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Abstract

There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor
cardiometabolic health and neurodegenerative conditions. Although research has demonstrated
deleterious effects of obesity on brain structure and function, the majority of studies have used
conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While
sensitive to gross features of body composition, such global anthropomorphic features fail to describe
regional differences in body fat distribution and composition, and to determine visceral adiposity,
which is related to a range of metabolic conditions. In this mixed cross-sectional and longitudinal
design (interval mean and standard deviation = 19.7 + 0.5 months), including 790 healthy individuals
(mean (range) age = 46.7 (18-94) years, 53% women), we investigated cross-sectional body magnetic
resonance imaging (MRI, n = 286) measures of adipose tissue distribution in relation to longitudinal
brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We estimated
tissue-specific brain age at two time points and performed Bayesian multilevel modelling to
investigate the associations between adipose measures at follow-up and brain age gap (BAG) at
baseline and follow-up. We also tested for interactions between BAG and both time and age on each

adipose measure. The results showed credible associations between T1-based BAG and liver fat,

muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains

in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects
between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of
the study period in people with higher measures of adipose tissue. The results show that specific
measures of fat distribution are associated with brain ageing and that different compartments of
adipose tissue may be differentially linked with increased brain ageing, with potential to identify key

processes involved in age-related transdiagnostic disease processes.
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1. Introduction

An increasing body of evidence supports close body-brain connections in ageing, with
cardiovascular disease (CVD), cognitive decline, and dementia sharing various
cardiometabolic risk factors (Qiu & Fratiglioni, 2015). Among these, obesity subsists as a
key risk factor (Bhupathiraju & Hu, 2016; Luppino et al., 2010), with evidence extending the
links to include mental disorders (Bahrami et al., 2020; Ditmars et al., 2021; Luppino et al.,
2010; Perry et al., 2021; Quintana et al., 2017; Rajan & Menon, 2017; Ringen et al., 2018;
Scott et al., 2008) and age-related neurocognitive and neurological conditions including
dementia and stroke (Anstey et al., 2011; Strazzullo et al., 2010).

Higher adipose tissue levels as indexed by waist circumference (WC), waist-to-hip
ratio (WHR), body mass index (BMI), and increased subcutaneous (ASAT) and visceral
(VAT) adipose tissue measures have all been associated with global brain volume decreases
(Debette & Markus, 2010; Gunstad et al., 2005; Mulugeta et al., 2021; Ward et al., 2005).
Moreover, regional findings have consistently shown negative associations between obesity
and brain grey matter volume (Gurholt et al., 2020; Pannacciulli et al., 2006; Taki et al.,
2008; Walther et al., 2010) and white matter microstructure, including reduced white matter
tract coherence (Friedman et al., 2014; Willette & Kapogiannis, 2015), white matter integrity
(Marks et al., 2011; Stanek et al., 2011; Xu et al., 2013), microstructural changes in
childhood (Rapuano et al., 2020), and increased axonal and myelin damage (Mueller et al.,
2011; Xu et al., 2013) based on diffusion MRI. White matter volumetric studies have
revealed less consistent findings, reporting both positive (Walther et al., 2010), negative (Raji
et al., 2010) and no (Gunstad et al., 2005) significant associations between brain white matter
volume and adiposity.

While there is a wealth of research focusing on conventional anthropomorphic
measures such as BMI, not all individuals with a higher BMI have the same disease risks

(Mulugeta et al., 2021). A study assessing 27,000 individuals from 52 countries identified

abdominal obesity as one of nine key risk factors that accounted for most of the risk of

myocardial infarction worldwide (Yusuf et al., 2004). However, while some obese
individuals develop health problems such as lipid abnormalities and type 2 diabetes (Lacobini
et al., 2019), others are metabolically healthy. Partly motivated by this heterogeneity and
complexity of fat distribution and cardiometabolic health, body MRI has recently emerged as
a novel opportunity to investigate adipose tissue distribution beyond anthropomorphic
measures (Linge et al., 2018, 2019, 2020, 2021).
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Research utilising body MRI has found associations between visceral adiposity tissue
(VAT) and muscle fat infiltration (MFI) and coronary heart disease (CHD) and type 2
diabetes (T2D) (Linge et al., 2018). Moreover, higher liver fat has been associated with T2D
and lower liver fat with CHD (Linge et al., 2018). Cross-sectional analyses investigating
body and brain MRI associations have reported negative associations between liver fat, MFI
and cerebral cortical thickness while thigh muscle volume was positively associated with
brain stem and accumbens volumes (Gurholt et al., 2020).

Advanced multimodal brain MRI provides a wealth of information reflecting
structural and functional characteristics of the brain. Brain age prediction using machine
learning and a combination of MRI features provides a reliable approach for reducing the
complexity and dimensionality of imaging data. The difference between the brain-predicted
age and an individual’s chronological age, also referred to as the brain age gap (BAG), can be
used to assess deviations from expected age trajectories, with potential utility in studies of
brain disorders and ageing (Cole et al., 2017; Kaufmann et al., 2019). This has clear clinical
implications for patient groups, where studies have reported larger brain age gaps in patients
with various neurological and psychiatric disorders (Han et al., 2020; Hggestal et al., 2019;
Kaufmann et al., 2019; Pardoe et al., 2017; Sone et al., 2019; Tgnnesen et al., 2020).

