
Mech. Sci., 7, 49–59, 2016

www.mech-sci.net/7/49/2016/

doi:10.5194/ms-7-49-2016

© Author(s) 2016. CC Attribution 3.0 License.

Output decoupling property of planar flexure-based

compliant mechanisms with symmetric configuration

Y. S. Du1,2, T. M. Li1,2, Y. Jiang1,2, and J. L. Zhang1,2

1Manufacturing Engineering Institute, Department of Mechanical Engineering, Tsinghua University,

Beijing, 100084, China
2Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University,

Beijing, 100084, China

Correspondence to: T. M. Li (litm@mail.tsinghua.edu.cn)

Received: 26 October 2015 – Revised: 15 January 2016 – Accepted: 1 February 2016 – Published: 10 February 2016

Abstract. This paper presents the output decoupling property of planar flexure-based compliant mechanisms

with symmetric configuration. Compliance/stiffness modeling methods for flexure serial structures and flexure

parallel structures are first derived according to the matrix method. Analytical model of mechanisms with sym-

metric configuration is then developed to analyze the output decoupling property. The proposed analytical model

shows that mechanisms are output decoupled when they are symmetry about two perpendicular axes or when

they are composed of either three or an even number of identical fundamental forms distributed evenly around

the center. Finally, output compliances of RRR and 4-RRR compliant micro-motion stages are derived from the

analytical model and finite element analysis (FEA). The comparisons indicate that the results obtained from the

proposed analytical model are in good agreement with those derived from FEA, which validates the proposed

analytical model.

1 Introduction

Flexure-based compliant mechanisms, which have advan-

tages of no friction, no backlash, compact and monolithic

structure, and ease of fabrication, are usually used as micro-

positioning stages (Acer and Sabanovic, 2011; Li et al.,

2013; Yong and Lu, 2009). They can provide smooth mo-

tions through deflections of flexure hinges (Yong et al., 2008;

Handley et al., 2004). Due to these advantages, coupled

with nanometer positioning accuracy, flexure-based compli-

ant mechanisms have been widely used in many industrial

applications, such as scanning probe microscopy (Schitter et

al., 2007; Leang and Fleming, 2009), lithography (Choi and

Lee, 2005), nano-manipulation and manufacturing (Lai et al.,

2012; Verma et al., 2005), and biological science (Ando et

al., 2002; Kim et al., 2012). In addition, the flexure-based

compliant positioning mechanisms with ultrahigh precision

play more and more important roles in applications where a

high resolution motion is desirable, such as the MEMS sen-

sors and actuators, optical fiber alignment, and biological cell

manipulation (Wang and Zhang, 2008; Li et al., 2012; Zubir

et al., 2009).

Decoupling is the crucial property for parallel flexure-

based compliant mechanisms. Generally, a decoupled paral-

lel flexure-based compliant mechanism means that one ac-

tuator produces only one directional output motion without

affecting the motion of other axes. The decoupled parallel

flexure-based compliant mechanism should possess input de-

coupling and output decoupling properties (Li et al., 2012).

The input decoupling can be defined as actuator isolation,

which means that each actuator would not suffer extra loads

induced by the actuation of other actuators. The output de-

coupling means that one actuator only drives the output plat-

form in one axial direction. Generally, input coupling would

impose undesired loads on the actuator and may even damage

it. Output coupling would lead to complex kinematic models,

thus making precise control difficult to be implemented.

Numerous studies have been carried out to design de-

coupled flexure-based compliant mechanisms. Among the

investigations of flexure-based compliant parallel mecha-
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Figure 1. Flexure-based compliant mechanisms: (a) flexure serial structure; (b) flexure parallel structure.

nisms, the design of a totally decoupled one is first pro-

posed in the literature (Awtar and Slocum, 2007). It pre-

sented parallel kinematic XY flexure mechanism designs

based on systematic constraint patterns. These constraint ar-

rangements allowed large primary motions and small error

motions without running into over constraint problems. Ken-

ton and Leang (2012) built a mechanism by serially stack-

ing or nesting multiple one degree-of-freedom modules to

eliminate the cross-axis coupling. Polit and Dong (2011) pre-

sented the design, analysis, fabrication, and testing of a high-

bandwidth parallel kinematic nano-positioning XY stage.

