Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = thermal sieve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2359 KiB  
Article
Polyacetylene Prepared by Chemical Dehydration of Poly(Vinyl Alcohol)
by Gianfranco Carotenuto and Luigi Nicolais
Coatings 2024, 14(9), 1216; https://doi.org/10.3390/coatings14091216 - 20 Sep 2024
Abstract
Recently, polyacetylene (PA) has been receiving renewed scientific attention due to its electrical properties, potentially useful for energy applications (e.g., fabrication of electrodes for rechargeable batteries and supercapacitors), and unique functional characteristics (e.g., gas trap, oxygen scavenger, EMI shielding, etc.). This chemical compound [...] Read more.
Recently, polyacetylene (PA) has been receiving renewed scientific attention due to its electrical properties, potentially useful for energy applications (e.g., fabrication of electrodes for rechargeable batteries and supercapacitors), and unique functional characteristics (e.g., gas trap, oxygen scavenger, EMI shielding, etc.). This chemical compound can be obtained in the form of polyacetylene–PVOH copolymers simply through the chemical dehydration of poly(vinyl alcohol) (PVOH), which is a very common type of polymer, widely used in packaging and other technological areas. This very inexpensive chemical reaction for the large-scale synthesis of PA/polyvinylenes is investigated by reacting PVOH with sulfuric acid at room temperature. In this process, PVOH, shaped in the form of a film, is dipped in sulfuric acid (i.e., H2SO4 at 95%–97%) and, after complete chemical dehydration, it is mechanically removed from the liquid phase by using a nylon sieve. The reduction process leads to a substantial PVOH film conversion into PA, as demonstrated by infrared spectroscopy (ATR mode). Indeed, the ATR spectrum of the reaction product includes all the characteristic absorption bands of PA. The reaction product is also characterized through the use of UV–Vis spectroscopy in order to evidence the presence in the structure of conjugated carbon–carbon double bonds of various lengths. Differential scanning calorimetry (DSC) and thermogravimetric analysis are used to investigate the PA solid-state cis–trans isomerization and thermal stability in air and nitrogen, respectively. XRD is used to verify the polymer amorphous nature. Full article
Show Figures

Figure 1

11 pages, 4427 KiB  
Article
Sustainable Electrically Conductive Bio-Based Composites via Radical-Induced Cationic Frontal Photopolymerization
by Dumitru Moraru, Alejandro Cortés, David Martinez-Diaz, Silvia G. Prolongo, Alberto Jiménez-Suárez and Marco Sangermano
Polymers 2024, 16(15), 2159; https://doi.org/10.3390/polym16152159 - 30 Jul 2024
Viewed by 540
Abstract
Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization (RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity and consequent Joule effect proprieties. Three different fiber lengths, using [...] Read more.
Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization (RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity and consequent Joule effect proprieties. Three different fiber lengths, using three different sieve sizes during the mechanical recycling process (0.2, 0.5, and 2.0 mm), were used in five different amounts (ranging from 1 to 25 phr). The samples were first characterized by dynamic mechanical thermal analysis (DMTA), followed byelectrical conductivity and Joule heating tests. More specifically, the mechanical properties of the composites increased when increasing fiber content. Furthermore, the composites obtained with the longest fibers showed the highest electrical conductivity, reaching a maximum of 11 S/m, due to their higher aspect ratio. In this context, the temperature reached by Joule effect was directly related to the electrical conductivity, and was able to reach an average and maximum temperatures of 80 °C and 120 °C, respectively, just by applying 6 V. Full article
(This article belongs to the Special Issue Epoxy Thermoset Polymer Composites)
Show Figures

