Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,133)

Search Parameters:
Keywords = smart mobility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7040 KiB  
Article
Virtual Obstacle Avoidance Strategy: Navigating through a Complex Environment While Interacting with Virtual and Physical Elements
by Fabiana Machado, Matheus Loureiro, Marcio Bezerra, Carla Zimerer, Ricardo Mello and Anselmo Frizera
Sensors 2024, 24(19), 6212; https://doi.org/10.3390/s24196212 (registering DOI) - 25 Sep 2024
Viewed by 225
Abstract
Robotic walking devices can be used for intensive exercises to enhance gait rehabilitation therapies. Mixed Reality (MR) techniques may improve engagement through immersive and interactive environments. This article introduces an MR-based multimodal human–robot interaction strategy designed to enable shared control with a Smart [...] Read more.
Robotic walking devices can be used for intensive exercises to enhance gait rehabilitation therapies. Mixed Reality (MR) techniques may improve engagement through immersive and interactive environments. This article introduces an MR-based multimodal human–robot interaction strategy designed to enable shared control with a Smart Walker. The MR system integrates virtual and physical sensors to (i) enhance safe navigation and (ii) facilitate intuitive mobility training in personalized virtual scenarios by using an interface with three elements: an arrow to indicate where to go, laser lines to indicate nearby obstacles, and an ellipse to show the activation zone. The multimodal interaction is context-based; the presence of nearby individuals and obstacles modulates the robot’s behavior during navigation to simplify collision avoidance while allowing for proper social navigation. An experiment was conducted to evaluate the proposed strategy and the self-explanatory nature of the interface. The volunteers were divided into four groups, with each navigating under different conditions. Three evaluation methods were employed: task performance, self-assessment, and observational measurement. Analysis revealed that participants enjoyed the MR system and understood most of the interface elements without prior explanation. Regarding the interface, volunteers who did not receive any introductory explanation about the interface elements were mostly able to guess their purpose. Volunteers that interacted with the interface in the first session provided more correct answers. In future research, virtual elements will be integrated with the physical environment to enhance user safety during navigation, and the control strategy will be improved to consider both physical and virtual obstacles. Full article
(This article belongs to the Special Issue Mobile Robots for Navigation: 2nd Edition)
Show Figures

Figure 1

33 pages, 21369 KiB  
Article
A Simulation-Based Study on Securing Data Sharing for Situational Awareness in a Port Accident Case
by Juhani Latvakoski, Adil Umer, Topias Nykänen, Jyrki Tihinen and Aleksi Talman
Systems 2024, 12(10), 389; https://doi.org/10.3390/systems12100389 - 25 Sep 2024
Viewed by 320
Abstract
The cyber–physical systems (CPSs) of various stakeholders from the mobility, logistics, and security sectors are needed to enable smart and secure situational awareness operations in a port environment. The motivation for this research arises from the challenges caused by some unexpected events, such [...] Read more.
The cyber–physical systems (CPSs) of various stakeholders from the mobility, logistics, and security sectors are needed to enable smart and secure situational awareness operations in a port environment. The motivation for this research arises from the challenges caused by some unexpected events, such as accidents, in such a multi-stakeholder critical environment. Due to the scale, complexity, and cost and safety challenges, a simulation-based approach was selected as the basis for the study. Prototype-level experimental solutions for dataspaces for secure data sharing and visualization of situational awareness were developed. The secure data-sharing solution relies on the application of verifiable credentials (VCs) to ensure that data consumers have the required access rights to the data/information shared by the data prosumer. A 3D virtual digital twin model is applied for visualizing situational awareness for people in the port. The solutions were evaluated in a simulation-based execution of an accident scenario where a forklift catches fire while loading a docked ship in a port environment. The simulation-based approach and the provided solutions proved to be practical and enabled the smooth study of disaster-type situations. The realized concept of dataspaces is successfully applied here for both daily routine operations and information sharing during accidents in the simulation-based environment. During the evaluation, needs for future research related to perception, comprehension, projection, trust, and security as well as performance and quality of experience were detected. Especially, distributed and secure viewpoints of objects and stakeholders toward real-time situational awareness seem to require further studies. Full article
Show Figures