The monolithic stage had two axes, and each axis was com-

posed of a doubly clamped beam and a parallelogram hy-

brid flexure. The parallelogram hybrid flexures were used to

decouple the actuation effect from the other axis. Thus, the

mechanism design decoupled the motion in the X and Y di-

rections and restricted parasitic rotations in the XY plane. Li

and Xu (2008, 2010) designed a decoupled XY flexure par-

allel kinematic manipulator. The output decoupling was al-

lowed by the employment of compound parallelogram flex-

ure. By contrast, the input decoupling was implemented by

actuation isolation, which was enabled by the double com-

pound parallelogram flexure with large transverse stiffness.

Qin et al. (2014) introduced a 2-DOF monolithic mechanism.

The statically indeterminate leaf parallelograms were used to

provide the decoupling effect, and the displacement of piezo-

electric actuator was amplified with a statically indeterminate

lever mechanism. The cross-axis coupling ratio was experi-

mentally measured to be below 1 %.

In the past decades, various decoupled compliant mech-

anisms have been developed. Nevertheless, there is rare

analytical model which can prove the output decoupling

property of flexure-based compliant mechanisms. Therefore,

the present study addresses the output decoupling prop-

erty of planar flexure-based compliant mechanisms com-

posed of notch flexure hinges. Based on compliance/stiffness

modeling methods, analytical model of mechanisms with

symmetric configuration is derived. To verify the output

decoupling property, the output compliances of the RRR

(revolute-revolute-revolute) and 4-RRR compliant micro-

motion stages are derived from the analytical model and

FEA.

The remaining sections of this paper are organized as fol-

lows. In Sect. 2, compliance/stiffness modeling methods are

derived, including the methods for flexure serial structures

and flexure parallel structures. In Sect. 3, the output decou-

pling properties of the mechanisms, which are symmetric

about two perpendicular axes or composed of several fun-

damental forms, are analyzed. And analytical model utilized

for explaining the output decoupling property is derived. In

Sect. 4, analytical model and FEA are used to analyze the

output decoupling property of the RRR and 4-RRR micro-

motion stages. Finally, conclusions are drawn in Sect. 5.

2 Compliance/stiffness modeling

Flexure-based compliant mechanisms can be classified into

two categories according to the kinematic structure: the flex-

ure serial structure (Fig. 1a) and the flexure parallel structure

(Fig. 1b). Serial structures are easier to design and have sub-

stantially decoupled degree-of-freedom, whereas the closed-

loop kinematic features of flexure parallel structures impart

excellent performance in terms of high rigidity, high load car-

rying capacity, and high accuracy (Li et al., 2013; Pham and

Chen, 2005). To analyze the output decoupling property of

planar flexure-based compliant mechanism with symmetri-

cal configuration, the compliance/stiffness modeling meth-

ods are derived firstly.

2.1 Flexure serial structure

A flexure serial structure comprised of several rigid beams

and notch flexure hinges is illustrated in Fig. 1a. The relation-

ship between the elastic deformations of a flexure member

and the total deformation at the free end of the serial struc-

ture can be given as

δi = Jdiδ
l
i, (1)

where Jdi is the Jacobian matrix transforming a 3× 1 vector

δli representing the elastic deformations of flexure members
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to a 3× 1 vector δi at the free end of the flexure serial struc-

ture.

According to the zero virtual work principle, the relation-

ship between the external force at the free end and the reac-

tion force at a flexure member can be given as

F li = Jf iF , (2)

where J
f i

is the Jacobian matrix transforming a 3× 1 vector

F of the external force at the free end to a vector of reaction

force F li at a flexure member.

The accumulation of both rotational and translational de-

formations at the free end of the flexure serial structure is

δ =

n∑
i=1

Jdiδ
l
i =

n∑
i=1

JdiC
l
iF

l
i =

(
n∑
i=1

JdiC
l
iJf i

)
F , (3)

where Cli is the local compliance matrix established in the

local frame attached to a flexure member.