Figure 1

21 pages, 11283 KiB  
Article
Development of Artificial Stone through the Recycling of Construction and Demolition Waste in a Polymeric Matrix
by Marcelo Barcellos Reis, Henry Alonso Colorado Lopera, Carlos Maurício Fontes Vieira, Afonso Rangel Garcez Azevedo, Elaine Aparecida Santos Carvalho and Sérgio Neves Monteiro
Sustainability 2024, 16(14), 5952; https://doi.org/10.3390/su16145952 - 12 Jul 2024
Viewed by 982
Abstract
Civil construction is one of the oldest activities known to humanity, with reports indicating that builders from the Roman Empire were already seeking to reuse materials. Currently, considering the depletion of natural resource supplies, the recycling of solid construction and demolition waste (CDW) [...] Read more.
Civil construction is one of the oldest activities known to humanity, with reports indicating that builders from the Roman Empire were already seeking to reuse materials. Currently, considering the depletion of natural resource supplies, the recycling of solid construction and demolition waste (CDW) not only provides new products but also presents ecological and economical alternatives. In this context, this research explores new variables for the disposal of CDW, with the manufacturing of artificial finishing stones appearing as a strong possibility to be studied. This research presents the development of a new composite from CDW, using an orthophthalic polyester resin as a binder. The waste was sieved and separated by granulometry using the simplex centroid method. The best-compacted mixture was determined statistically by ANOVA and Tukey’s test. The waste was characterized by X-ray fluorescence, and the resin by Fourier transform infrared spectroscopy. Artificial stone slabs were produced with 85% waste and 15% resin by mass, using the vibro-compression and vacuum system. They were subsequently cut for mechanical, physical, and chemical tests. Microstructural analysis was performed using scanning electron microscopy on the surfaces of the fractured compositions, as well as on the grains. The artificial stone with the best results had a density of 2.256 g/cm3, a water absorption of 0.69%, and an apparent porosity of 1.55%. It also exhibited a flexural strength of 34.74 MPa and a compressive strength of 111.96 MPa, alongside good results in alterability and thermal tests. In this satisfactory scenario, the use of this waste in the composition of artificial stones is promising, as it directly aligns with the concept of sustainable development. It replaces the end-of-life concept of the linear economy with new circular flows of reuse, restoration, and renewal, in an integrated process of the circular economy. Additionally, the quality of the final product exhibits properties similar to those of commercially available artificial stones. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

21 pages, 5226 KiB  
Article
Characterization and Implementation of Cocoa Pod Husk as a Reinforcing Agent to Obtain Thermoplastic Starches and Bio-Based Composite Materials
by Andrés Mauricio Holguín Posso, Juan Carlos Macías Silva, Juan Pablo Castañeda Niño, Jose Herminsul Mina Hernandez and Lety del Pilar Fajardo Cabrera de Lima
Polymers 2024, 16(11), 1608; https://doi.org/10.3390/polym16111608 - 6 Jun 2024
Viewed by 1224
Abstract
When the cocoa pod husk (CPH) is used and processed, two types of flour were obtained and can be differentiated by particle size, fine flour (FFCH), and coarse flour (CFCH) and can be used as a possible reinforcement for the development of bio-based [...] Read more.
When the cocoa pod husk (CPH) is used and processed, two types of flour were obtained and can be differentiated by particle size, fine flour (FFCH), and coarse flour (CFCH) and can be used as a possible reinforcement for the development of bio-based composite materials. Each flour was obtained from chopping, drying by forced convection, milling by blades, and sieving using the 100 mesh/bottom according to the Tyler series. Their physicochemical, thermal, and structural characterization made it possible to identify the lower presence of lignin and higher proportions of cellulose and pectin in FFCH. Based on the properties identified in FFCH, it was included in the processing of thermoplastic starch (TPS) from the plantain pulp (Musa paradisiaca) and its respective bio-based composite material using plantain peel short fiber (PPSF) as a reinforcing agent using the following sequence of processing techniques: extrusion, internal mixing, and compression molding. The influence of FFCH contributed to the increase in ultimate tensile strength (7.59 MPa) and higher matrix–reinforcement interaction when obtaining the freshly processed composite material (day 0) when compared to the bio-based composite material with higher FCP content (30%) in the absence of FFCH. As for the disadvantages of FFCH, reduced thermal stability (323.57 to 300.47 °C) and losses in ultimate tensile strength (0.73 MPa) and modulus of elasticity (142.53 to 26.17 MPa) during storage progress were identified. In the case of TPS, the strengthening action of FFCH was not evident. Finally, the use of CFCH was not considered for the elaboration of the bio-based composite material because it reached a higher lignin content than FFCH, which was expected to decrease its affinity with the TPS matrix, resulting in lower mechanical properties in the material. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

