Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,272)

Search Parameters:
Keywords = water holding capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2756 KiB  
Article
Biopolymer from Annona muricata Residues as a Potential Sustainable Raw Material for Industrial Applications
by Igor F. S. Ramos, Samuel C. Dias, Talissa B. C. Lopes, Francisco T. dos S. Silva Júnior, Ricardo de Araújo, Stanley J. C. Gutierrez, Claudia Pessoa, Josy A. Osajima, Marcia S. Rizzo, Edson C. Silva-Filho, Manuela Amorim, Óscar Ramos, Alessandra B. Ribeiro and Marcilia P. Costa
Polysaccharides 2024, 5(4), 523-539; https://doi.org/10.3390/polysaccharides5040033 - 26 Sep 2024
Abstract
Annona muricata is a fruit species belonging to the Annonaceae family, which is native to the warmer tropical areas of North and South America. A large amount of discarded residue from A. muricata is of interest for obtaining new industrial inputs. To propose [...] Read more.
Annona muricata is a fruit species belonging to the Annonaceae family, which is native to the warmer tropical areas of North and South America. A large amount of discarded residue from A. muricata is of interest for obtaining new industrial inputs. To propose the applications of the biopolymer from A. muricata residues (Biop_AmRs), this study aimed to characterize this input chemically and functionally, as well as to evaluate its potential for hemocompatibility and cytotoxicity activity in vitro. Biop_AmRs is an anionic heteropolysaccharide composed of glucose, arabinose, xylose, galactose, mannose, uronic acid, and proteins. This biopolymer exhibited a semicrystalline structure and good thermal stability. Biop_AmRs exhibited excellent water holding capacity, emulsifying properties, and mucoadhesiviness and demonstrated hemocompatibility and cytocompatibility on the L929 cell line. These results indicate possible applications for this biopolymer as a potential environmentally friendly raw material in the food, pharmaceutical, biomedical, and cosmetic industries. Full article
(This article belongs to the Topic Polymers from Renewable Resources, 2nd Volume)
Show Figures

Figure 1

21 pages, 1500 KiB  
Article
Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt
by Ana Maria Blejan, Violeta Nour, Alexandru Radu Corbu and Georgiana Gabriela Codină
Gels 2024, 10(10), 616; https://doi.org/10.3390/gels10100616 - 25 Sep 2024
Abstract
Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (w/w) levels in stirred-type [...] Read more.
Fruit processing by-products could represent a sustainable ingredient for developing innovative dairy products. The present study was conducted to develop a novel functional yogurt by adding bilberry pomace powder (BPP) at 0.5%, 1.0%, and 1.5% (w/w) levels in stirred-type yogurt production to confer color and to increase the dietary fiber and polyphenol content. Physicochemical properties of the yogurt samples, including color parameters, titratable acidity, pH, water holding capacity (WHC), and syneresis, as well as textural and rheological properties, were evaluated in yogurts on the 1, 14, and 28 days of refrigerated storage (4 °C). In addition, total phenolic content, total anthocyanin content, and radical scavenging activity were determined in yogurts, and sensory analysis was conducted. The results showed that BPP is a valuable source of polyphenols, dietary fiber, and oils rich in n-3 polyunsaturated fatty acids (n-3 PUFAs, n-6/n-3 ratio = 0.91). The incorporation of BPP imparted an attractive purple color to the yogurts, increased WHC, and reduced syneresis. Moreover, the addition of BPP improved the rheological properties, demonstrating that a more dense and stable yogurt gel network structure was obtained than the control. The yogurt enriched with 1.0% BPP received the highest scores for color, consistency, taste, and overall acceptability. Hence, bilberry pomace powder might be used as an ingredient to improve the nutritional and functional value of yogurts. Full article
(This article belongs to the Special Issue Advanced Gels in the Food System)
Show Figures

