Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = probabilistic chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 341 KiB  
Article
Probabilistic Cellular Automata Monte Carlo for the Maximum Clique Problem
by Alessio Troiani
Mathematics 2024, 12(18), 2850; https://doi.org/10.3390/math12182850 - 13 Sep 2024
Viewed by 279
Abstract
We consider the problem of finding the largest clique of a graph. This is an NP-hard problem and no exact algorithm to solve it exactly in polynomial time is known to exist. Several heuristic approaches have been proposed to find approximate solutions. Markov [...] Read more.
We consider the problem of finding the largest clique of a graph. This is an NP-hard problem and no exact algorithm to solve it exactly in polynomial time is known to exist. Several heuristic approaches have been proposed to find approximate solutions. Markov Chain Monte Carlo is one of these. In the context of Markov Chain Monte Carlo, we present a class of “parallel dynamics”, known as Probabilistic Cellular Automata, which can be used in place of the more standard choice of sequential “single spin flip” to sample from a probability distribution concentrated on the largest cliques of the graph. We perform a numerical comparison between the two classes of chains both in terms of the quality of the solution and in terms of computational time. We show that the parallel dynamics are considerably faster than the sequential ones while providing solutions of comparable quality. Full article
(This article belongs to the Section Probability and Statistics)
23 pages, 12357 KiB  
Article
Electro-Mechanical Brake System Architectural Design and Analysis Based on Functional Safety of Vehicles
by Jing Peng, Tong Wu, Liang Chu, Jin Rong, Xiaojun Yang and Yang Meng
Actuators 2024, 13(9), 346; https://doi.org/10.3390/act13090346 - 9 Sep 2024
Viewed by 379
Abstract
Electro-mechanical brake (EMB) systems have garnered significant attention due to their distributed architecture. However, their signals from the brake pedal to the wheel-end actuators (WEAs) are transmitted electrically, meaning that any fault in EMB systems can severely impair the braking performance of vehicles. [...] Read more.
Electro-mechanical brake (EMB) systems have garnered significant attention due to their distributed architecture. However, their signals from the brake pedal to the wheel-end actuators (WEAs) are transmitted electrically, meaning that any fault in EMB systems can severely impair the braking performance of vehicles. Consequently, the functional safety issues of EMB systems are the primary limitation of their widespread adoption. In response, this study first introduced the typical architectures of EMB and evaluated the automotive safety integrity level (ASIL) that must be achieved. Based on this, an EMB system architecture that satisfies functional safety standards was proposed. To accurately analyze the main factors affecting the probabilistic metric for hardware failures (PMHF) of the architecture, the failure rate of WEAs is further discussed. Specifically, a Markov chain was employed to define the operating states of the WEA matrix. The availability of each operating state was assessed based on the fault-tolerant control strategy. Finally, the failure rates of critical EMB parts, particularly the WEA matrix, were calculated. The results indicate that the unavailability of the WEA matrix is 9.244 × 10−3 FIT. Furthermore, the PMHFs of the EMB system for each safety goal are 6.14 FIT, 5.89 FIT, and 6.03 FIT, respectively, satisfying the ASIL-D requirements. Full article
Show Figures

Figure 1

19 pages, 602 KiB  
Article
Workflow Trace Profiling and Execution Time Analysis in Quantitative Verification
by Guoxin Su and Li Liu
Future Internet 2024, 16(9), 319; https://doi.org/10.3390/fi16090319 - 3 Sep 2024
Viewed by 362
Abstract
Workflows orchestrate a collection of computing tasks to form a complex workflow logic. Different from the traditional monolithic workflow management systems, modern workflow systems often manifest high throughput, concurrency and scalability. As service-based systems, execution time monitoring is an important part of maintaining [...] Read more.
Workflows orchestrate a collection of computing tasks to form a complex workflow logic. Different from the traditional monolithic workflow management systems, modern workflow systems often manifest high throughput, concurrency and scalability. As service-based systems, execution time monitoring is an important part of maintaining the performance for those systems. We developed a trace profiling approach that leverages quantitative verification (also known as probabilistic model checking) to analyse complex time metrics for workflow traces. The strength of probabilistic model checking lies in the ability of expressing various temporal properties for a stochastic system model and performing automated quantitative verification. We employ semi-Makrov chains (SMCs) as the formal model and consider the first passage times (FPT) measures in the SMCs. Our approach maintains simple mergeable data summaries of the workflow executions and computes the moment parameters for FPT efficiently. We describe an application of our approach to AWS Step Functions, a notable workflow web service. An empirical evaluation shows that our approach is efficient for computer high-order FPT moments for sizeable workflows in practice. It can compute up to the fourth moment for a large workflow model with 10,000 states within 70 s. Full article
Show Figures