14 pages, 10988 KiB  
Article
Effect of Nanoporous Molecular Sieves TS-1 on Electrical Properties of Crosslinked Polyethylene Nanocomposites
by Lirui Shi, Chong Zhang, Zhaoliang Xing, Yuanyi Kang, Weihua Han, Meng Xin and Chuncheng Hao
Nanomaterials 2024, 14(11), 985; https://doi.org/10.3390/nano14110985 - 6 Jun 2024
Viewed by 675
Abstract
Crosslinked polyethylene (XLPE) is an important polyethylene modification material which is widely used in high-voltage direct current (HVDC) transmission systems. Low-density polyethylene (LDPE) was used as a matrix to improve the thermal and electrical properties of XLPE composites through the synergistic effect of [...] Read more.
Crosslinked polyethylene (XLPE) is an important polyethylene modification material which is widely used in high-voltage direct current (HVDC) transmission systems. Low-density polyethylene (LDPE) was used as a matrix to improve the thermal and electrical properties of XLPE composites through the synergistic effect of a crosslinking agent and nanopore structure molecular sieve, TS-1. It was found that the electrical and thermal properties of the matrices were different due to the crosslinking degree and crosslinking efficiency, and the introduction of TS-1 enhanced the dielectric constants of the two matrices to 2.53 and 2.54, and the direct current (DC) resistivities were increased to 3 × 1012 and 4 × 1012 Ω·m, with the enhancement of the thermal conductivity at different temperatures. As the applied voltage increases, the DC breakdown field strength is enhanced from 318 to 363 kV/mm and 330 to 356 kV/mm. The unique nanopore structure of TS-1 itself can inhibit the injection and accumulation in the internal space of crosslinked polyethylene composites, and the pore size effect of the filler can limit the development of electron impact ionization, inhibit the electron avalanche breakdown, and improve the strength of the external applied electric field (breakdown field) that TS-1/XLPE nanocomposites can withstand. This provides a new method for the preparation of nanocomposite insulating dielectric materials for HVDC transmission systems with better performance. Full article
(This article belongs to the Special Issue Advanced Porous Nanomaterials: Synthesis, Properties, and Application)
Show Figures

Figure 1

17 pages, 3673 KiB  
Article
Technological Analysis of the Production of Nickel-Containing Composite Materials
by Bauyrzhan Kelamanov, Dauren Yessengaliyev, Otegen Sariev, Askhat Akuov, Yerulan Samuratov, Talgat Zhuniskaliyev, Yerbol Kuatbay, Yerbol Mukhambetgaliyev, Olga Kolesnikova, Assel Zhumatova, Zukhra Karaidarova and Assylbek Abdirashit
J. Compos. Sci. 2024, 8(5), 179; https://doi.org/10.3390/jcs8050179 - 12 May 2024
Viewed by 1033
Abstract
The article presents the results of obtaining a composite material by sintering nickel-containing raw materials mixed with carbon-containing materials, namely using coke and semi-coke. The sintering process was performed at a charge layer height of 240 mm and the temperature of the lower [...] Read more.
The article presents the results of obtaining a composite material by sintering nickel-containing raw materials mixed with carbon-containing materials, namely using coke and semi-coke. The sintering process was performed at a charge layer height of 240 mm and the temperature of the lower layer was T = 1200 °C. The results of the sieve analysis showed (a fraction of 10 mm) that the yield of a suitable composite material using coke was 68.3% and with semi-coke 67.0%. The average nickel and chromium content in the composite materials was 1.42% and 3.07%, accordingly. As a result of determining the strength characteristics of the obtained composite materials with various reducing agents by dropping from a height of 2 m onto a steel pallet, it was found that the obtained composite materials have high mechanical properties in terms of strength of 81% and 89.2%. The results of the elemental composition at the studied points and the thermal analysis of the studied composite material are presented. The mineralogical composition of the composite material is presented in the form of serpentine and nontronite, and the empty rock is made of quartz and talc. The activation energy of thermal analysis by the method of non-isothermal kinetics were calculated. The results of experiments on the production of composite materials from nickel-containing raw materials will be recommended for obtaining the optimal composition of composite materials at the stage of pilot tests and industrial development of the developed technology for processing nickel ores of the Republic of Kazakhstan. For the processing of nickel-poor nickel ores, it is of great importance to obtain optimal technological and technical and economic indicators that ensure low cost of nickel in the resulting product. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

