mixing unevenness. Sample points were generated using Optimal Latin Hypercube Sampling—OLH. Combining the Sparrow Search Algorithm (SSA), Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM), the SSA-CNN-LSTM model was constructed for predictive analysis. The Whale Optimization Algorithm (WOA) optimized the model, to find an optimal design variable combination. The Computational Fluid Dynamics (CFD) simulation results indicate a 70% reduction in mixing unevenness through algorithmic optimization, significantly improving the mixer’s performance. Full article
Show Figures

Figure 1

11 pages, 524 KiB  
Article
Neutron Star–Dark Matter Admixed Objects in the Mass Gap Region
by Michael Vikiaris
Particles 2024, 7(3), 692-702; https://doi.org/10.3390/particles7030040 - 8 Aug 2024
Viewed by 302
Abstract
To this day, the nature of dark matter (DM) remains elusive despite all our efforts. This type of matter has not been directly observed, so we infer its gravitational effect. Since galaxies and supermassive objects like these are most likely to contain DM, [...] Read more.
To this day, the nature of dark matter (DM) remains elusive despite all our efforts. This type of matter has not been directly observed, so we infer its gravitational effect. Since galaxies and supermassive objects like these are most likely to contain DM, we assume that dense objects such as neutron stars (NSs) are also likely to host DM. The NS is considered the best natural laboratory for testing theories and collecting observational data. We mainly focus on two types of DM particles, fermions and bosons, with a mass range of [0.01–1.5] GeV and repulsive interactions of about [104101] MeV1. Using a two-fluid model to solve the TOV equations, we find stable configurations that span hundreds of kilometers and weigh tens or even hundreds of solar masses. To visualize results, we think of a giant invisible compact DM object and the NS in the center as the core, the only visible part. Stability criteria are met for these configurations, so collapsing into a black hole is unlikely. We go further and use this work for smaller formations that exist inside the mysterious Mass Gap. We also find stable configurations of 3–4 solar masses, with NS-DM mixing capable of describing the mass gap. Regardless, the present theoretical prediction, if combined with corresponding observations, could shed light on the existence of DM and even more on its fundamental properties. Full article
Show Figures

Figure 1

25 pages, 4294 KiB  
Article
Novel Approach to Analyzing Friction Losses by Modeling the Microflow of Lubricating Oil between the Piston Rings and Cylinder in Internal Combustion Engines
by Piotr Wróblewski and Stanisław Kachel
Energies 2024, 17(15), 3697; https://doi.org/10.3390/en17153697 - 26 Jul 2024
Viewed by 511
Abstract
This work focuses on the evolution of lubrication wedge shaping in internal combustion piston engines, taking into account liquid microflows on curved surfaces and coating microgeometries. It introduces a new approach to the analysis of friction losses by simulating the microflow of lubricating [...] Read more.
This work focuses on the evolution of lubrication wedge shaping in internal combustion piston engines, taking into account liquid microflows on curved surfaces and coating microgeometries. It introduces a new approach to the analysis of friction losses by simulating the microflow of lubricating oil between the surfaces of piston rings cooperating with the cylinder surface. The models used take into account three types of microgeometry and material expansion. Key results indicate that microirregularities with a stereometry of 0.1–0.2 µm significantly influence the distribution of oil film thickness in the phase of maximum working pressure, which is critical for the functioning of the seal ring. The innovation of the work consists of demonstrating that, despite small changes in the friction force and power in the piston rings, changes in the minimum values of the oil film thickness are significant. The work highlights the failure to take into account microgeometry parameters in friction models, which leads to significant errors in the simulation results, especially in terms of oil film continuity and the contribution of mixed friction. The simulations also indicate that advanced geometric models with high mesh resolution are necessary only for the assessment of changes in oil film thickness during the highest pressure increase in the combustion chamber and taking into account various mixed friction conditions. The results suggest significant progress in engine design and performance, confirming the importance of advanced fluid and mixed friction models in piston engine lubrication research. Full article
Show Figures