Figure 1

31 pages, 1193 KiB  
Article
Optimizing Supply Chain Efficiency Using Innovative Goal Programming and Advanced Metaheuristic Techniques
by Kaoutar Douaioui, Othmane Benmoussa and Mustapha Ahlaqqach
Appl. Sci. 2024, 14(16), 7151; https://doi.org/10.3390/app14167151 - 14 Aug 2024
Viewed by 803
Abstract
This paper presents an optimization approach for supply chain management that incorporates goal programming (GP), dependent chance constraints (DCC), and the hunger games search algorithm (HGSA). The model acknowledges uncertainty by embedding uncertain parameters that promote resilience and efficiency. It focuses on minimizing [...] Read more.
This paper presents an optimization approach for supply chain management that incorporates goal programming (GP), dependent chance constraints (DCC), and the hunger games search algorithm (HGSA). The model acknowledges uncertainty by embedding uncertain parameters that promote resilience and efficiency. It focuses on minimizing costs while maximizing on-time deliveries and optimizing key decision variables such as production setups, quantities, inventory levels, and backorders. Extensive simulations and numerical results confirm the model’s effectiveness in providing robust solutions to dynamically changing supply chain problems when compared to conventional models. However, the integrated model introduces substantial computational complexity, which may pose challenges in large-scale real-world applications. Additionally, the model’s reliance on precise probabilistic and fuzzy parameters may limit its applicability in environments with insufficient or imprecise data. Despite these limitations, the proposed approach has the potential to significantly enhance supply chain resilience and efficiency, offering valuable insights for both academia and industry. Full article
(This article belongs to the Special Issue Advances in Intelligent Logistics System and Supply Chain Management)
Show Figures

Figure 1

12 pages, 1657 KiB  
Article
Developing Theoretical Models for Atherosclerotic Lesions: A Methodological Approach Using Interdisciplinary Insights
by Amun G. Hofmann
Life 2024, 14(8), 979; https://doi.org/10.3390/life14080979 - 5 Aug 2024
Viewed by 502
Abstract
Atherosclerosis, a leading cause of cardiovascular disease, necessitates advanced and innovative modeling techniques to better understand and predict plaque dynamics. The present work presents two distinct hypothetical models inspired by different research fields: the logistic map from chaos theory and Markov models from [...] Read more.
Atherosclerosis, a leading cause of cardiovascular disease, necessitates advanced and innovative modeling techniques to better understand and predict plaque dynamics. The present work presents two distinct hypothetical models inspired by different research fields: the logistic map from chaos theory and Markov models from stochastic processes. The logistic map effectively models the nonlinear progression and sudden changes in plaque stability, reflecting the chaotic nature of atherosclerotic events. In contrast, Markov models, including traditional Markov chains, spatial Markov models, and Markov random fields, provide a probabilistic framework to assess plaque stability and transitions. Spatial Markov models, visualized through heatmaps, highlight the spatial distribution of transition probabilities, emphasizing local interactions and dependencies. Markov random fields incorporate complex spatial interactions, inspired by advances in physics and computational biology, but present challenges in parameter estimation and computational complexity. While these hypothetical models offer promising insights, they require rigorous validation with real-world data to confirm their accuracy and applicability. This study underscores the importance of interdisciplinary approaches in developing theoretical models for atherosclerotic plaques. Full article
(This article belongs to the Special Issue Microvascular Dynamics: Insights and Applications)
Show Figures