17 pages, 2876 KiB  
Article
Potential of Plantain Pseudostems (Musa AAB Simmonds) for Developing Biobased Composite Materials
by Juan Pablo Castañeda-Niño, Jose Herminsul Mina Hernandez and Jose Fernando Solanilla Duque
Polymers 2024, 16(10), 1357; https://doi.org/10.3390/polym16101357 - 10 May 2024
Viewed by 1047
Abstract
A plantain pseudostem was harvested and processed on the same day. The process began with manually separating the sheaths (80.85%) and the core (19.14%). The sheaths were subjected to a mechanical shredding process using paddles, extracting 2.20% of lignocellulosic fibers and 2.12% of [...] Read more.
A plantain pseudostem was harvested and processed on the same day. The process began with manually separating the sheaths (80.85%) and the core (19.14%). The sheaths were subjected to a mechanical shredding process using paddles, extracting 2.20% of lignocellulosic fibers and 2.12% of sap, compared to the fresh weight of the sheaths. The fibers were washed, dried, combed, and spun in their native state and subjected to a steam explosion treatment, while the sap was subjected to filtration and evaporation. In the case of the core, it was subjected to manual cutting, drying, grinding, and sieving to separate 12.81% of the starch and 6.39% of the short lignocellulosic fibers, compared to the fresh weight of the core. The surface modification method using steam explosion succeeded in removing a low proportion of hemicellulose and lignin in the fibers coming from the shims, according to what was shown by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC), achieving increased σmax and ε from the tensile test and greater thermal stability compared to its native state. The sap presented hygroscopic behavior by FT-IR and the highest thermal stability from TGA, while the starch from the core presented the lowest hygroscopic character and thermal stability. Although the pseudostem supplied two types of fibers, lower lignin content was identified in those from the core. Finally, the yarns were elaborated by using the fibers of the sheaths in their native and steam-exploded states, identifying differences in the processing and their respective physical and mechanical properties. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

19 pages, 2487 KiB  
Article
Preparation of Geopolymeric Materials from Industrial Kaolins, with Variable Kaolinite Content and Alkali Silicates Precursors
by Sergio Martínez-Martínez, Karima Bouguermouh, Nedjima Bouzidi, Laila Mahtout, Pedro J. Sánchez-Soto and Luis Pérez-Villarejo
Materials 2024, 17(8), 1839; https://doi.org/10.3390/ma17081839 - 16 Apr 2024
Cited by 3 | Viewed by 803
Abstract
In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two [...] Read more.
In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two from Algeria and one from Charente (France), have been considered. In particular, chemical and mineralogical characterization revealed elements distinct of Si and Al, and the content of pure kaolinite and secondary minerals. Metakaolinite was obtained by grinding and sieving raw kaolin at 80 μm and then by thermal activation at 750 °C for 1 h. This metakaolinite has been used as a base raw material to obtain geopolymers, using for this purpose different formulations of alkaline silicates with NaOH or KOH and variable Si/K molar ratios. The formation of geopolymeric materials by hydroxylation and polycondensation characterized with different Si/Al molar ratios, depending on the original metakaolinite content, has been demonstrated. Sodium carbonates have been detected by XRD and FTIR, and confirmed by SEM-EDS, in two of these geopolymer materials being products of NaOH carbonation. Full article
(This article belongs to the Special Issue Research on Alkali-Activated Materials)
Show Figures

Figure 1

19 pages, 2597 KiB  
Review
Research Progress in Fuel Oil Production by Catalytic Pyrolysis Technologies of Waste Plastics
by Liu An, Zonglan Kou, Renjie Li and Zhen Zhao
Catalysts 2024, 14(3), 212; https://doi.org/10.3390/catal14030212 - 21 Mar 2024
Cited by 2 | Viewed by 2000
Abstract
Improper disposal of waste plastic has caused serious ecological and environmental pollution problems. Transforming plastics into high value-added chemicals can not only achieve efficient recycling of waste plastics, but is also an effective way to control white pollution. The catalyst selectively breaks the [...] Read more.
Improper disposal of waste plastic has caused serious ecological and environmental pollution problems. Transforming plastics into high value-added chemicals can not only achieve efficient recycling of waste plastics, but is also an effective way to control white pollution. The catalyst selectively breaks the C–C bond of polyolefin plastic under heat treatment and converts it into liquid fuel, thus realizing sustainable recycling of plastics and has a good development prospect. This review provides a detailed overview of the current development of catalytic pyrolysis, catalytic hydrolysis, solvent decomposition, and supercritical hydrothermal liquefaction for cracking plastics to make fuel oil. The reaction mechanism, influencing factors, and promoting effects of catalysts in various degradation technologies are analyzed and summarized, and the latest proposed tandem reaction for degrading plastics is briefly introduced. Finally, some optimization paths of waste plastic pyrolysis to fuel oil technology are proposed: synergies between mixed raw materials, in-depth exploration of catalysts, design and manufacture of reactors that match the pyrolysis technology. All these are important research directions for promoting the industrialization of plastic pyrolysis to fuel oil. Full article
(This article belongs to the Special Issue Surface Microstructure Design for Advanced Catalysts)
Show Figures