Figure 1

16 pages, 1741 KiB  
Article
Water-Light Interaction and Its Effect on the Morphophysiology of Cedrela fissilis Vell. Seedlings
by Juliana Milene Silverio, Silvana de Paula Quintão Scalon, Cleberton Correia Santos, Jéssica Aline Linné, Anderson dos Santos Dias, Rodrigo da Silva Bernardes and Thaise Dantas
Plants 2024, 13(18), 2654; https://doi.org/10.3390/plants13182654 - 22 Sep 2024
Abstract
Plant responses to different light and water availability are variable among species and their respective phenotypic plasticity, and the combination between these two abiotic factors can alleviate or intensify stressful effects. This study aimed to evaluate the impacts of exposure time of Cedrela [...] Read more.
Plant responses to different light and water availability are variable among species and their respective phenotypic plasticity, and the combination between these two abiotic factors can alleviate or intensify stressful effects. This study aimed to evaluate the impacts of exposure time of Cedrela fissilis Vell. seedlings to different water and light availability considering natural radiation variations and the interaction of these factors. Seedlings were submitted to combinations of three shading levels—SH (0, 30 and 70%) and three water regimes based on the water holding capacity (WHC) in the substrate, constituting nine cultivation conditions: T1—0% SH + 40% WHC; T2—0% SH + 70% WHC; T3—0% SH + 100% WHC; T4—30% SH + 40% WHC; T5—30% SH + 70% WHC; T6—30% SH + 100% WHC; T7—70% SH + 40% WHC; T8—70% SH + 70% WHC; T9—70% SH + 100% WHC. C. fissilis seedlings are sensitive to water deficit, here represented by 40% WHC, regardless of exposure time, and when cultivated in full sun even though there are variations in radiation, the stressful effects were enhanced, acting in a synergistic manner. The condition that provided better gas exchange performance and greater total dry mass accumulation for C. fissilis seedlings was 30% shading combined with 100% WHC. C. fissilis seedlings have physiological plasticity and resilience to survive under different water and light conditions. Full article
(This article belongs to the Special Issue Physiology and Seedling Production of Plants)
Show Figures

Figure 1

17 pages, 3502 KiB  
Article
Effect of High-Pressure Processing Treatment on the Physicochemical Properties and Volatile Flavor of Mercenaria mercenaria Meat
by Xingli Xue, Di Wang, Min Li, Yongren Li, Yongjun Guo, Xiaoqing Ren and Chunsheng Li
Molecules 2024, 29(18), 4466; https://doi.org/10.3390/molecules29184466 - 20 Sep 2024
Abstract
High-pressure processing (HPP) technology can significantly improve the texture and flavor of Mercenaria mercenaria. This study aimed to investigate the effect of HPP treatment with varying levels of pressure (100, 200, 300, 400, 500, and 600 MPa) and a holding time of [...] Read more.
High-pressure processing (HPP) technology can significantly improve the texture and flavor of Mercenaria mercenaria. This study aimed to investigate the effect of HPP treatment with varying levels of pressure (100, 200, 300, 400, 500, and 600 MPa) and a holding time of 8 min at 20 °C on the physicochemical properties and volatile flavors of M. mercenaria. The significant changes in hardness, resilience, and water holding capacity occurred with increasing pressure (p < 0.05), resulting in improved meat quality. Scanning electron microscopy (SEM) was utilized to observe the decomposition of muscle fibers in M. mercenaria due to varying pressures, which explains the differences in texture of M. mercenaria. Different pressure treatments also had an influence on the volatile flavor of M. mercenaria, and the quantities of low-molecular-weight aldehydes (hexanal, heptanal, and nonanal) with a fishy taste decreased dramatically following 400 and 500 MPa HPP treatments. Furthermore, the level of 2-Methylbutyraldehyde, which is related to sweetness, increased significantly following 400 MPa HPP treatment. The study found that 400 MPa HPP treatment resulted in minor nutrient losses and enhanced sensory quality. The results of this study provide a theoretical basis for the application of HPP treatment to M. mercenaria. Full article
(This article belongs to the Special Issue Yummy Chemistry: Volatile Compounds in Food Products)
Show Figures