Figure 1

16 pages, 392 KiB  
Article
Some Probabilistic Interpretations Related to the Next-Generation Matrix Theory: A Review with Examples
by Florin Avram, Rim Adenane and Lasko Basnarkov
Mathematics 2024, 12(15), 2425; https://doi.org/10.3390/math12152425 - 4 Aug 2024
Viewed by 696
Abstract
The fact that the famous basic reproduction number R0, i.e., the largest eigenvalue of the next generation matrix FV1, sometimes has a probabilistic interpretation is not as well known as it deserves to be. It is well [...] Read more.
The fact that the famous basic reproduction number R0, i.e., the largest eigenvalue of the next generation matrix FV1, sometimes has a probabilistic interpretation is not as well known as it deserves to be. It is well understood that half of this formula, V, is a Markovian generating matrix of a continuous-time Markov chain (CTMC) modeling the evolution of one individual on the compartments. It has also been noted that the not well-enough-known rank-one formula for R0 of Arino et al. (2007) may be interpreted as an expected final reward of a CTMC, whose initial distribution is specified by the rank-one factorization of F. Here, we show that for a large class of ODE epidemic models introduced in Avram et al. (2023), besides the rank-one formula, we may also provide an integral renewal representation of R0 with respect to explicit “age kernels” a(t), which have a matrix exponential form.This latter formula may be also interpreted as an expected reward of a probabilistic continuous Markov chain (CTMC) model. Besides the rather extensively studied rank one case, we also provide an extension to a case with several susceptible classes. Full article
Show Figures

Figure 1

25 pages, 4093 KiB  
Article
An Economic Optimization Model of an E-Waste Supply Chain Network: Machine Learned Kinetic Modelling for Sustainable Production
by Biswajit Debnath, Amit K. Chattopadhyay and T. Krishna Kumar
Sustainability 2024, 16(15), 6491; https://doi.org/10.3390/su16156491 - 29 Jul 2024
Cited by 1 | Viewed by 668
Abstract
Purpose: E-waste management (EWM) refers to the operation management of discarded electronic devices, a challenge exacerbated due to overindulgent urbanization. The main purpose of this paper is to amalgamate production engineering, statistical methods, mathematical modelling, supported with Machine Learning to develop a dynamic [...] Read more.
Purpose: E-waste management (EWM) refers to the operation management of discarded electronic devices, a challenge exacerbated due to overindulgent urbanization. The main purpose of this paper is to amalgamate production engineering, statistical methods, mathematical modelling, supported with Machine Learning to develop a dynamic e-waste supply chain model. Method Used: This article presents a multidimensional, cost function-based analysis of the EWM framework structured on three modules including environmental, economic, and social uncertainties in material recovery from an e-waste (MREW) plant, including the production–delivery–utilization process. Each module is ranked using Machine Learning (ML) protocols—Analytical Hierarchical Process (AHP) and combined AHP-Principal Component Analysis (PCA). Findings: This model identifies and probabilistically ranks two key sustainability contributors to the EWM supply chain: energy consumption and carbon dioxide emission. Additionally, the precise time window of 400–600 days from the start of the operation is identified for policy resurrection. Novelty: Ours is a data-intensive model that is founded on sustainable product designing in line with SDG requirements. The combined AHP-PCA consistently outperformed traditional statistical tools, and is the second novelty. Model ratification using real e-waste plant data is the third novelty. Implications: The Machine Learning framework embeds a powerful probabilistic prediction algorithm based on data-based decision making in future e-waste sustained roadmaps. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