Therefore, the compliance of the flexure serial structure is

C=
∂δ

∂F
=

n∑
i=1

JdiC
l
iJf i = JdC∗Jf , (4)

where

Jd =
[
Jd1

Jd2
Jd3

. . . Jdn
]
,

and

C∗ = diag[C1 C2 C3 . . . Cn] .

For flexure serial structures, the compliance can be de-

rived through the matrix method. The compliance shown in

Eq. (4) can also be obtained through the screw theory based

approach (Yu et al., 2011). It indicates that the proposed anal-

ysis of compliance modeling has close relations to the syn-

theses of compliant mechanism based on screw theory.

2.2 Flexure parallel structure

A flexure parallel structure can be considered as an infinitely

rigid platform supported by n limbs, as illustrated in Fig. 1b.

We denote Ki as the stiffness matrix of limb i. The platform

and the tips of the limbs have equivalent angular displace-

ments. However, the linear displacements of the reference

point of the platform are determined based on the linear and

angular displacements of the tips of the limbs; hence,

δ = JP iδi, (5)

where δ and δi are, respectively, the 3× 1 displacement vec-

tors of the platform at the reference point and at the tip of the

ith limb, and JP i is the amplification matrix of the displace-

ment.

The 3× 1 vector of the force and moment F applied to the

reference point of the platform is distributed to the tip of each

limb as a 3× 1 vector of force and moment Fi , hence,

F =

n∑
i=1

Jf iFi =

n∑
i=1

Jf iKiδi =

(
n∑
i=1

J
f i

KiJ
−1
P i

)
δ, (6)

where J
f i

is the transformation matrix when Fi is moved

from the tip of the ith limb to the reference point.

Hence, the stiffness of the flexure parallel structure can be

given as

K=
∂F

∂δ
=

n∑
i=1

Jf iKiJ
−1
P i = J∗FK∗J∗P , (7)

where

J∗F =
[
JF1

JF2
JF3

. . . JFn
]
,

J∗p =

[(
J−1
p1

)T (
J−1
p2

)T (
J−1
p3

)T
. . .
(
J−1
pn

)T ]T
,

and

K∗ = diag(K1 K2 K3 . . . Kn) .

Obviously, it is more convenient to use the compliance ma-

trices for the flexure serial structure, while use the stiffness

matrices for the flexure parallel structure. To achieve mo-

tion, the stiffness terms along the motion should be small,

while the other stiffness terms should be large. Compli-

ance/stiffness modeling can represent the relationship be-

tween the compliance/stiffness and geometrical parameters,

and thus it can be applied to optimize the geometrical param-

eters. Therefore, Compliance/stiffness modeling methods are

crucial to design planar flexure-based compliant mechanisms

with finite deformations.

3 Output decoupling property

To analyze the output decoupling property, the influence of

symmetrical configuration could be investigated. For a notch

flexure hinge, there are strong couplings between the rota-

tional and translational motions. Furthermore, the rotation

center of a flexure hinge drifts whenever the hinge works,

resulting in motion errors. To obtain decoupling properties,

multiple flexure hinges can be combined to form certain

structures (Qin et al., 2013). In practice, the parallelogram

joints are usually used as prismatic joints. The parallelogram

joints can keep the orientation of the platform invariant when

the mechanism is actuated by the force Fx along one axis.

However, undesired cross-coupling error ey along the other

axis is generated at the same time, as depicted in Fig. 2a,

which makes it difficult for the kinematic analysis and con-

trol of such a mechanism. Compared with one parallelogram

joint, two parallelogram joints shown in Fig. 2b can elimi-

nate the coupling error completely, and thus the symmetric
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configuration could be regarded as two ideal prismatic joints

to form certain flexure-based compliant structures to obtain

output decoupling property (Yong and Lu, 2008). Obviously,

the motion illustrated in Fig. 2a is a pure translation. By con-

trast, the motion in Fig. 2b is a pure translation without un-

desired cross-coupling errors. Therefore, flexure-based com-

pliant mechanisms are usually designed with symmetric con-

figuration to obtain the output decoupling property.

3.1 Planar flexure-based compliant mechanisms with

symmetric configuration

3.1.1 Symmetric configuration about x axis

As shown in Fig. 3, the planar flexure-based compliant mech-

anism is symmetric about the x axis and all ends are fixed.