Figure 1

22 pages, 2208 KiB  
Article
Unraveling the Complexities of Beef Marination: Effect of Marinating Time, Marination Treatments, and Breed
by Sena Ardicli, Ozge Ardicli and Hakan Ustuner
Foods 2024, 13(18), 2979; https://doi.org/10.3390/foods13182979 - 20 Sep 2024
Abstract
The present study focused on evaluating the effects of beef marination on quality traits and consumer acceptability. In this context, m. longissimus thoracis et lumborum and m. semimembranosus samples (n = 192) were obtained from Aberdeen Angus, Hereford, Charolais, and Limousine bulls and [...] Read more.
The present study focused on evaluating the effects of beef marination on quality traits and consumer acceptability. In this context, m. longissimus thoracis et lumborum and m. semimembranosus samples (n = 192) were obtained from Aberdeen Angus, Hereford, Charolais, and Limousine bulls and were marinated with milk (pasteurized, 100%), garlic and olive oil (2.35 g/500 mL), and lemon (citrus) juice (31% orange juice, 31% lemon juice, 38% distilled water) for 12, 24, and 72 h. Marinade components were selected based on traditional culinary practices and their scientifically proven effects on meat quality. Beef samples on day 0 and non-marinated samples were used as control groups. Beef color, water holding capacity, pH, cooking loss, and Warner–Bratzler shear force were measured three times for each sample. A taste panel assessment was performed to determine the sensory characteristics. Statistical analysis was performed using general linear model (GLM) procedures followed by Tukey’s post-hoc comparison. Results revealed that marination time, as well as its two- and three-way interactions, significantly influenced beef quality parameters. These results indicate that the cattle breed is an important factor in evaluating the effectiveness of beef marination applications. The olive oil−garlic marinade was the most preferred by the panel across both types of muscle, as indicated by sensory evaluation results. The findings will not only enrich the scientific literature but also have practical implications for the beef industry. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

13 pages, 1835 KiB  
Article
Role of Heat-Shock Proteins in the Determination of Postmortem Metabolism and Meat Quality Development of DFD Meat
by Muawuz Ijaz, Xin Li, Chengli Hou, Zubair Hussain and Dequan Zhang
Foods 2024, 13(18), 2965; https://doi.org/10.3390/foods13182965 - 19 Sep 2024
Abstract
This research explored the potential role of various heat-shock proteins (HSPs) in the determination of postmortem metabolism and the development of meat quality of normal, atypical DFD, and typical DFD beef. Beef longissimus thoracis muscle samples were classified into normal, atypical DFD, and [...] Read more.
This research explored the potential role of various heat-shock proteins (HSPs) in the determination of postmortem metabolism and the development of meat quality of normal, atypical DFD, and typical DFD beef. Beef longissimus thoracis muscle samples were classified into normal, atypical DFD, and typical DFD beef. The HSP27, HSP70, and HSP90 levels, meat quality parameters, and glycolytic metabolites were tested. The results showed that color coordinates (L*, a*, and b*), glycogen, and lactate contents were lower, whereas water-holding capacity was higher in the typical DFD beef than in the normal and atypical DFD beef (p < 0.05). The expression of HSP27 on day 1 was higher in atypical DFD beef. However, expressions of HSP70 on days 1 and 3 were higher in typical DFD, while the expression of HSP90 on day 1 was higher in atypical and typical DFD compared to the normal beef (p < 0.05). Interestingly, the expression of HSP27 was positively correlated with shear force readings. HSP70 and HSP90 presented a direct correlation with pH and water-holding capacity and an indirect correlation with a* and b*, glycogen and lactate contents (p < 0.05). The study concluded that the heat-shock proteins could influence the formation of DFD beef possibly by regulating the development of postmortem metabolism and meat quality traits. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