20 pages, 7157 KiB  
Article
Multi-Objective Ship Route Optimisation Using Estimation of Distribution Algorithm
by Roman Dębski and Rafał Dreżewski
Appl. Sci. 2024, 14(13), 5919; https://doi.org/10.3390/app14135919 - 6 Jul 2024
Viewed by 614
Abstract
The paper proposes an innovative adaptation of the estimation of distribution algorithm (EDA), intended for multi-objective optimisation of a ship’s route in a non-stationary environment (tidal waters). The key elements of the proposed approach—the adaptive Markov chain-based path generator and the dynamic programming-based [...] Read more.
The paper proposes an innovative adaptation of the estimation of distribution algorithm (EDA), intended for multi-objective optimisation of a ship’s route in a non-stationary environment (tidal waters). The key elements of the proposed approach—the adaptive Markov chain-based path generator and the dynamic programming-based local search algorithm—are presented in detail. The experimental results presented indicate the high effectiveness of the proposed algorithm in finding very good quality approximations of optimal solutions in the Pareto sense. Critical for this was the proposed local search algorithm, whose application improved the final result significantly (the Pareto set size increased from five up to nine times, and the Pareto front quality just about doubled). The proposed algorithm can also be applied to other domains (e.g., mobile robot path planning). It can be considered a framework for (simulation-based) multi-objective optimal path planning in non-stationary environments. Full article
(This article belongs to the Special Issue Multi-objective Optimization: Techniques and Applications)
Show Figures

Figure 1

22 pages, 6253 KiB  
Article
Probabilistic Chain-Enhanced Parallel Genetic Algorithm for UAV Reconnaissance Task Assignment
by Jiaze Tang, Dan Liu, Qisong Wang, Junbao Li and Jinwei Sun
Drones 2024, 8(6), 213; https://doi.org/10.3390/drones8060213 - 21 May 2024
Cited by 2 | Viewed by 879
Abstract
With the increasing diversity and complexity of tasks assigned to unmanned aerial vehicles (UAVs), the demands on task assignment and sequencing technologies have grown significantly, particularly for large UAV tasks such as multi-target reconnaissance area surveillance. While the current exhaustive methods offer thorough [...] Read more.
With the increasing diversity and complexity of tasks assigned to unmanned aerial vehicles (UAVs), the demands on task assignment and sequencing technologies have grown significantly, particularly for large UAV tasks such as multi-target reconnaissance area surveillance. While the current exhaustive methods offer thorough solutions, they encounter substantial challenges in addressing large-scale task assignments due to their extensive computational demands. Conversely, while heuristic algorithms are capable of delivering satisfactory solutions with limited computational resources, they frequently struggle with converging on locally optimal solutions and are characterized by low iteration rates. In response to these limitations, this paper presents a novel approach: the probabilistic chain-enhanced parallel genetic algorithm (PC-EPGA). The PC-EPGA combines probabilistic chains with genetic algorithms to significantly enhance the quality of solutions. In our approach, each UAV flight is considered a Dubins vehicle, incorporating kinematic constraints. In addition, it integrates parallel genetic algorithms to improve hardware performance and processing speed. In our study, we represent task points as chromosome nodes and construct probabilistic connection chains between these nodes. This structure is specifically designed to influence the genetic algorithm’s crossover and mutation processes by taking into account both the quantity of tasks assigned to UAVs and the associated costs of inter-task flights. In addition, we propose a fitness-based adaptive crossover operator to circumvent local optima more effectively. To optimize the parameters of the PC-EPGA, Bayesian networks are utilized, which improves the efficiency of the whole parameter search process. The experimental results show that compared to the traditional heuristic algorithms, the probabilistic chain algorithm significantly improves the quality of solutions and computational efficiency. Full article
Show Figures