We can see that the mechanism is composed of one platform

and four limbs, and each limb is composed of several notch

flexure hinges and rigid beams. The output point is located at

the center of the platform.

The mechanism can be divided into two identical parts:

the upper part and the lower part. JFs and JPs denote the

Jacobian matrices transforming forces/moments and defor-

mations of the upper part, K1 denotes the stiffness matrix at

the point o of half part (K1,m−n represents the stiffness in

the direction ofm caused by the force/moment n), while JFx
and JPx are defined as the Jacobian matrices transforming

forces/moments and deformations of the lower part. Then,

the stiffness matrices of the upper part and lower part can be

given as

Kts = JFs ·K1 · JPs =K1, (8)

Ktx = JFx ·K1 · JPx, (9)

where

JFs = JTP s = E (identity matrix),

K1 =

 K1,x−Fx K1,x−Fy K1,x−Mz

K1,y−Fx K1,y−Fy K1,y−Mz

K1,α−Fx K1,α−Fy K1,α−Mz

 ,
and

JFx = JTPx =

 1 0 0

0 −1 0

0 0 −1

 .
Thus, the stiffness matrix of the flexure-based compliant

mechanism is given as

K=Kts +Ktx =

[
2K1,x−Fx 0 0

0 2K1,y−Fy 2K1,y−Mz

0 2K1,α−Fy 2K1,α−Mz

]
. (10)

We can see from Eq. (10) that the terms K1,y−Fx and

K1,α−Fx are both zero. It indicates that the flexure-based

compliant mechanisms with symmetric configuration about

the x axis are output decoupled along the x axis.

Figure 2. Parallelogram joints for planar parallel mechanisms:

(a) one parallelogram joint; (b) two parallelogram joints with sym-

metric configuration.

3.1.2 Symmetric configuration about y axis

Figure 4 illustrates the flexure-based compliant mechanism

which is symmetric about the y axis and all ends are fixed.

The mechanism consists of one platform and four limbs, and

the output point is located at the center of the platform.

The mechanism can be divided into two identical parts: the

left part and the right part. JF l and JP l denote the Jacobian

matrices transforming forces/moments and deformations of

the left part, K2 denotes the stiffness matrix at the point o of

half part (K2,m−n represents the stiffness in the direction ofm

caused by the force/moment n), whereas JFr and JPr are de-

fined as the Jacobian matrices transforming forces/moments

and deformations of the right part. Then, the stiffness matri-

ces of the left part and right part can be given as

Kt l = JF l ·K2 · JP l, (11)

Ktr = JFr ·K2 · JPr =K2, (12)

where

JF l = JTP l =

 −1 0 0

0 1 0

0 0 −1

 ,
K2 =

 K2,x−Fx K2,x−Fy K2,x−Mz

K2,y−Fx K2,y−Fy K2,y−Mz

K2,α−Fx K2,α−Fy K2,α−Mz

 ,
and

JFr = JTP r = E (identity matrix).

Thus, the stiffness matrix of the mechanism can be ex-

pressed as

K=Kt l +Ktr =

[
2K2,x−Fx 0 2K2,x−Mz

0 2K2,y−Fy 0
2K2,α−Fx 0 2K2,α−Mz

]
. (13)

We can see from Eq. (13) that the terms K2,x−Fy and

K2,α−Fy are both zero. It indicates that the flexure-based

compliant mechanisms with symmetric configuration about

the y axis are output decoupled along the y axis.
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Figure 3. Mechanism with symmetric configuration about the x axis.

Figure 4. Mechanism with symmetric configuration about the y axis.

3.1.3 Symmetric configuration about x axis and y axis

The flexure-based compliant mechanism is symmetric about

two perpendicular axes (the x axis and y axis), and the out-

put point is located at the center of the platform. The flexure-

based compliant mechanism can be divided into two identical

parts: the left part and the right part. Denote K2 as the stiff-

ness matrix at the point o of half part (K2,m−n is the stiffness

in the direction ofm caused by the force/moment n), the stiff-

ness matrix of the flexure-based compliant mechanism can be

expressed as

K= JF l ·K2 · JP l + JFr ·K2 · JPr

=

 2K2,x−Fx 0 0

0 2K2,y−Fy 0

0 0 2K2,α−Mz

 . (14)

We can see from Eq. (14) that the stiffness matrix consists

of only main diagonal components. Therefore, the analyses

above indicate that the planar flexure-based compliant mech-

anisms are output decoupled when they are symmetric about

two perpendicular axes (the x axis and y axis).