17 pages, 986 KiB  
Article
Exopolysaccharide (EPS) Produced by Leuconostoc mesenteroides SJC113: Characterization of Functional and Technological Properties and Application in Fat-Free Cheese
by Dominika Jurášková, Susana C. Ribeiro, Rita Bastos, Elisabete Coelho, Manuel A. Coimbra and Célia C. G. Silva
Macromol 2024, 4(3), 680-696; https://doi.org/10.3390/macromol4030040 - 18 Sep 2024
Abstract
A Leuconostoc mesenteroides strain (SJC113) isolated from cheese curd was found to produce large amounts of a mucoid exopolysaccharide (EPS). An analysis revealed the glucan nature of the EPS with 84.5% (1→6)-linked α-d-glucose units and 5.6% (1,3→6)-linked α-d-glucose units [...] Read more.
A Leuconostoc mesenteroides strain (SJC113) isolated from cheese curd was found to produce large amounts of a mucoid exopolysaccharide (EPS). An analysis revealed the glucan nature of the EPS with 84.5% (1→6)-linked α-d-glucose units and 5.6% (1,3→6)-linked α-d-glucose units as branching points. The EPS showed 52% dextranase resistance and a yield of 7.4 ± 0.9 g/L from MRS medium supplemented with 10% sucrose within 48 h. Ln. mesenteroides SJC113 was also characterized and tested for the production of EPS as a fat substitute in fresh cheese. Strain SJC113 showed high tolerance to a wide range of NaCl concentrations (2, 5 and 10%), high β-galactosidase activity (2368 ± 24 Miller units), cholesterol-reducing ability (14.8 ± 4.1%), free radical scavenging activity (11.7 ± 0.7%) and hydroxyl scavenging activity (15.7 ± 0.4%). The strain had no virulence genes and was sensitive to clinically important antibiotics such as ampicillin, tetracycline and chloramphenicol. Ln. mesenteroides SJC113 produced highly viscous EPS during storage at 8 °C in skim milk with 5% sucrose. Therefore, these conditions were used for EPS production in skim milk before incorporation into fresh cheese. Four types of fresh cheese were produced: full-fat cheese (FF) made from pasteurized whole milk, non-fat cheese (NF) made from pasteurized skim milk, non-fat cheese made from skim milk fermented with Ln. mesenteroides without added sugar (NFLn0) and non-fat cheese made from skim milk fermented with Ln. mesenteroides with 5% sucrose (NFLn5). While the NF cheeses had the highest viscosity and hardness, the NFLn5 cheeses showed lower firmness and viscosity, higher water-holding capacity and lower weight loss during storage. Overall, the NFLn5 cheeses had similar rheological properties to full-fat cheeses with a low degree of syneresis. It was thus shown that the glucan-type EPS produced by Ln. mesenteroides SJC113 can successfully replace fat without altering the texture of fresh cheese. Full article
Show Figures