Figure 1

11 pages, 2165 KiB  
Article
Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors
by Maximilian Lackner, Alexander Löhr, Felix Schill and Martin Van Essche
Fluids 2024, 9(7), 168; https://doi.org/10.3390/fluids9070168 - 22 Jul 2024
Viewed by 547
Abstract
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, [...] Read more.
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, due to the compressibility of the gas. It is not always possible to degas the fluid, for instance in gas fermentation, which is preferably carried out in tubular reactors (loop fermenters) to achieve a high conversion rate of the gaseous feedstocks. Method: In this work, a rim-driven thruster (RDT) was tested in a lab-scale, cold flow model of a loop reactor with 5–30% (by volume) of gas fraction (air) in the liquid (water) as alternative propulsion element (6 m total pipe length, ambient temperature and pressure). As a result, it was found that the RDT, in connection with a guiding vane providing swirling motion to the two-phase fluid, could pump a mixed flow with up to 25.7% of gas content (by volume) at atmospheric pressure and 25 °C and 0.5 to 2 m/s flow speed. In conclusion, an RDT is advantageous over a classic propulsion element like a centrifugal pump or axial flow pump for transporting liquids with entrained gases. This article describes the potential of rim-driven thrusters, as known from marine propulsion, in biotechnology, the chemical industry, and beyond, to handle multiphase flows. Full article
(This article belongs to the Special Issue New Perspectives in Gas–Liquid Reactors)
Show Figures

Figure 1

18 pages, 6746 KiB  
Article
Optimization of Extraction Process of Total Alkaloids from Thalictrum delavayi Franch. and Their Therapeutic Potential on Pulmonary Infection Caused by Klebsiella pneumoniae and Escherichia coli
by Li Chen, Mochezai Aku, Zhaobin Xia, Shiyu Yang, Danjiao Yang and Chaoxi Chen
Separations 2024, 11(7), 210; https://doi.org/10.3390/separations11070210 - 8 Jul 2024
Viewed by 666
Abstract
Bacterial co-infected pneumonia is an acute inflammatory reaction of the lungs mainly caused by Gram-negative bacteria. Antibiotics are urgently important but have the disadvantage of antibacterial resistance, and alternative treatments with medicinal plants are attractive. On the Qinghai–Tibet Plateau, Thalictrum delavayi Franch. ( [...] Read more.
Bacterial co-infected pneumonia is an acute inflammatory reaction of the lungs mainly caused by Gram-negative bacteria. Antibiotics are urgently important but have the disadvantage of antibacterial resistance, and alternative treatments with medicinal plants are attractive. On the Qinghai–Tibet Plateau, Thalictrum delavayi Franch. (T. delavayi) is an important member of the buttercup family (Ranunculaceae), is rich in alkaloids and has been used in folk medicine for thousands of years. In this study, the extraction process of total alkaloids from the whole T. delavayi plant was optimized and the extract’s therapeutic potential against pulmonary infection caused by Klebsiella pneumoniae and Escherichia coli was investigated. The results showed that the optimum experimental conditions for the total alkaloids (2.46%) from T. delavayi were as follows: hydrochloric acid volume fraction of 0.8%, solid–liquid ratio of 1:12 and sonication time of 54 min. The treatment reduced bacterial counts, white blood cell counts and inflammatory cell classification in bronchoalveolar lavage fluid (BALF) and the levels of inflammatory cytokines interleukin-4 (IL-4), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), procalcitonin (PCT) and C-reactive protein (CRP), procalcitonin (PCT) and C-reactive protein (CRP) in the serum in experimental groups. The results in our experimental preliminary work suggested that the total alkaloids from T. delavayi had therapeutic effects on mice with Klebsiella pneumoniae and Escherichia coli mixed infectious pneumonia, providing experimental support for the plant’s therapeutic potential in treating pulmonary infections caused by Klebsiella pneumoniae and Escherichia coli. Full article
Show Figures