Figure 1

26 pages, 3533 KiB  
Systematic Review
Energy-Efficient Industrial Internet of Things in Green 6G Networks
by Xavier Fernando and George Lăzăroiu
Appl. Sci. 2024, 14(18), 8558; https://doi.org/10.3390/app14188558 - 23 Sep 2024
Viewed by 957
Abstract
The research problem of this systematic review was whether green 6G networks can integrate energy-efficient Industrial Internet of Things (IIoT) in terms of distributed artificial intelligence, green 6G pervasive edge computing communication networks and big-data-based intelligent decision algorithms. We show that sensor data [...] Read more.
The research problem of this systematic review was whether green 6G networks can integrate energy-efficient Industrial Internet of Things (IIoT) in terms of distributed artificial intelligence, green 6G pervasive edge computing communication networks and big-data-based intelligent decision algorithms. We show that sensor data fusion can be carried out in energy-efficient IoT smart industrial urban environments by cooperative perception and inference tasks. Our analyses debate on 6G wireless communication, vehicular IoT intelligent and autonomous networks, and energy-efficient algorithm and green computing technologies in smart industrial equipment and manufacturing environments. Mobile edge and cloud computing task processing capabilities of decentralized network control and power grid system monitoring were thereby analyzed. Our results and contributions clarify that sustainable energy efficiency and green power generation together with IoT decision support and smart environmental systems operate efficiently in distributed artificial intelligence 6G pervasive edge computing communication networks. PRISMA was used, and with its web-based Shiny app flow design, the search outcomes and screening procedures were integrated. A quantitative literature review was performed in July 2024 on original and review research published between 2019 and 2024. Study screening, evidence map visualization, and data extraction and reporting tools, machine learning classifiers, and reference management software were harnessed for qualitative and quantitative data, collection, management, and analysis in research synthesis. Dimensions and VOSviewer were deployed for data visualization and analysis. Full article
Show Figures

Figure 1

13 pages, 9262 KiB  
Article
Decentralized Mechanism for Edge Node Allocation in Access Network: An Experimental Evaluation
by Jesus Calle-Cancho, Carlos Cañada, Rafael Pastor-Vargas, Mercedes E. Paoletti and Juan M. Haut
Future Internet 2024, 16(9), 342; https://doi.org/10.3390/fi16090342 - 20 Sep 2024
Viewed by 259
Abstract
With the rapid advancement of the Internet of Things and the emergence of 6G networks in smart city environments, a growth in the generation of data, commonly known as big data, is expected to consequently lead to higher latency. To mitigate this latency, [...] Read more.
With the rapid advancement of the Internet of Things and the emergence of 6G networks in smart city environments, a growth in the generation of data, commonly known as big data, is expected to consequently lead to higher latency. To mitigate this latency, mobile edge computing has been proposed to alleviate a portion of the workload from mobile devices by offloading it to nearby edge servers equipped with appropriate computational resources. However, existing solutions often exhibit poor performance when confronted with complex network topologies. Thus, this paper introduces a decentralized mechanism aimed at determining the locations of network edge nodes in such complex network topologies, characterized by lengthy execution times. Our proposal provides performance improvements and offers scalability and flexibility as networks become more complex. Experimental evaluations are conducted using the Shanghai Telecom dataset to validate our proposed approach. Full article
(This article belongs to the Special Issue Distributed Storage of Large Knowledge Graphs with Mobility Data)
Show Figures