Figure 1

22 pages, 3934 KiB  
Article
A Bibliometric Analysis of a Genetic Algorithm for Supply Chain Agility
by Weng Hoe Lam, Weng Siew Lam and Pei Fun Lee
Mathematics 2024, 12(8), 1199; https://doi.org/10.3390/math12081199 - 17 Apr 2024
Viewed by 1157
Abstract
As a famous population-based metaheuristic algorithm, a genetic algorithm can be used to overcome optimization complexities. A genetic algorithm adopts probabilistic transition rules and is suitable for parallelism, which makes this algorithm attractive in many areas, including the logistics and supply chain sector. [...] Read more.
As a famous population-based metaheuristic algorithm, a genetic algorithm can be used to overcome optimization complexities. A genetic algorithm adopts probabilistic transition rules and is suitable for parallelism, which makes this algorithm attractive in many areas, including the logistics and supply chain sector. To obtain a comprehensive understanding of the development in this area, this paper presents a bibliometric analysis on the application of a genetic algorithm in logistics and supply chains using data from 1991 to 2024 from the Web of Science database. The authors found a growing trend in the number of publications and citations over the years. This paper serves as an important reference to researchers by highlighting important research areas, such as multi-objective optimization, metaheuristics, sustainability issues in logistics, and machine learning integration. This bibliometric analysis also underlines the importance of Non-Dominated Sorting Genetic Algorithm II (NSGA-II), sustainability, machine learning, and variable neighborhood search in the application of a genetic algorithm in logistics and supply chains in the near future. The integration of a genetic algorithm with machine learning is also a potential research gap to be filled to overcome the limitations of genetic algorithms, such as the long computational time, difficulties in obtaining optimal solutions, and convergence issues for application in logistics and supply chains. Full article
Show Figures

Figure 1

26 pages, 1162 KiB  
Article
Variational Bayesian Variable Selection for High-Dimensional Hidden Markov Models
by Yao Zhai, Wei Liu, Yunzhi Jin and Yanqing Zhang
Mathematics 2024, 12(7), 995; https://doi.org/10.3390/math12070995 - 27 Mar 2024
Viewed by 1047
Abstract
The Hidden Markov Model (HMM) is a crucial probabilistic modeling technique for sequence data processing and statistical learning that has been extensively utilized in various engineering applications. Traditionally, the EM algorithm is employed to fit HMMs, but currently, academics and professionals exhibit augmenting [...] Read more.
The Hidden Markov Model (HMM) is a crucial probabilistic modeling technique for sequence data processing and statistical learning that has been extensively utilized in various engineering applications. Traditionally, the EM algorithm is employed to fit HMMs, but currently, academics and professionals exhibit augmenting enthusiasm in Bayesian inference. In the Bayesian context, Markov Chain Monte Carlo (MCMC) methods are commonly used for inferring HMMs, but they can be computationally demanding for high-dimensional covariate data. As a rapid substitute, variational approximation has become a noteworthy and effective approximate inference approach, particularly in recent years, for representation learning in deep generative models. However, there has been limited exploration of variational inference for HMMs with high-dimensional covariates. In this article, we develop a mean-field Variational Bayesian method with the double-exponential shrinkage prior to fit high-dimensional HMMs whose hidden states are of discrete types. The proposed method offers the advantage of fitting the model and investigating specific factors that impact the response variable changes simultaneously. In addition, since the proposed method is based on the Variational Bayesian framework, the proposed method can avoid huge memory and intensive computational cost typical of traditional Bayesian methods. In the simulation studies, we demonstrate that the proposed method can quickly and accurately estimate the posterior distributions of the parameters with good performance. We analyzed the Beijing Multi-Site Air-Quality data and predicted the PM2.5 values via the fitted HMMs. Full article
(This article belongs to the Special Issue Application of the Bayesian Method in Statistical Modeling)
Show Figures