Figure 1

22 pages, 5015 KiB  
Article
Thermal and Hydrodynamic Measurements of a Novel Chaotic Micromixer to Enhance Mixing Performance
by Abdelkader Mahammedi, Rahmani Kouider, Naas Toufik Tayeb, Raúl Kassir Al-Karany, Eduardo M. Cuerda-Correa and Awf Al-Kassir
Energies 2024, 17(13), 3248; https://doi.org/10.3390/en17133248 - 2 Jul 2024
Viewed by 564
Abstract
In this study, three-dimensional simulations were conducted on a new passive micromixer to assess the thermal and hydrodynamic behaviors of Newtonian and non-Newtonian fluids subjected to low generalized Reynolds numbers (0.1 to 50) and shear-thinning properties. To acquire a more profound comprehension of [...] Read more.
In this study, three-dimensional simulations were conducted on a new passive micromixer to assess the thermal and hydrodynamic behaviors of Newtonian and non-Newtonian fluids subjected to low generalized Reynolds numbers (0.1 to 50) and shear-thinning properties. To acquire a more profound comprehension of the qualitative and quantitative fluctuations in fluid fraction using the CFD Fluent Code, the mass mixing index, rheological behavior, performance index, mixing energy cost, mass fraction distributions, temperature contours, and pressure drop were compared to illustrate the importance of the mixer geometry in the context of two miscible fluids with varying inlet temperatures. The selected geometry is characterized by a robust chaotic flow that substantially enhances thermal and hydrodynamic performance across all Reynolds numbers. A mass mixing exceeding 72.5% is obtained when Re = 5, reaching 93.5% when Re = 50. Furthermore, the evolution of thermal mixing for all behavior indexes reaches a step of 98% with minimal pressure losses. This work enabled the demonstration of a chaotic geometry in a highly efficient mixing system, leading to enhanced thermal performance for both Newtonian and non-Newtonian fluids. The results of the hydrodynamic and thermal characterization of the mixing of shear-thinning fluids within the micromixers under investigation are conclusive. Full article
Show Figures

Figure 1

30 pages, 3572 KiB  
Review
Advances in Microfluidic Systems and Numerical Modeling in Biomedical Applications: A Review
by Mariana Ferreira, Violeta Carvalho, João Ribeiro, Rui A. Lima, Senhorinha Teixeira and Diana Pinho
Micromachines 2024, 15(7), 873; https://doi.org/10.3390/mi15070873 - 30 Jun 2024
Viewed by 1134
Abstract
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale [...] Read more.
The evolution in the biomedical engineering field boosts innovative technologies, with microfluidic systems standing out as transformative tools in disease diagnosis, treatment, and monitoring. Numerical simulation has emerged as a tool of increasing importance for better understanding and predicting fluid-flow behavior in microscale devices. This review explores fabrication techniques and common materials of microfluidic devices, focusing on soft lithography and additive manufacturing. Microfluidic systems applications, including nucleic acid amplification and protein synthesis, as well as point-of-care diagnostics, DNA analysis, cell cultures, and organ-on-a-chip models (e.g., lung-, brain-, liver-, and tumor-on-a-chip), are discussed. Recent studies have applied computational tools such as ANSYS Fluent 2024 software to numerically simulate the flow behavior. Outside of the study cases, this work reports fundamental aspects of microfluidic simulations, including fluid flow, mass transport, mixing, and diffusion, and highlights the emergent field of organ-on-a-chip simulations. Additionally, it takes into account the application of geometries to improve the mixing of samples, as well as surface wettability modification. In conclusion, the present review summarizes the most relevant contributions of microfluidic systems and their numerical modeling to biomedical engineering. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