Figure 1

17 pages, 7723 KiB  
Article
Periodic Behavior and Noise Characteristics of Cavitating Flow around Two-Dimensional Hydrofoils
by Namug Heo and Ji-Hye Kim
J. Mar. Sci. Eng. 2024, 12(9), 1681; https://doi.org/10.3390/jmse12091681 - 20 Sep 2024
Viewed by 335
Abstract
The occurrence of cavitation in marine propellers is a major source of noise in ships. Consequently, the occurrence and noise characteristics of cavitation must be better understood to control this issue. This study focuses on identifying the occurrence and noise characteristics of cavitating [...] Read more.
The occurrence of cavitation in marine propellers is a major source of noise in ships. Consequently, the occurrence and noise characteristics of cavitation must be better understood to control this issue. This study focuses on identifying the occurrence and noise characteristics of cavitating flow around two-dimensional (2D) hydrofoils. Using the commercial computational fluid dynamics software STAR-CCM+, a numerical analysis was conducted on the partial cavity flow occurring around 2D hydrofoils at specific angles of attack. In addition, the cavitation noise characteristics were analyzed by conducting a frequency analysis using the predicted pressure data obtained via a fluctuating pressure sensor positioned vertically above the hydrofoil. Consequently, the numerical results were compared with existing experimental data to validate the accuracy of the simulation. This study identifies the limitations of the Reynolds-averaged Navier–Stokes (RANS) method by closely comparing it with the large eddy simulation (LES) method for assessing noise characteristics in unsteady cavitating flow. Although RANS has limitations in qualitatively assessing periodic behavior compared to LES, it effectively predicts cavitation extent and is valuable for relative assessments in practical applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 9259 KiB  
Article
Experimental Investigation of Pulse Detonation Combustion Characteristics via Atomizer Geometry
by Yoojin Oh, Myeung Hwan Choi and Sungwoo Park
Aerospace 2024, 11(9), 776; https://doi.org/10.3390/aerospace11090776 - 20 Sep 2024
Viewed by 393
Abstract
Recent studies have increasingly focused on integrating detonation processes into engine technologies, advancing beyond the fundamental research phase of detonation research. The present study investigates the detonability and combustion characteristics of liquid fuels, specifically ethanol, with an emphasis on the effects of atomization [...] Read more.
Recent studies have increasingly focused on integrating detonation processes into engine technologies, advancing beyond the fundamental research phase of detonation research. The present study investigates the detonability and combustion characteristics of liquid fuels, specifically ethanol, with an emphasis on the effects of atomization properties facilitated by different atomizer designs to implement pulse detonation combustion engines. Oxygen was used as the oxidizer. We employed internal injectors (I45, I90, IB4) and atomizer venturis (VA, VB, VR) to examine how variations in liquid fuel atomization and atomizer configurations influence detonation. The occurrence of detonation was assessed using predicted Sauter mean diameters (SMDs) and exit velocities for different atomizer setups. Additionally, we evaluated the effects of nitrogen dilution at concentrations of 0%, 25%, and 50% on velocity variations and changes in detonation characteristics. The findings suggest that while higher exit velocities decrease SMD, facilitating detonation, excessively high velocities hinder detonation initiation. Conversely, lower exit velocities emphasize the role of SMD in initiating detonation. However, the introduction of nitrogen, which reduces the SMD, was found to decrease reactivity and impede detonation. Full article
Show Figures