Figure 1

20 pages, 4110 KiB  
Article
Probabilistic Model Checking GitHub Repositories for Software Project Analysis
by Suhee Jo, Ryeonggu Kwon and Gihwon Kwon
Appl. Sci. 2024, 14(3), 1260; https://doi.org/10.3390/app14031260 - 2 Feb 2024
Viewed by 980
Abstract
GitHub serves as a platform for collaborative software development, where contributors engage, evolve projects, and shape the community. This study presents a novel approach to analyzing GitHub activity that departs from traditional methods. Using Discrete-Time Markov Chains and probabilistic Computation Tree Logic for [...] Read more.
GitHub serves as a platform for collaborative software development, where contributors engage, evolve projects, and shape the community. This study presents a novel approach to analyzing GitHub activity that departs from traditional methods. Using Discrete-Time Markov Chains and probabilistic Computation Tree Logic for model checking, we aim to uncover temporal dynamics, probabilities, and key factors influencing project behavior. By explicitly modeling state transitions, our approach provides transparency and explainability for sequential properties. The application of our method to five repositories demonstrates its feasibility and scalability and provides insights into the long-term probabilities of various activities. In particular, the analysis provides valuable perspectives for project managers to optimize team dynamics and resource allocation. The query specifications developed for model checking allow users to generate and execute queries for specific aspects, demonstrating scalability beyond the queries we present. In conclusion, our analysis provides an understanding of GitHub repository properties, branch management, and subscriber behavior. We anticipate its applicability to various open-source projects, revealing trends among contributors based on the unique characteristics of repositories. Full article
Show Figures

Figure 1

29 pages, 2618 KiB  
Article
Scaled Conjugate Gradient Neural Intelligence for Motion Parameters Prediction of Markov Chain Underwater Maneuvering Target
by Wasiq Ali, Habib Hussain Zuberi, Xin Qing, Abdulaziz Miyajan, Amar Jaffar and Ayman Alharbi
J. Mar. Sci. Eng. 2024, 12(2), 240; https://doi.org/10.3390/jmse12020240 - 29 Jan 2024
Viewed by 981
Abstract
This study proposes a novel application of neural computing based on deep learning for the real-time prediction of motion parameters for underwater maneuvering object. The intelligent strategy utilizes the capabilities of Scaled Conjugate Gradient Neural Intelligence (SCGNI) to estimate the dynamics of underwater [...] Read more.
This study proposes a novel application of neural computing based on deep learning for the real-time prediction of motion parameters for underwater maneuvering object. The intelligent strategy utilizes the capabilities of Scaled Conjugate Gradient Neural Intelligence (SCGNI) to estimate the dynamics of underwater target that adhere to discrete-time Markov chain. Following a state-space methodology in which target dynamics are combined with noisy passive bearings, nonlinear probabilistic computational algorithms are frequently used for motion parameters prediction applications in underwater acoustics. The precision and robustness of SCGNI are examined here for effective motion parameter prediction of a highly dynamic Markov chain underwater passive vehicle. For investigating the effectiveness of the soft computing strategy, a steady supervised maneuvering route of undersea passive object is designed. In the framework of bearings-only tracking technology, system modeling for parameters prediction is built, and the effectiveness of the SCGNI is examined in ideal and cluttered marine atmospheres simultaneously. The real-time location, velocity, and turn rate of dynamic target are analyzed for five distinct scenarios by varying the standard deviation of white Gaussian observed noise in the context of mean square error (MSE) between real and estimated values. For the given motion parameters prediction problem, sufficient Monte Carlo simulation results support SCGNI’s superiority over typical generalized pseudo-Bayesian filtering strategies such as Interacting Multiple Model Extended Kalman Filter (IMMEKF) and Interacting Multiple Model Unscented Kalman Filter (IMMUKF). Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