Figure 1

15 pages, 6275 KiB  
Article
Optimal Irrigation and Fertilization Enhanced Tomato Yield and Water and Nitrogen Productivities by Increasing Rhizosphere Microbial Nitrogen Fixation
by Hongfei Niu, Tieliang Wang, Yongjiang Dai, Mingze Yao, Bo Li, Jiaqi Zheng, Lizhen Mao, Mingyu Zhao, Zhanyang Xu and Feng Zhang
Agronomy 2024, 14(9), 2111; https://doi.org/10.3390/agronomy14092111 - 17 Sep 2024
Abstract
Irrigation and nitrogen application rates have significant effects on greenhouse tomato yields, as well as water and nitrogen use efficiencies, but little is known regarding how these rates affect plant–microbiome interactions and how the associated changes might impact tomato yields. In this greenhouse [...] Read more.
Irrigation and nitrogen application rates have significant effects on greenhouse tomato yields, as well as water and nitrogen use efficiencies, but little is known regarding how these rates affect plant–microbiome interactions and how the associated changes might impact tomato yields. In this greenhouse study conducted over two years, the effects of three irrigation levels (moderate deficit with 65–75% water holding capacity threshold, slight deficit with 75–85%, and sufficient irrigation with 85–95%) and four nitrogen application levels (60, 120, 240, and 360 kg ha−1) on tomato growth, yield, water and nitrogen productivities, and rhizosphere microbial diversities and functions were investigated. The results demonstrated that the highest tomato leaf area, dry biomass, yield, and water and nitrogen productivities were obtained under the treatment with sufficient irrigation. With increasing nitrogen application, the tomato leaf area, dry biomass, yield, and water and nitrogen productivities showed a trend of first increasing and then decreasing. Overall, the treatment (N2W3) with sufficient irrigation and 240 kg ha−1 N was associated with the highest tomato growth, yield, and water and nitrogen productivities. Moreover, optimal irrigation and nitrogen application obviously altered the structures of rhizosphere bacterial and fungal communities, particularly recruiting microbiota conferring benefits to tomato growth and nitrogen fixation—namely, Lysobacter and Bradyrhizobium. Ultimately, optimal irrigation and nitrogen application significantly increased the relative abundances of functions related to carbon, sulfur, and nitrogen metabolism, especially nitrogen fixation. In summary, optimal irrigation and fertilization enhanced tomato yield, as well as water and nitrogen productivities by increasing the nitrogen fixation functions of the rhizosphere microbiome. Our results provide significant implications for tomato cultivation in greenhouses, in terms of optimized irrigation and fertilization. Full article
(This article belongs to the Special Issue Improving Irrigation Management Practices for Agricultural Production)
Show Figures

Figure 1

27 pages, 3122 KiB  
Article
Exploring the Impact of Solid-State Fermentation on Fava Bean Flour: A Comparative Study of Aspergillus oryzae and Rhizopus oligosporus
by Ophélie Gautheron, Laura Nyhan, Maria Garcia Torreiro, Ali Zein Alabiden Tlais, Claudia Cappello, Marco Gobbetti, Andreas Klaus Hammer, Emanuele Zannini, Elke K. Arendt and Aylin W. Sahin
Foods 2024, 13(18), 2922; https://doi.org/10.3390/foods13182922 - 15 Sep 2024
Abstract
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. [...] Read more.
Fava bean (Vicia faba L.) is a protein-rich pulse with high nutritional value, but its functional and sensory characteristics limit its application in foods. Solid-state fermentation (SSF) can modify the composition of plant proteins, modulate its functionality, and enhance the sensory aspects. In this study, fava bean flour (FB) was fermented with Aspergillus oryzae and Rhizopus oligosporus to produce FBA and FBR, respectively, ingredients with distinct nutritional, functional, and aroma characteristics. The protein content increased by 20% in FBA and 8% in FBR, while fat levels rose more significantly in FBR (+40%). The overall content of fermentable oligo-, di-, mono-saccharides, and polyols (FODMAPs) decreased by 47% (FBA) and 57% (FBR), although polyol production by A. oryzae was observed. SSF improved the nutritional profile of FBA and FBR, with a notable increase in the concentration of essential amino acids observed, and a reduction in most antinutrients, with the exception of trypsin inhibitors. SSF resulted in the formation of aggregates, which increased the particle size and reduced protein solubility. Emulsions prepared with the fermented ingredients separated faster, and the foaming capacity of both FBA and FBR was decreased, but an increase in water-holding capacity was observed. SSF resulted in the production of predominantly savoury-associated aroma compounds, with compounds characteristic of metallic and mouldy aromas reduced. These results indicate the potential of SSF to transform FB with enhanced nutritional value and improved sensory and functional properties. Full article
(This article belongs to the Special Issue Novel Eco-Friendly Technologies to Improve Food Safety and Quality)
Show Figures