Figure 1

32 pages, 804 KiB  
Article
Enhancing Urban Sustainability: Developing an Open-Source AI Framework for Smart Cities
by Miljana Shulajkovska, Maj Smerkol, Gjorgji Noveski and Matjaž Gams
Smart Cities 2024, 7(5), 2670-2701; https://doi.org/10.3390/smartcities7050104 - 18 Sep 2024
Viewed by 466
Abstract
To address the growing need for advanced tools that enable urban policymakers to conduct comprehensive cost-benefit analyses of traffic management changes, the Urbanite H2020 project has developed innovative artificial intelligence methods. Among them is a robust decision support system that assists policymakers in [...] Read more.
To address the growing need for advanced tools that enable urban policymakers to conduct comprehensive cost-benefit analyses of traffic management changes, the Urbanite H2020 project has developed innovative artificial intelligence methods. Among them is a robust decision support system that assists policymakers in evaluating and selecting optimal urban mobility planning modifications by combining objective and subjective criteria. Utilising open-source microscopic traffic simulation tools, accurate digital models (or “digital twins”) of four pilot cities—Bilbao, Amsterdam, Helsinki, and Messina—were created, each addressing unique mobility challenges. These challenges include reducing private vehicle access in Bilbao’s city center, analysing the impact of increased bicycle traffic and population growth in Amsterdam, constructing a mobility-enhancing tunnel in Helsinki, and improving public transport connectivity in Messina. The research introduces five key innovations: the application of a consistent open-source simulation platform across diverse urban environments, addressing integration and consistency challenges; the pioneering use of Dexi for advanced decision support in smart cities; the implementation of advanced visualisations; and the integration of the machine learning tool, Orange, with a user-friendly GUI interface. These innovations collectively make complex data analysis accessible to non-technical users. By applying multi-label machine learning techniques, the decision-making process is accelerated by three orders of magnitude, significantly enhancing urban planning efficiency. The Urbanite project’s findings offer valuable insights into both anticipated and unexpected outcomes of mobility interventions, presenting a scalable, open-source AI-based framework for urban decision-makers worldwide. Full article
(This article belongs to the Special Issue Digital Innovation and Transformation for Smart Cities)
Show Figures

Figure 1

18 pages, 14420 KiB  
Article
Semantic Segmentation-Driven Integration of Point Clouds from Mobile Scanning Platforms in Urban Environments
by Joanna Koszyk, Aleksandra Jasińska, Karolina Pargieła, Anna Malczewska, Kornelia Grzelka, Agnieszka Bieda and Łukasz Ambroziński
Remote Sens. 2024, 16(18), 3434; https://doi.org/10.3390/rs16183434 - 16 Sep 2024
Viewed by 643
Abstract
Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the [...] Read more.
Precise and complete 3D representations of architectural structures or industrial sites are essential for various applications, including structural monitoring or cadastre. However, acquiring these datasets can be time-consuming, particularly for large objects. Mobile scanning systems offer a solution for such cases. In the case of complex scenes, multiple scanning systems are required to obtain point clouds that can be merged into a comprehensive representation of the object. Merging individual point clouds obtained from different sensors or at different times can be difficult due to discrepancies caused by moving objects or changes in the scene over time, such as seasonal variations in vegetation. In this study, we present the integration of point clouds obtained from two mobile scanning platforms within a built-up area. We utilized a combination of a quadruped robot and an unmanned aerial vehicle (UAV). The PointNet++ network was employed to conduct a semantic segmentation task, enabling the detection of non-ground objects. The experimental tests used the Toronto 3D dataset and DALES for network training. Based on the performance, the model trained on DALES was chosen for further research. The proposed integration algorithm involved semantic segmentation of both point clouds, dividing them into square subregions, and performing subregion selection by checking the emptiness or when both subregions contained points. Parameters such as local density, centroids, coverage, and Euclidean distance were evaluated. Point cloud merging and augmentation enhanced with semantic segmentation and clustering resulted in the exclusion of points associated with these movable objects from the point clouds. The comparative analysis of the method and simple merging was performed based on file size, number of points, mean roughness, and noise estimation. The proposed method provided adequate results with the improvement of point cloud quality indicators. Full article
Show Figures

Figure 1

35 pages, 3798 KiB  
Article
An AI-Based Evaluation Framework for Smart Building Integration into Smart City
by Mustafa Muthanna Najm Shahrabani and Rasa Apanaviciene
Sustainability 2024, 16(18), 8032; https://doi.org/10.3390/su16188032 - 13 Sep 2024
Viewed by 1122
Abstract
The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based [...] Read more.
The integration of smart buildings (SBs) into smart cities (SCs) is critical to urban development, with the potential to improve SCs’ performance. Artificial intelligence (AI) applications have emerged as a promising tool to enhance SB and SC development. The authors apply an AI-based methodology, particularly Large Language Models of OpenAI ChatGPT-3 and Google Bard as AI experts, to uniquely evaluate 26 criteria that represent SB services across five SC infrastructure domains (energy, mobility, water, waste management, and security), emphasizing their contributions to the integration of SB into SC and quantifying their impact on the efficiency, resilience, and environmental sustainability of SC. The framework was then validated through two rounds of the Delphi method, leveraging human expert knowledge and an iterative consensus-building process. The framework’s efficiency in analyzing complicated information and generating important insights is demonstrated via five case studies. These findings contribute to a deeper understanding of the effects of SB services on SC infrastructure domains, highlighting the intricate nature of SC, as well as revealing areas that require further integration to realize the SC performance objectives. Full article
Show Figures