17 pages, 3523 KiB  
Article
A Preliminary Assessment of Sorption-Enhanced Methanol Synthesis in a Fluidized Bed Reactor with Selective Addition/Removal of the Sorbent
by Miguel Menéndez, Raúl Ciércoles, Javier Lasobras, Jaime Soler and Javier Herguido
Catalysts 2024, 14(7), 409; https://doi.org/10.3390/catal14070409 - 28 Jun 2024
Viewed by 636
Abstract
Methanol synthesis from CO2 can be made in the presence of a sorbent to increase the achievable yield. If the fresh sorbent is continuously fed to a fluidized bed and separated from the catalyst bed by segregation, a steady-state operation can be [...] Read more.
Methanol synthesis from CO2 can be made in the presence of a sorbent to increase the achievable yield. If the fresh sorbent is continuously fed to a fluidized bed and separated from the catalyst bed by segregation, a steady-state operation can be achieved. The objective of the present work is to provide insight on the suitable operating conditions for such a fluidized bed reactor system. For this, a conventional CuO/ZnO/Al2O3 was selected as the catalyst, and the SiOLITE® zeolite was selected as the sorbent. Different particle sizes were used to be tested in various proportions to perform the fluidized bed segregation study. The fluid dynamics and segregation of the catalyst–sorbent binary mixtures were the most critical points in the development of this proof of concept. A good bed segregation with a mixing index of 0.31 was achieved. This fact favors the correct operation of the system with the continuous addition of adsorbent, which had hardly any catalyst losses during the tests carried out, achieving a loss of 0.005 g/min under optimal conditions. Continuous feeding and removal of sorbent with a low loss of catalyst was observed. Reactor simulations with MATLAB provided promising results, indicating that the addition of sorbent considerably improves the methanol yield under some operating conditions. This makes it more viable for industrial scaling, since it allows us to considerably reduce the pressure used in the methanol synthesis process or to increase the yield per step, reducing the recirculation of unconverted reactants. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Graphical abstract

24 pages, 12300 KiB  
Article
The Design and Investigation of Hybrid a Microfluidic Micromixer
by Muhammad Waqas, Giedrius Janusas, Vytenis Naginevičius and Arvydas Palevicius
Appl. Sci. 2024, 14(12), 5315; https://doi.org/10.3390/app14125315 - 19 Jun 2024
Viewed by 595
Abstract
Today, microfluidics has become a revolutionary interdisciplinary topic with considerable attention in a wide range of biotechnology applications. In this research work, a numerical investigation of a microfluidic micromixer is carried out using a hybrid actuation approach with different micropillar shapes and gaps. [...] Read more.
Today, microfluidics has become a revolutionary interdisciplinary topic with considerable attention in a wide range of biotechnology applications. In this research work, a numerical investigation of a microfluidic micromixer is carried out using a hybrid actuation approach with different micropillar shapes and gaps. For this purpose, COMSOL Multiphysics v.5.2. is used with three different physics, such as thermoviscous acoustic physics to solve acoustic governing equations, laminar physics to solve fluid flow governing equations, and diluted transport species to solve mixing governing equations. The simulations were carried out at different Reynolds numbers such as 2, 4, 6, 8, 10, and 12 with an oscillation frequency of 15 kHz. The results were in the form of acoustic characteristics such as acoustic pressure, acoustic velocity, acoustic stream, mixing index, and fluid flow behaviour at various Reynolds numbers. The results revealed that the inclusion of micropillars improved the mixing performance and strength of the acoustic field, resulting in an improvement of the mixing performance compared to the case without micropillars. In addition, the mixing performance is also investigated at different Reynolds numbers, and a higher mixing index is investigated at lower Reynolds numbers. Moreover, it was also investigated that blade-shaped micropillars with 0.150 mm gaps deliver the best results compared to the other cases, and the maximum and minimum values of the mixing index are 0.97 and 0.72, respectively, at Reynolds number 2. The main reason behind this larger mixing index at low Reynolds numbers is due to the inclusion of micropillars that enhance the diffusion rate and contact area, leading to the homogenisation of the heterogeneous fluids in the microchamber. The obtained results can be extremely helpful for the design and modifications of a hybrid microfluidics micromixer. Full article
Show Figures

Figure 1

Back to TopTop