Graphical abstract

20 pages, 7318 KiB  
Article
Influence of Particle Size on Compressed Earth Blocks Properties and Strategies for Enhanced Performance
by Chiara Turco, Adilson Paula Junior, Cláudia Jacinto, Jorge Fernandes, Elisabete Teixeira and Ricardo Mateus
Appl. Sci. 2024, 14(5), 1779; https://doi.org/10.3390/app14051779 - 22 Feb 2024
Cited by 3 | Viewed by 940
Abstract
In the context of sustainable building development, Compressed Earth Blocks (CEBs) have garnered increasing attention in recent years owing to their minimal environmental and economic impact. However, owing to the inherent diversity of raw soil and the production process’s reliance on expertise, the [...] Read more.
In the context of sustainable building development, Compressed Earth Blocks (CEBs) have garnered increasing attention in recent years owing to their minimal environmental and economic impact. However, owing to the inherent diversity of raw soil and the production process’s reliance on expertise, the properties of these blocks are subjected to multifaceted influences. Among these, the significance of soil particle size variation often remains overlooked, leaving its impact ambiguous. This study endeavours to address this gap in existing research by delving into this aspect. Two distinct batches of CEBs were produced by adjusting the grain size curve of a single type of sieved soil with different maximum mesh openings: 2 mm for R1 CEBs and 12.5 mm for R2 CEBs. Experimental results reveal significant differences in thermophysical characteristics: on average, R1 blocks show superior thermal performance, boasting a 23% reduction in thermal conductivity compared to R2 blocks, and are lighter, with an 8% decrease in dry bulk density. Although no significant changes in mechanical parameters were observed, finer-structured R1 blocks showed a 25% greater tendency to absorb water due to changes in their porous structure. This study sheds light on the sensitivity of thermal parameters to changes in soil particle size and shows that blocks with finer particles exhibit poorer heat conduction and heat diffusion. Besides providing new insights into the literature, this research also provides a strategic approach to optimise the thermophysical properties of CEBs. By understanding the influence of particle size, researchers and practitioners can now develop strategies to enhance these properties and improve the overall performance of CEBs. Full article
Show Figures

Figure 1

21 pages, 13325 KiB  
Article
Holistic Investigation of the Inert Thermal Treatment of Industrially Shredded NMC 622 Lithium-Ion Batteries and Its Influence on Selective Lithium Recovery by Water Leaching
by Christin Stallmeister and Bernd Friedrich
Metals 2023, 13(12), 2000; https://doi.org/10.3390/met13122000 - 12 Dec 2023
Cited by 3 | Viewed by 1584
Abstract
The thermal treatment of lithium-ion batteries is an already industrially implemented process step in some recycling chains. It provides the advantages of controlled organic removal and conditioning of the black mass for further process steps, such as water-based early-stage lithium recovery. Therefore, a [...] Read more.
The thermal treatment of lithium-ion batteries is an already industrially implemented process step in some recycling chains. It provides the advantages of controlled organic removal and conditioning of the black mass for further process steps, such as water-based early-stage lithium recovery. Therefore, a deep understanding of ongoing reactions and the influence of the process parameters on the reaction products is crucial. This study investigates the inert thermal treatment of an industrial end-of-life NMC 622 battery shredder in a 200 g scale regarding the influence of process parameters on the reaction products, separation of black mass, and its water leaching. Therefore, the off-gas produced during the thermal treatment was analyzed by FTIR, and afterwards, a sieve classification of the shredder was carried out. The separated black mass was further analyzed for residual organics by pyrolysis GC-MS and for its phase composition by XRD. A water leaching of the different thermally treated black masses was carried out for Li recovery. Occurring reactions during the thermal treatment process, such as the different stages of organic removal and reduction reactions in the active material, were derived based on the collected data. These reactions mainly affect the water-based Li recovery, which is related to Li2CO3 generation. The maximum pyrolysis temperature has the greatest effect on the Li recovery. After a treatment at 642 °C, 62.4% of Li was leached. Reactions of the co-elements F, P and Al with Li during the thermal treatment were identified as the limiting factors regarding Li recovery. Full article
Show Figures