Figure 1

20 pages, 4982 KiB  
Article
Effects of Soy Protein Isolate and Inulin Conjugate on Gel Properties and Molecular Conformation of Spanish Mackerel Myofibrillar Protein
by Wei Wang, Sirui Ma, Qing Shao and Shumin Yi
Foods 2024, 13(18), 2920; https://doi.org/10.3390/foods13182920 - 15 Sep 2024
Abstract
The gel properties and molecular conformation of Spanish mackerel myofibrillar protein (MP) induced by soy protein isolate–inulin conjugates (SPI–inulin conjugates) were investigated. The addition of SPI–inulin conjugates significantly enhanced the quality of the protein gel. An analysis of different additives was conducted to [...] Read more.
The gel properties and molecular conformation of Spanish mackerel myofibrillar protein (MP) induced by soy protein isolate–inulin conjugates (SPI–inulin conjugates) were investigated. The addition of SPI–inulin conjugates significantly enhanced the quality of the protein gel. An analysis of different additives was conducted to assess their impact on the gel strength, texture, water-holding capacity (WHC), water distribution, intermolecular force, dynamic rheology, Raman spectrum, fluorescence spectrum, and microstructure of MP. The results demonstrated a substantial improvement in the strength and water retention of the MP gel with the addition of the conjugate. Compared with the control group (MP), the gel strength increased from 35.18 g·cm to 41.90 g·cm, and WHC increased from 36.80% to 52.67% with the inclusion of SPI–inulin conjugates. The hydrogen bond content was notably higher than that of other groups, and hydrophobic interaction increased from 29.30% to 36.85% with the addition of SPI–inulin conjugates. Furthermore, the addition of the conjugate altered the secondary structure of the myofibrillar gel, with a decrease in α-helix content from 62.91% to 48.42% and an increase in β-sheet content from 13.40% to 24.65%. Additionally, the SPI–inulin conjugates led to a significant reduction in the endogenous fluorescence intensity of MP. Atomic force microscopy (AFM) results revealed a substantial increase in the Rq value from 8.21 nm to 20.21 nm. Adding SPI and inulin in the form of conjugates is an effective method to improve the gel properties of proteins, which provides important guidance for the study of adding conjugates to surimi products. It has potential application prospects in commercial surimi products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 2893 KiB  
Article
Effect of Solid-State Fermentation of Hericium erinaceus on the Structure and Physicochemical Properties of Soluble Dietary Fiber from Corn Husk
by He Ban, Qiannan Liu, Lin Xiu, Dan Cai and Jingsheng Liu
Foods 2024, 13(18), 2895; https://doi.org/10.3390/foods13182895 - 12 Sep 2024
Abstract
Corn husk, a by-product of corn starch production and processing, contains high-quality dietary fiber (DF). Our study compares and analyzes the impact of Hericium erinaceus solid-state fermentation (SSF) on the structure and physicochemical characteristics of soluble dietary fiber (SDF) of corn husks. The [...] Read more.
Corn husk, a by-product of corn starch production and processing, contains high-quality dietary fiber (DF). Our study compares and analyzes the impact of Hericium erinaceus solid-state fermentation (SSF) on the structure and physicochemical characteristics of soluble dietary fiber (SDF) of corn husks. The study also investigates the kinetics of SSF of H. erinaceus in this process. The scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) results revealed significant structural changes in corn husk SDF before and after fermentation, with a significant elevation in the functional group numbers. The data indicate that the fermented corn husk SDF’s water-holding, swelling, and oil-holding capacities increased to 1.57, 1.95, and 1.80 times those of the pre-fermentation SDF, respectively. Additionally, the results suggest that changes in extracellular enzyme activity and nutrient composition during SSF of H. erinaceus are closely associated with the mycelium growth stage, with a mutual promotion or inhibition relationship between the two. Our study offers a foundation for corn husk SDF fermentation and is relevant to the bioconversion of maize processing by-products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