3.2 Variations of the fundamental form

3.2.1 The fundamental form

The fundamental form is composed of several flexure hinges,

and it can be regarded as the limb of flexure parallel struc-

tures. The fundamental form can be extended according to

its designated function, such as the parallelogram joints and

prismatic joints mentioned above. In general, the mecha-

nisms may be composed of several fundamental forms. In

order to analyze the performances of flexure-based compli-

ant mechanisms, the fundamental form, which is actually a

flexure serial structure, should be first investigated. In prac-

tice, the notch flexure hinges of the flexure serial structure

are all along one straight line, as shown in Fig. 5.

According to compliance/stiffness modeling methods dis-

cussed above, the compliance of the practical flexure serial

structure can be obtained from Eq. (4), and Jdi , Jf i , and

Clican be given as

Jdi = JTf i =

 1 0 ry
0 1 −rx
0 0 1

 −1 0 0

0 1 0

0 0 −1

 , (15)
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Figure 5. The practical flexure serial structure.

Cli =

 Ci,x−Fx 0 0

0 Ci,y−Fy Ci,y−Mz
0 Ci,α−Fy Ci,α−Mz

 , (16)

where rx and ry are the distances from the platform at the

reference point to the ith flexure hinge along the x axis and

y axis, respectively, Ci,m−n is the compliance of ith hinge in

the direction of m caused by the force/moment n.

Then, when the output point of the structure is located at

the reference point b, the compliance of the flexure serial

structure can be given as

Cb =

n∑
i=1

JdiC
l
iJf i =

[
Cb,x−Fx Cb,x−Fy Cb,x−Mz
Cb,y−Fx Cb,y−Fy Cb,y−Mz
Cb,α−Fx Cb,α−Fy Cb,α−Mz

]
, (17)

where

Cb,x−Fx =

n∑
i=1

(
Ci,x−Fx + r

2
y Ci,α−Mz

)
,

Cb,y−Fy =

n∑
i=1

(
Ci,y−Fy + 2rx Ci,y−Mz+ r

2
x Ci,α−Mz

)
,

Cb,y−Mz =

n∑
i=1

(
−Ci,y−Mz+ rx Ci,α−Mz

)
,

and

Cb,α−Mz =

n∑
i=1

(
Ci,α−Mz

)
.

When the output point of the structure is located at the

reference point a, the distance ry is zero, and the compliance

of the flexure serial structure can be given as

Ca =

n∑
i=1

JdiC
l
iJf i =

[
Ca,x−Fx 0 0

0 Ca,y−Fy Ca,y−Mz
0 Ca,α−Fy Ca,α−Mz

]
, (18)

where

Ca,x−Fx =

n∑
i=1

Ci,x−Fx,

Ca,y−Fy = Cb,y−Fy,

Ca,y−Mz = Cb,y−Mz,

and

Ca,α−Mz = Cb,α−Mz.

Therefore, the analyses show that the compliance/stiffness

matrix can be expressed as Eq. (18) when the flexure hinges

and output reference point are all along one straight line, and

it can be expressed as Eq. (17) when the flexure hinges and

output reference point are not along one straight line.

3.2.2 Variations

Besides the symmetric configuration about x axis and y axis,

without loss of generality, the flexure-based compliant mech-

anisms may be composed of several identical fundamental

forms which are distributed evenly around the center of the

platform, as shown in Fig. 6 (Yong and Lu, 2008). When the

output point is located at the center of the platform and the

number of the fundamental forms is 2n or 3, the output de-

coupling of them could be discussed as follows.