30 pages, 4803 KiB  
Article
Optimizing the Probabilistic Neural Network Model with the Improved Manta Ray Foraging Optimization Algorithm to Identify Pressure Fluctuation Signal Features
by Xiyuan Liu, Liying Wang, Hongyan Yan, Qingjiao Cao, Luyao Zhang and Weiguo Zhao
Biomimetics 2024, 9(1), 32; https://doi.org/10.3390/biomimetics9010032 - 4 Jan 2024
Cited by 1 | Viewed by 1306
Abstract
To improve the identification accuracy of pressure fluctuation signals in the draft tube of hydraulic turbines, this study proposes an improved manta ray foraging optimization (ITMRFO) algorithm to optimize the identification method of a probabilistic neural network (PNN). Specifically, first, discrete wavelet transform [...] Read more.
To improve the identification accuracy of pressure fluctuation signals in the draft tube of hydraulic turbines, this study proposes an improved manta ray foraging optimization (ITMRFO) algorithm to optimize the identification method of a probabilistic neural network (PNN). Specifically, first, discrete wavelet transform was used to extract features from vibration signals, and then, fuzzy c-means algorithm (FCM) clustering was used to automatically classify the collected information. In order to solve the local optimization problem of the manta ray foraging optimization (MRFO) algorithm, four optimization strategies were proposed. These included optimizing the initial population of the MRFO algorithm based on the elite opposition learning algorithm and using adaptive t distribution to replace its chain factor to optimize individual update strategies and other improvement strategies. The ITMRFO algorithm was compared with three algorithms on 23 test functions to verify its superiority. In order to improve the classification accuracy of the probabilistic neural network (PNN) affected by smoothing factors, an improved manta ray foraging optimization (ITMRFO) algorithm was used to optimize them. An ITMRFO-PNN model was established and compared with the PNN and MRFO-PNN models to evaluate their performance in identifying pressure fluctuation signals in turbine draft tubes. The evaluation indicators include confusion matrix, accuracy, precision, recall rate, F1-score, and accuracy and error rate. The experimental results confirm the correctness and effectiveness of the ITMRFO-PNN model, providing a solid theoretical foundation for identifying pressure fluctuation signals in hydraulic turbine draft tubes. Full article
(This article belongs to the Special Issue Nature-Inspired Computer Algorithms: 2nd Edition)
Show Figures

Figure 1

25 pages, 3223 KiB  
Article
Total Cost of Ownership Analysis of Fuel Cell Electric Bus with Different Hydrogen Supply Alternatives
by Zhetao Chen and Hao Wang
Sustainability 2024, 16(1), 259; https://doi.org/10.3390/su16010259 - 27 Dec 2023
Cited by 3 | Viewed by 2195
Abstract
In the transition to sustainable public transportation with zero-emission buses, hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However, assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination, encompassing [...] Read more.
In the transition to sustainable public transportation with zero-emission buses, hydrogen fuel cell electric buses have emerged as a promising alternative to traditional diesel buses. However, assessing their economic viability is crucial for widespread adoption. This study carries out a comprehensive examination, encompassing both sensitivity and probabilistic analyses, to assess the total cost of ownership (TCO) for the bus fleet and its corresponding infrastructure. It considers various hydrogen supply options, encompassing on-site electrolysis, on-site steam methane reforming, and off-site hydrogen procurement with both gaseous and liquid delivery methods. The analysis covers critical cost elements, encompassing bus acquisition costs, infrastructure capital expenses, and operational and maintenance costs for both buses and infrastructure. This paper conducted two distinct case studies: one involving a current small bus fleet of five buses and another focusing on a larger fleet set to launch in 2028. For the current small fleet, the off-site gray hydrogen purchase with a gaseous delivery option is the most cost-effective among hydrogen alternatives, but it still incurs a 26.97% higher TCO compared to diesel buses. However, in the case of the expanded 2028 fleet, the steam methane-reforming method without carbon capture emerges as the most likely option to attain the lowest TCO, with a high probability of 99.5%. Additionally, carbon emission costs were incorporated in response to the growing emphasis on environmental sustainability. The findings indicate that although diesel buses currently represent the most economical option in terms of TCO for the existing small fleet, steam methane reforming with carbon capture presents a 69.2% likelihood of being the most cost-effective solution, suggesting it is a strong candidate for cost efficiency for the expanded 2028 fleet. Notably, substantial investments are required to increase renewable energy integration in the power grid and to enhance electrolyzer efficiency. These improvements are essential to make the electrolyzer a more competitive alternative to steam methane reforming. Overall, the findings in this paper underscore the substantial impact of the hydrogen supply chain and carbon emission costs on the TCO of zero-emission buses. Full article
(This article belongs to the Special Issue Towards Green and Smart Cities: Urban Transport and Land Use)
Show Figures

Figure 1

Back to TopTop