Figure 1

26 pages, 20531 KiB  
Article
Artificial Intelligence-Based Decision Support System for Sustainable Urban Mobility
by Miljana Shulajkovska, Maj Smerkol, Gjorgji Noveski, Marko Bohanec and Matjaž Gams
Electronics 2024, 13(18), 3655; https://doi.org/10.3390/electronics13183655 - 13 Sep 2024
Viewed by 413
Abstract
As urban populations rise globally, cities face increasing challenges in managing urban mobility. This paper addresses the question of identifying which modifications to introduce regarding city mobility by evaluating potential solutions using city-specific, subjective multi-objective criteria. The innovative AI-based recommendation engine assists city [...] Read more.
As urban populations rise globally, cities face increasing challenges in managing urban mobility. This paper addresses the question of identifying which modifications to introduce regarding city mobility by evaluating potential solutions using city-specific, subjective multi-objective criteria. The innovative AI-based recommendation engine assists city planners and policymakers in prioritizing key urban mobility aspects for effective policy proposals. By leveraging multi-criteria decision analysis (MCDA) and ±1/2 analysis, this engine provides a structured approach to systematically and simultaneously navigate the complexities of urban mobility planning. The proposed approach aims to provide an open-source interoperable prototype for all smart cities to utilize such recommendation systems routinely, fostering efficient, sustainable, and forward-thinking urban mobility strategies. Case studies from four European cities—Helsinki (tunnel traffic), Amsterdam (bicycle traffic for a new city quarter), Messina (adding another bus line), and Bilbao (optimal timing for closing the city center)—highlight the engine’s transformative potential in shaping urban mobility policies. Ultimately, this contributes to more livable and resilient urban environments, based on advanced urban mobility management. Full article
Show Figures

Figure 1

29 pages, 9496 KiB  
Article
Trustworthy Communities for Critical Energy and Mobility Cyber-Physical Applications
by Juhani Latvakoski, Jouni Heikkinen, Jari Palosaari, Vesa Kyllönen and Jari Rehu
Smart Cities 2024, 7(5), 2616-2644; https://doi.org/10.3390/smartcities7050102 - 12 Sep 2024
Viewed by 583
Abstract
The aim of this research has been to enable the management of trustworthy relationships between stakeholders, service providers, and physical assets, which are required in critical energy and mobility cyber–physical systems (CPS) applications. The achieved novel contribution is the concept of trustworthy communities [...] Read more.
The aim of this research has been to enable the management of trustworthy relationships between stakeholders, service providers, and physical assets, which are required in critical energy and mobility cyber–physical systems (CPS) applications. The achieved novel contribution is the concept of trustworthy communities with respective experimental solutions, which are developed by relying on verifiable credentials, smart contracts, trust over IP, and an Ethereum-based distributed ledger. The provided trustworthy community solutions are validated by executing them in two practical use cases, which are called energy flexibility and hunting safety. The energy flexibility case validation considered the execution of the solutions with one simulated and two real buildings with the energy flexibility aggregation platform, which was able to trade the flexibilities in an energy flexibility marketplace. The provided solutions were executed with a hunting safety smartphone application for a hunter and the smartwatch of a person moving around in the forest. The evaluations indicate that conceptual solutions for trustworthy communities fulfill the purpose and contribute toward making energy flexibility trading and hunting safety possible and trustworthy enough for participants. A trustworthy community solution is required to make value sharing and usage of critical energy resources and their flexibilities feasible and secure enough for their owners as part of the energy flexibility community. Sharing the presence and location in mobile conditions requires a trustworthy community solution because of security and privacy reasons, but it can also save lives in real-life elk hunting cases. During the evaluations, the need for further studies related to performance, scalability, community applications, verifiable credentials with wallets, sharing of values and incentives, authorized trust networks, dynamic trust situations, time-sensitive behavior, autonomous operations with smart contracts through security assessment, and applicability have been detected. Full article
Show Figures