As the analyses mentioned above, the mechanism can be

divided into 2n (n> 1) identical fundamental forms. Denote

Km as the stiffness matrix at the point o of one fundamental

form (Km,w−u represents the stiffness in the direction of w

caused by the force/moment u). When the flexure hinges and

output reference point of one fundamental form are along one

straight line, the stiffness matrix of the ith fundamental form

can be given as

Ki = JFi ·Km · JP i, (19)

where

Km =

 Km,x−Fx 0 0

0 Km,y−Fy Km,y−Mz
0 Km,α−Fy Km,α−Mz

 ,
JFi =

 cos[(i− 1)π/n] sin[(i− 1)π/n] 0

−sin[(i− 1)π/n] cos[(i− 1)π/n] 0

0 0 1

 ,
and

JP i =

 cos[(i− 1)π/n] −sin[(i− 1)π/n] 0

sin[(i− 1)π/n] cos[(i− 1)π/n] 0

0 0 1

 .
Hence, the stiffness matrix of the mechanism at center of

the platform is given as

K2n =

2n∑
1

Ki

=

[
nKm,x−Fx + nKm,y−Fy 0 0

0 nKm,y−Fy + nKm,x−Fx 0
0 0 2nKm,α−Mz

]
. (20)

We can see from Eq. (20) that the stiffness matrix is a di-

agonal matrix. It indicates that the flexure-based compliant

mechanisms composed of 2n (n> 1) fundamental forms are

output decoupled. The stiffness matrix of the mechanism can

be obtained according to Eq. (20) when the number of the

Mech. Sci., 7, 49–59, 2016 www.mech-sci.net/7/49/2016/
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Figure 6. Fundamental forms distributed evenly around the center of the platform: (a) n= 3; (b) n= 4; (c) n= 6.

fundamental forms is 4 and 6, as shown in Fig. 7b and c. In

addition, there are some special conditions should be taken

into account. When the number of the fundamental forms

is 3, as shown in Fig. 7a, the stiffness matrix of the mech-

anism can be obtained from Eq. (19), and it can be expressed

as

K3 =

3∑
1

Ki

=


3

2
Km,x−Fx +

3

2
Km,y−Fy 0 0

0
3

2
Km,y−Fy +

3

2
Km,x−Fx 0

0 0 3Km,α−Mz

 . (21)

Similarly, we can see from Eq. (21) that the stiffness matrix is

a diagonal matrix. It indicates that the flexure-based compli-

ant mechanisms composed of 3 fundamental forms are output

decoupled. In addition, when the mechanism is symmetric

about y axis and the number of the fundamental forms is 2,

the stiffness matrix of the mechanism can be obtained from

Eq. (14), and it can be expressed as

K2 =

2∑
1

Ki =

[
2Km,x−Fx 0 0

0 2Km,y−Fy 0
0 0 2Km,α−Mz

]
. (22)

Therefore, the flexure-based compliant mechanisms com-

posed of 2n or 3 identical fundamental forms which are dis-

tributed evenly around the center of the platform are output

decoupled. In addition, the stiffness of mechanisms com-

posed of 2n (n> 1) or 3 fundamental forms can be calcu-

lated from Eqs. (20) and (21), while the stiffness of mecha-

nisms composed of 2 fundamental forms which are symmet-

ric about y axis can be calculated from Eq. (22).

4 Application

To validate the analytical model derived above, simple

closed-form equations are derived to determine the output

compliances of the RRR and 4-RRR stages (Yong and Lu,

2008). The RRR flexure-based compliant structure is com-

posed of three constant rectangular cross-section flexure

Figure 7. 4-RRR flexure-based compliant micro-motion stage.

hinges, and the 4-RRR structure is composed of four RRR

limbs connected together in parallel, as shown in Fig. 7. The

parallel configuration of the 4-RRR structure is advantageous

over a serial configuration structure.

4.1 Output compliance of the RRR micro-motion stage

Notch flexure hinges are produced by drilling or milling two

closely spaced holes, forming a circular or constant rectan-

gular cross-section cutout (Tseytlin, 2002). The geometrical

parameters of the constant rectangular cross-section flexure

hinge are illustrated in Fig. 8. The geometrical dimensions

include the hinge thickness t , the hinge length L, the side

height h, the rigid beam width W , the total length La , the

total height H , and the depth D.