16 pages, 5306 KiB  
Article
Investigation of Sewage Sludge–Derived Biochar for Enhanced Pollutant Adsorption: Effect of Particle Size and Alkali Treatment
by Andy Kofi Agoe, Stavros G. Poulopoulos, Yerbol Sarbassov and Dhawal Shah
Energies 2024, 17(18), 4554; https://doi.org/10.3390/en17184554 - 11 Sep 2024
Abstract
Sewage sludge (SS) holds promise for environmental, agricultural, and energy applications. However, its direct use is limited due to contaminant concerns. Pyrolysis can turn SS into beneficial products like bio-oil and biochar. This study explores biochar production from SS pyrolysis and its potential [...] Read more.
Sewage sludge (SS) holds promise for environmental, agricultural, and energy applications. However, its direct use is limited due to contaminant concerns. Pyrolysis can turn SS into beneficial products like bio-oil and biochar. This study explores biochar production from SS pyrolysis and its potential for pollutant adsorption. The effects of pyrolysis temperature (500, 650, 850 °C) and SS particle size (800–1000 µm, 400–800 µm, 100–400 µm, ≤100 µm) on biochar yield and adsorption capacity for methylene blue and mercury were investigated. Regardless of particle size and temperature, SS-derived biochar exhibited second-order adsorption kinetics. Biochar with a particle size of 100–400 µm displayed the highest potential for methylene blue adsorption. Subsequent alkali treatment (biochar:NaOH = 3:4) of these particles significantly increased specific surface area from 27.5 m2/g to 144.27 m2/g and further enhanced adsorption capacities for both methylene blue (from 9 mg/g to 35 mg/g) and mercury (from 17 mg/g to 36 mg/g). These findings suggest that SS-derived biochar, particularly the 100–400 µm fraction with alkali treatment, presents a promising cost-effective adsorbent for water treatment, aligning with circular economy principles. Full article
Show Figures

Figure 1

14 pages, 440 KiB  
Article
Effect of Integrated Extraction Techniques on the Technofunctional and Bioactive Properties of Brosimum alicastrum Swartz Proteins
by María Fernanda Suárez-Hernández, Sara Gabriela Posada Ramirez, Darling del Carmen Castillo Cruz, Inocencio Higuera Ciapara, Neith Aracely Pacheco López, Iván Emanuel Herrera Pool and Jorge Carlos Ruiz-Ruiz
Foods 2024, 13(18), 2875; https://doi.org/10.3390/foods13182875 - 11 Sep 2024
Abstract
This study addresses the need for effective protein extraction and characterization to unlock the potential of underutilized plant resources like Brosimum alicastrum Swartz nuts, aiming to enhance their value as functional ingredients in food applications. Extraction methods, including pH modulation, ultrasound-assisted extraction, and [...] Read more.
This study addresses the need for effective protein extraction and characterization to unlock the potential of underutilized plant resources like Brosimum alicastrum Swartz nuts, aiming to enhance their value as functional ingredients in food applications. Extraction methods, including pH modulation, ultrasound-assisted extraction, and enzymatic hydrolysis, are employed to enhance technofunctional and bioactive properties. The protein extracts are evaluated for solubility, emulsifying capacity, foaming properties, and water/oil-holding capacities to assess their technofunctional potential. Additionally, the bioactive properties, such as antioxidant and anti-inflammatory activities, are analyzed to explore potential health benefits. The results demonstrate that integrated extraction techniques significantly improve the yield and quality of Brosimum alicastrum Swartz nut proteins. Enzymatic hydrolysis, in particular, produces hydrolysates with superior bioactive properties. These findings highlight the potential of Brosimum alicastrum Swartz proteins as valuable ingredients for the food and pharmaceutical industries, promoting the utilization of underexploited plant resources for sustainable and health-promoting applications. Full article
(This article belongs to the Special Issue Bioavailability and Health Benefits of Bioactive Compounds in Foods)
Show Figures