Figure 1

31 pages, 12274 KiB  
Article
Thermal Regeneration of Spent Sand with Furfuryl Binder from an Ecological and Economic Point of View
by Mariusz Łucarz and Michał Dereń
Materials 2023, 16(22), 7102; https://doi.org/10.3390/ma16227102 - 9 Nov 2023
Viewed by 855
Abstract
The recovery of the grain matrix from spent moulding sand is a constant challenge in making the best possible use of the deposits of quartz sand material, as well as in protecting them. In the case of spent sand with organic binders, the [...] Read more.
The recovery of the grain matrix from spent moulding sand is a constant challenge in making the best possible use of the deposits of quartz sand material, as well as in protecting them. In the case of spent sand with organic binders, the best method to recover the grain matrix is thermal regeneration. However, this method is expensive and requires adequate attention to the emission of harmful compounds into the atmosphere. This paper presents a new concept for implementing the thermal regeneration process. A suitable regeneration temperature was adopted for the furfuryl binder moulding sand, and a change in the design of the device was introduced in the area of the utilisation of gases generated during the combustion of the spent binder. To confirm the assumptions made, and to assess the appropriate suitability of the material recovered, the technological parameters of the material obtained were verified, namely, ignition losses, sieve analysis, bending strength, and pH value. The consumption of media for the process was also analysed from an economic point of view, as well as the emission of BTEX (a mixture of volatile aromatic hydrocarbons-benzene, toluene and three isomers of xylene) gases under different conditions of the process. On the basis of the research conducted, it was concluded that lowering the regeneration temperature of regeneration does not adversely affect the technological parameters of the moulding sand on the regenerate matrix. Changing the design of the regenerator does not result in increased emissions of harmful substances to the environment. Studies indicate that the appropriate setting of thermal regeneration parameters and the optimal design of the employed equipment are favourable factors in reducing the cost of the process while not compromising the quality of the moulding sand and the environmental impact. Full article
(This article belongs to the Special Issue Research on the Microstructure and Properties of Metal Alloys)
Show Figures

Figure 1

15 pages, 2623 KiB  
Article
Photoprotective Cosmetic Emulsions Based on Brazilian Smectite Clays
by Rafaella Resende de Almeida Duarte, Taynah Pereira Galdino, Alisson Mendes Rodrigues, Marcus Vinicius Lia Fook, Gelmires de Araújo Neves and Suédina Maria de Lima Silva
Sustainability 2023, 15(19), 14563; https://doi.org/10.3390/su151914563 - 7 Oct 2023
Viewed by 1175
Abstract
Photoprotective cosmetic emulsions have gained significant attention in the cosmetic industry due to their ability to protect against harmful ultraviolet radiation (UV). In this work, photoprotective cosmetic emulsions were prepared by adding 5% natural (Branca and Verde Inferior) and commercial (Brasgel and Cloisite) [...] Read more.
Photoprotective cosmetic emulsions have gained significant attention in the cosmetic industry due to their ability to protect against harmful ultraviolet radiation (UV). In this work, photoprotective cosmetic emulsions were prepared by adding 5% natural (Branca and Verde Inferior) and commercial (Brasgel and Cloisite) Brazilian clays to different photoprotective emulsions with and without UVA and UVB chemical filters (EB, EB1 and EB2). All clays were benefited (crushed, milled and sieved) and characterized (X ray fluorescence and X ray diffraction). Additionally, a thermal treatment (120 °C by 24 h) was accomplished in the natural clays, aimed at decontamination. The emulsions were characterized for their organoleptic properties, centrifugation test, viscous behavior, pH values and in vitro sun protection factor (SPF). The cosmetic emulsions prepared without any addition of UV chemical filters presented the lowest in vitro and UVB absorption values because the clays used (Cloisite and Branca) did not have the potential to absorb UV radiation. Although some of the cosmetic emulsions prepared from EB1 and EB2 photoprotective emulsions presented phase separation, all of them presented in vitro SPF values according to the Brazilian standard (above 6), indicating that they have the potential to be used in the cosmetic industry. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