The in-plane compliance matrix of the constant rectangu-

lar cross-section flexure hinge is shown in Eq. (16). The ex-

ponential relationship between geometrical parameters and

deformations can be derived through FEA, and the proposed

compliance matrix can be obtained based on the exponential

model. The compliance terms can be expressed as follows.
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Figure 8. Geometrical dimensions of the constant rectangular

cross-section flexure hinge.

Ci,x−Fx =
4

EDH · t0.82

[
h1.07
·L0.75

+La

]
(23)

Ci,α−Mz =
16.5 ·L0.88

ED · t2.88
(24)

Ci,y−Mz = Ci,α−Fy =
8.3 ·L1.88

ED · t2.88
(25)

Ci,y−Fy =
5.3 ·h0.01

·L2.9

ED · t2.91
+
α ·E ·Ci,x−Fx

G
(26)

whereE is the Yong’s modulus and α is the shear coefficient.

Note that all flexure hinges are modeled to have 3-DOF

(i.e. bending compliance about the z axis, and axial and shear

compliances along the x and y axes, respectively). Flexure

hinges are modeled as having 3-DOF rather than 6-DOF be-

cause both the RRR and 4-RRR compliant stages consid-

ered here are planar. The RRR flexure-based compliant stage

is shown in Fig. 9, together with its dimensions, displace-

ments, local coordinates of flexure hinges, and the applied

forces/moments.

The compliances at point o1 (Fig. 9a) contributed by

each flexure hinge in the structure are firstly calculated. The

overall compliances of the RRR compliant stage at point o

(Fig. 9b) are then obtained by summing all the contributions

to the compliances in the corresponding directions of each

individual flexure hinge. The compliance matrix of each flex-

ure hinge is shown in Eq. (16), and the geometrical parame-

ters are illustrated in Fig. 8. Considering that bo and ho are

the key distances of the RRR stage, the output compliance

matrix at o1 can be expressed as

CO1 =

3∑
i=1

JdiC
l
iJf i . (27)

When the output forces are applied to point o rather than o1,

and the displacements at this point are desired, the trans-

formation matrix Jf o can be used to transfer the output

forces/moments from o1 to o, while Jdo can be used to trans-

fer the displacements from o1 to o, where b1 and h1 are

the components of the vector r pointing from o1 to o along

Table 1. Geometrical parameters and material properties of the

compliant micro-motion stage.

Parameters/material

properties

Young’s modulus, E (GPa) 210

Poisson’s ratio, ν 0.30

ho (mm) 15

bo (mm) 50

h1 (mm) 25

b1 (mm) 25

L (mm) 10

t (mm) 2

h (mm) 4

W (mm) 5

D (mm) 10

x axis and y axis, respectively. Thus, the output compliance

at point o can be expressed as

CRRR,1O = JdoCO1Jf o, (28)

where

Jdo = JTf o =

 1 0 −h1

0 1 b1

0 0 1

 .

4.2 Output compliance of the 4-RRR micro-motion

stage

The 4-RRR compliant micro-motion stage is generated by

arranging the four RRR compliant stages 90◦ apart, and it is

symmetric about x axis and y axis respectively, as shown in

Fig. 7. According to the symmetric configuration, the output

compliance matrix at point o of limbs 2, 3 and 4, respectively,

are

CRRR,2O = J2CRRR,1OJT2 , (29)

CRRR,3O = JπCRRR,1OJTπ , (30)

CRRR,4O = JπCRRR,2OJTπ , (31)

where

J2 =

 −1 0 0

0 1 0

0 0 −1


and

Jπ =

 cos(π ) −sin(π ) 0

sin(π ) cos(π ) 0

0 0 1

 .
Then, the compliance matrix of the 4-RRR flexure-based

compliant micro-motion stage can be given as

C4RRR =

(
C−1

RRR,1O +C−1
RRR,2O +C−1

RRR,3O +C−1
RRR,4O

)−1

. (32)
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Figure 9. RRR flexure-based compliant mechanism: (a) applied forces/moments at output point o1; (b) applied forces/moments at output

point o.

Figure 10. FEA model of a 4-RRR flexure-based compliant micro-

motion stage.