Figure 1

15 pages, 3019 KiB  
Article
Spatial Variability in Soil Water-Physical Properties in Southern Subtropical Forests of China
by Lili Han, Chao Wang, Jinghui Meng and Youjun He
Forests 2024, 15(9), 1590; https://doi.org/10.3390/f15091590 - 10 Sep 2024
Abstract
Quantification of soil water-physical properties and their spatial variation is important to better predict soil structure and functioning, as well as associated spatial patterns in the vegetation. The provision of site-specific soil data further facilitates the implementation of enhanced land use and management [...] Read more.
Quantification of soil water-physical properties and their spatial variation is important to better predict soil structure and functioning, as well as associated spatial patterns in the vegetation. The provision of site-specific soil data further facilitates the implementation of enhanced land use and management practices. Using geostatistical methods, this study quantified the spatial distribution of soil bulk density (SBD), soil moisture (SM), capillary water-holding capacity (CWHC), capillary porosity (CP), non-capillary porosity (NCP), and total porosity (TP) in southern subtropical forests located at the Tropical Forest Research Center in Pingxiang City, China. A topographic map (scale = 1:10,000) was used to create a grid of l km squares across the study area. At the intersections of the grid squares, the described soil water-physical properties were measured. By calculating the coefficient of variation for each soil water-physical property, all measured soil water-physical properties were found to show moderate spatial heterogeneity. Exponential, gaussian, spherical, and linear models were used to fit the semivariograms of the measured soil water-physical properties. Across all soil water-physical properties, the range A0 variable (i.e., the separation distance between the semivariance and the sill value) measured between 3419 m and 14,156 m. The nugget-to-sill ratio ranged from 9 to 41%, indicating variations in the level of spatial autocorrelation among the soil water-physical properties. Many of the soil water-physical properties were strongly correlated (as assessed using Pearson correlation coefficients). Spatial distribution maps of the soil water-physical properties created via ordinary kriging (OK) showed that most water-physical properties had clumped (aggregated) distributions. SBD showed the opposite spatial pattern to SM and CWHC. Meanwhile, CP and TP showed similar distributions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 5959 KiB  
Article
The Characterization of a Low-Calorie and Lactose-Free Brown Fermented Milk by the Hydrolysis of Different Enzymatic Lactose
by Han Tao, Shuo-Qian Li, Meng-Jia Fang, Wan-Hao Cai, Song Zhang and Hui-Li Wang
Foods 2024, 13(18), 2861; https://doi.org/10.3390/foods13182861 - 10 Sep 2024
Abstract
The adoption of brown fermented milk in the normal diet and daily beverages is accompanied by significant sugar intake and a high public health burden. To reduce the sugar content in dairy products while maintaining optimal nutritional properties, a novel low-calorie, lactose-free brown [...] Read more.
The adoption of brown fermented milk in the normal diet and daily beverages is accompanied by significant sugar intake and a high public health burden. To reduce the sugar content in dairy products while maintaining optimal nutritional properties, a novel low-calorie, lactose-free brown fermented milk was developed through enzymatic hydrolysis and the Maillard reaction. The optimal product was achieved using low-temperature lactase, where the lactose and glucose content were reduced 33-fold and 2.4-fold to 0.06 g/100 g and 13.32 g/L, respectively, meeting the criteria for being lactose-free (<0.5 g/100 g). Meanwhile, hazardous compounds such as 5-hydroxymethylfurfural and 3-deoxyglucosone were reduced by more than 20%. After 28 days of storage, the water-holding capacity and suspension stability remained notably stable, and the protein composition was also more enriched compared to commercial milk. It is expected that this low-calorie dairy product may promote growth in the dairy market. Full article
(This article belongs to the Special Issue Microorganisms and Enzymes in Fermented Products)
Show Figures

Figure 1

Back to TopTop