Figure 1

23 pages, 2076 KiB  
Article
Blockchain-Based Spectrum Sharing Algorithm for UAV-Assisted Relay System
by Fukang Huang and Qi Zhu
Electronics 2024, 13(18), 3600; https://doi.org/10.3390/electronics13183600 - 10 Sep 2024
Viewed by 462
Abstract
Unmanned aerial vehicles (UAVs) are promising tools in mobile communication due to their flexibility. However, the rapid development of mobile communications further intensifies the challenge of spectrum scarcity, necessitating spectrum sharing with other systems. We suggest a Spectrum Sharing Algorithm for a UAV-Assisted [...] Read more.
Unmanned aerial vehicles (UAVs) are promising tools in mobile communication due to their flexibility. However, the rapid development of mobile communications further intensifies the challenge of spectrum scarcity, necessitating spectrum sharing with other systems. We suggest a Spectrum Sharing Algorithm for a UAV-Assisted Relay System. The utility function of secondary users (SUs) is defined by their communication rate, rewards from relay primary users (PUs), and spectrum leasing expenses. The utility function of PUs consists of their communication rate and revenue from spectrum leasing. We propose a joint optimization algorithm for the positioning and power allocation of UAVs, maximizing the frequency spectrum utilization rate of users. Spectrum trading between PUs and SUs is modeled as a Stackelberg game, and the problem is solved by using Lagrange multipliers and KKT conditions. To enhance the security of spectrum trading, a reputation-based spectrum sharing blockchain consensus algorithm is designed. We utilize Shamir’s secret sharing method to reduce computational complexity. Additionally, we design a smart contract to optimize the functionality of transaction transfers. The findings demonstrate that the proposed algorithm enhances the benefits for both participants in spectrum sharing, while safeguarding the security of spectrum transactions. Full article
Show Figures

Figure 1

20 pages, 9508 KiB  
Article
A Comparative Study of Data-Driven Prognostic Approaches under Training Data Deficiency
by Jinwoo Song, Seong Hee Cho, Seokgoo Kim, Jongwhoa Na and Joo-Ho Choi
Aerospace 2024, 11(9), 741; https://doi.org/10.3390/aerospace11090741 - 10 Sep 2024
Viewed by 318
Abstract
In industrial system health management, prognostics play a crucial role in ensuring safety and enhancing system availability. While the data-driven approach is the most common for this purpose, they often face challenges due to insufficient training data. This study delves into the prognostic [...] Read more.
In industrial system health management, prognostics play a crucial role in ensuring safety and enhancing system availability. While the data-driven approach is the most common for this purpose, they often face challenges due to insufficient training data. This study delves into the prognostic capabilities of four methods under the conditions of limited training datasets. The methods evaluated include two neural network-based approaches, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) networks, and two similarity-based methods, Trajectory Similarity-Based Prediction (TSBP) and Data Augmentation Prognostics (DAPROG), with the last being a novel contribution from the authors. The performance of these algorithms is compared using the Commercial Modular Aero-Propulsion System Simulation (CMAPSS) datasets, which are made by simulation of turbofan engine performance degradation. To simulate real-world scenarios of data deficiency, a small fraction of the training datasets from the original dataset is chosen at random for the training, and a comprehensive assessment is conducted for each method in terms of remaining useful life prediction. The results of our study indicate that, while the Convolutional Neural Network (CNN) model generally outperforms others in terms of overall accuracy, Data Augmentation Prognostics (DAPROG) shows comparable performance in the small training dataset, being particularly effective within the range of 10% to 30%. Data Augmentation Prognostics (DAPROG) also exhibits lower variance in its predictions, suggesting a more consistent performance. This is worth highlighting, given the typical challenges associated with artificial neural network methods, such as inherent randomness, non-intuitive decision-making processes, and the complexities involved in developing optimal models. Full article
(This article belongs to the Special Issue Artificial Intelligence in Aerospace Propulsion)
Show Figures