4.3 Validation

Considering the accuracy of FEA, it is used as a bench-

mark. The output compliances of the RRR and 4-RRR micro-

motion stages are calculated to study the output decoupling

property. The results calculated by the analytical model are

compared with those derived from FEA. Table 1 lists the ge-

ometrical parameters and material properties of the RRR and

4-RRR compliant micro-motion stages employed, where all

flexure hinges have equivalent geometrical parameters and

material properties. A FEA model was generated using AN-

SYS. Meshes, constraints, and the applied forces/moments

of the FEA model are shown in Fig. 10.

The output compliance of the RRR and 4-RRR micro-

motion stages determined using FEA can be expressed as,

respectively

CRRR,FEA =

 3.820× 10−5
−5.057× 10−5 8.889× 10−4

−5.057× 10−5 1.029× 10−4
−1.457× 10−3

8.889× 10−4
−1.457× 10−3 2.410× 10−2

 , (33)

C4RRR,FEA =

 1.184× 10−6 0 0

0 3.239× 10−6 0

0 0 3.076× 10−4

 . (34)

Since the off-diagonal compliances terms in Eq. (34) are very

small and insignificant compared to the diagonal terms, they

are assumed to be zero. It indicates that deformations occur

only along the direction of the applied force/moments.

Figure 11 shows the FEA results of the force-displacement

relationship of the 4RRR micro-motion stage. It can be seen

that the displacement of the platform along x axis increases

linearly with the increase of the x axis actuating force. Fur-

thermore, the displacement of x axis is constant (approaching

zero) when the actuation force of y axis increases, while the

displacement of y axis is constant (approaching zero) when

the actuation force of x axis increases. It indicates that the

4-RRR micro-motion stage has output decoupling property,

which agrees with the analyses above.

Compared with Eqs. (33) and (34), the output compliance

of the RRR and 4-RRR micro-motion stages determined us-

ing analytical model can be expressed as, respectively

CRRR =

 3.938× 10−5
−5.200× 10−5 9.161× 10−4

−5.200× 10−5 1.058× 10−4
−1.499× 10−3

9.161× 10−4
−1.499× 10−3 2.482× 10−2

 , (35)

C4RRR =

 1.205× 10−6 0 0

0 3.273× 10−6 0

0 0 3.096× 10−4

 . (36)

We can see from Eq. (36) that the compliance matrix is a

diagonal matrix, and it indicates that the 4-RRR compliant

micro-motion stage is output decoupled. Analytical output

compliances were compared with those derived from FEA.

The differences between the analytical and FEA results are

shown in Table 2.

It is found that values obtained from the proposed analyt-

ical model are almost similar to the FEA values of the RRR

and 4-RRR compliant micro-motion stages, which validates

the proposed analytical model.
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Table 2. The differences between the analytical and FEA results.

Output compliance matrix % difference of RRR % difference of 4-RRR

Cx−Fx Cy−Fx Cα−Fx 3.08 2.83 3.05 1.77 – –

Cx−Fy Cy−Fy Cα−Fy 2.83 2.83 2.88 – 1.05 –

Cx−Mz Cy−Mz Cα−Mz 3.05 2.88 2.98 – – 0.65

Figure 11. FEA results of force-displacement relationship: (a) displacement of x axis; (b) displacement of y axis.

5 Conclusions

This paper presented the output decoupling property of

planar flexure-based compliant mechanisms. The compli-

ance/stiffness modeling methods were first derived. Then,

analytical model utilized for analyzing the output decou-

pling property of flexure-based compliant mechanisms was

obtained in terms of the influences of symmetric configu-

ration. It involved the mechanisms which were symmetric

about two perpendicular axes or composed of several fun-

damental forms. To validate the output decoupling property,

the output compliances of the RRR and 4-RRR compliant

micro-motion stages were analyzed with the proposed ana-

lytical model and FEA. Based upon the results obtained, we

can draw the following conclusions:

1. flexure-based compliant mechanisms are output decou-

pled when they are symmetric about two perpendicular

axes;

2. flexure-based compliant mechanisms composed of ei-

ther three or an even number of identical fundamental

forms distributed evenly around the center are output

decoupled;

3. comparisons with the results obtained by FEA demon-

strate that the proposed analytical model of the 4-RRR

micro-motion stage with symmetric configuration is

valid.
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