19 pages, 6445 KiB  
Article
Possibilities of RDF Pyrolysis Products Utilization in the Face of the Energy Crisis
by Magdalena Skrzyniarz, Marcin Sajdak, Monika Zajemska, Anna Biniek-Poskart, Józef Iwaszko and Andrzej Skibiński
Energies 2023, 16(18), 6695; https://doi.org/10.3390/en16186695 - 19 Sep 2023
Cited by 1 | Viewed by 1862
Abstract
The main goal of the study was to assess the possibility of practical use of products of pyrolysis of refuse-derived fuel (RDF), i.e., pyrolysis gas, biochar and pyrolysis oil, as an alternative to standard fossil fuels. The subject matter of the paper reaches [...] Read more.
The main goal of the study was to assess the possibility of practical use of products of pyrolysis of refuse-derived fuel (RDF), i.e., pyrolysis gas, biochar and pyrolysis oil, as an alternative to standard fossil fuels. The subject matter of the paper reaches out to the challenges faced by the global economy, not only in the context of the energy crisis, but also in the context of the energy transformation currently beginning in Europe. The increase in fuel and energy prices prompts countries to look for alternative solutions to Russian minerals. At the same time, the growing amount of municipal waste forces the implementation of solutions based on energy recovery (the amount of municipal waste per EU inhabitant in 2021 is 530 kg). One such solution is pyrolysis of RDF, i.e., fuels produced from the over-sieve fraction of municipal waste. In Poland, insufficient processing capacity of thermal waste conversion plants has led to significant surpluses of RDF (1.2 million Mg of undeveloped RDF in Poland in 2021). RDF, due to their high calorific value, can be a valuable energy resource (16–18 MJ/k). This issue is analyzed in this study. Full article
(This article belongs to the Special Issue Biomass and Waste Conversion: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 10268 KiB  
Article
Extraction and Characterization of Cellulose Obtained from Banana Plant Pseudostem
by Rosa E. A. Nascimento, Mónica Carvalheira, João G. Crespo and Luísa A. Neves
Clean Technol. 2023, 5(3), 1028-1043; https://doi.org/10.3390/cleantechnol5030052 - 29 Aug 2023
Cited by 2 | Viewed by 4331
Abstract
Each year, the amount of residue generated from food production increases, caused by the continuous population growth. Banana is one of the most consumed fruits in the world, with an annual production of 116.78 million tonnes. However, just 12 wt% of the plant, [...] Read more.
Each year, the amount of residue generated from food production increases, caused by the continuous population growth. Banana is one of the most consumed fruits in the world, with an annual production of 116.78 million tonnes. However, just 12 wt% of the plant, corresponding to the bunch, is effectively used. After the bunch is harvested, the rest of the plant is disposed of as residue, the pseudostem (PS) being the main constituent. Aiming to give an added-value application to the PS, this work is focused on the extraction of cellulose from this waste. For this, three different fractions of PS particles—a non-classified fraction (milled but without sieving), a fine fraction (≤180 μm), and a coarse fraction (≥2000 μm)—and three extraction methods—alkaline-acid hydrolysis, enzymatic hydrolysis, and TEMPO oxidation—were studied to determine the most promising method for the cellulose extraction from the PS. The alkaline-acid hydrolysis samples presented a higher number of amorphous compounds, resulting in lower crystallinity (13.50% for the non-classified fraction). The TEMPO-oxidation process, despite allowing the highest cellulose extraction yield (25.25 ± 0.08% on a dried basis), resulted in samples with lower thermal stability (up to 200 °C). The most promising extraction method was enzymatic, allowing the extraction of 14.58 ± 0.30% of cellulose (dried basis) and obtaining extracts with the highest crystallinity (68.98% for the non-classified fraction) and thermal stability (until 250 °C). Full article
(This article belongs to the Special Issue Valorization of Industrial and Agro Waste)
Show Figures

Figure 1

Back to TopTop