Figure 1

12 pages, 6100 KiB  
Article
Reverse Mode Polymer Stabilized Cholesteric Liquid Crystal Flexible Films with Excellent Bending Resistance
by Ping Yu, Zemin He, Yuzhen Zhao, Wenqi Song and Zongcheng Miao
Molecules 2024, 29(17), 4276; https://doi.org/10.3390/molecules29174276 - 9 Sep 2024
Viewed by 418
Abstract
The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due [...] Read more.
The reverse-mode smart windows, which usually fabricated by polymer stabilized liquid crystal (PSLC), are more practical for scenarios where high transparency is a priority for most of the time. However, the polymer stabilized cholesteric liquid crystal (PSCLC) film exhibits poor spacing stability due to the mobility of CLC molecules during the bending deformation. In this work, a reverse-mode PSCLC flexible film with excellent bending resistance was fabricated by the construction of polymer spacer columns. The effect of the concentration of the polymerizable monomer C6M and chiral dopant R811 on the electro-optical properties and polymer microstructure of the film were studied. The sample B2 containing 3 wt% of C6M and 3 wt% R811 presented the best electro-optical performance. The electrical switch between transparent and opaque state of the flexible PSCLC film after bending not only indicated the excellent electro-optical switching performance, but also demonstrated the outstanding bending resistance of the sample with polymer spacer columns, which makes the PSCLC film containing polymer spacer columns have a great potential to be applied in the field of flexible devices. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

25 pages, 2396 KiB  
Article
Internet of Conscious Things: Ontology-Based Social Capabilities for Smart Objects
by Michele Ruta, Floriano Scioscia, Giuseppe Loseto, Agnese Pinto, Corrado Fasciano, Giovanna Capurso and Eugenio Di Sciascio
Future Internet 2024, 16(9), 327; https://doi.org/10.3390/fi16090327 - 8 Sep 2024
Viewed by 481
Abstract
Emerging distributed intelligence paradigms for the Internet of Things (IoT) call for flexible and dynamic reconfiguration of elementary services, resources and devices. In order to achieve such capability, this paper faces complex interoperability and autonomous decision problems by proposing a thorough framework based [...] Read more.
Emerging distributed intelligence paradigms for the Internet of Things (IoT) call for flexible and dynamic reconfiguration of elementary services, resources and devices. In order to achieve such capability, this paper faces complex interoperability and autonomous decision problems by proposing a thorough framework based on the integration of the Semantic Web of Things (SWoT) and Social Internet of Things (SIoT) paradigms. SWoT enables low-power knowledge representation and autonomous reasoning at the edge of the network through carefully optimized inference services and engines. This layer provides service/resource management and discovery primitives for a decentralized collaborative social protocol in the IoT, based on the Linked Data Notifications(LDN) over Linked Data Platform on Constrained Application Protocol (LDP-CoAP). The creation and evolution of friend and follower relationships between pairs of devices is regulated by means of novel dynamic models assessing trust as a usefulness reputation score. The close SWoT-SIoT integration overcomes the functional limitations of existing proposals, which focus on either social device or semantic resource management only. A smart mobility case study on Plug-in Electric Vehicles (PEVs) illustrates the benefits of the proposal in pervasive collaborative scenarios, while experiments show the computational sustainability of the dynamic relationship management approach. Full article
(This article belongs to the Special Issue Social Internet of Things (SIoT))
Show Figures

Figure 1

Back to TopTop