Recent evidence has demonstrated that the rate of brain ageing may be dependent on a
range of life events and lifestyle factors (Cole, 2020; Sanders et al., 2021), and characteristics
related to cardiovascular health and obesity, including WHR and BMI (Beck et al., 2021b; de
Lange et al., 2020; Franke et al., 2014; Kolbeinsson et al., 2020; Kolenic et al., 2018; Ronan
etal., 2016).

In the current study, our primary aim was to identify interactions between adipose
tissue measures based on body MRI and tissue specific (DTI and T1-weighted) measures of
brain age. We investigated cross-sectional associations of tissue specific BAG and detailed
adipose tissue measures (body composition) and, for comparison, conventional
anthropomorphic measures (BMI and WHR) used in a recent study (Beck et al., 2021b).
Next, we tested for associations between longitudinal brain age and body composition at
follow-up and investigated associations between each adiposity measure and longitudinal
BAG. Adopting a Bayesian statistical framework, we hypothesised that higher abdominal fat
ratio, weight-to-muscle ratio, total (abdominal) adipose volume, visceral fat index, muscle fat

infiltration, and liver fat percentage would be associated with older appearing brains, with

stronger associations in the body MRI measures than for traditional anthropomorphic
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features. Further, we hypothesised that indices of obesity are associated with accelerated

brain ageing as reflected in larger changes in BAG between baseline and follow-up.

2. Material and methods

2.1. Sample description

Two integrated studies - the Thematically Organised Psychosis (TOP) (Tennesen et al., 2018)
and StrokeMRI (Richard et al., 2018) - formed the initial sample, which included 1130
datasets from 832 healthy participants. All procedures were conducted in line with the
Declaration of Helsinki and the study has been approved by the Norwegian Regional
Committees for Medical and Health Research Ethics (REC). All participants provided written
informed consent, and exclusion criteria included neurological and mental disorders, and
previous head trauma.

Following the removal of 68 datasets after quality checking (QC) of the MRI data

(see section 2.5), the final sample included 1062 brain MRI datasets collected from 790

healthy participants aged 18-94 years (mean * standard deviation (SD) at baseline: 46.8 £
16.3). This included longitudinal data (two time-points with 19.7 months interval, on average
(min = 9.8, max = 35.6) from 272 participants. Of the 790 included participants, body MRI
data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6,
SD = 15.6). Demographic information is summarised in Table 1 and Figure 1.

An independent training sample from the Cambridge Centre for Ageing and
Neuroscience (Cam-CAN: http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; Shafto et al.,
2014; Taylor et al., 2017) was used for brain age prediction (section 2.6). After QC, MRI data

from 622 participants were included (age range = 18-87, mean age + standard deviation =

54.2 + 18.4).
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Table 1. Descriptive characteristics of the study sample.

Baseline
brain MRI

Follow-up
brain MRI

Body MRI

Males at
baseline

Females at
baseline

Males at
follow-up

Females at
follow-up

N subjects

Sex (Males/Females)

Age (mean + SD)
Predicted Age T1
Predicted Age DTI

BAG T1

BAG DTI

BMI, kg/m?

Waist-to-hip ratio (WHR)

Visceral adipose tissue (VAT)
(min-max)

Abdominal subcutaneous
adipose tissue (ASAT)

Thigh muscle volume (TMV)
Weight-to-muscle ratio (WMR)
Liver PDFF (Liver fat)

Fat ratio

Visceral abdominal adipose
tissue index (VAT index)

Total abdominal adipose tissue
index (Total adipose)

Muscle fat infiltration (MFI)

790
372/418
46.7 £16.3
46.6 +17.4
46.5+16.9
-0.15+6.4
-02+5.1
25.2 +4.06
0.87 +£0.09

272
106/166
56.9 £15.0
56.7 £16.8
57.0+15.9
-0.23+6.9
0.05%+0.9
25.0+ 3.7
0.9+0.09

286
110/176
57.6 £15.6
S571.8+17.7
58.2+16.9
0.2+6.9
0.5+54

2.7 (0.4-9.2)

6.3 (1.1-19.7)

2.6 (0.6-1.5)
29.3 (12.0-82.5)
4.3 (1.1-29.8)
74.5 (34.9-90.5)
0.9(0.14-2.9)

3.0(0.51-8.5)

7.6 (3.6-17.2)

372 (47.1%)
372/0
45.4+16.3
44.6 +16.8
46.9 +16.7
-0.8+5.9
0-5+5.1
25.6 + 3.7
0.91+0.1
3.7 (0.6-9.2)

4.9 (1.5-13.4)

3.3(2.3-4.2)
25.6 (19.4-33.9)

4.9 (1.1-29.8)
70.0 (34.9-84.7)

1.1(0.2-2.9)

2.6(0.57-5.3)

6.9 (3.6-12.8)

418 (52.9%)
0/418
48.0 +16.3
48.4+17.3
47.1+17.0
05+6.9
-0.9£5.0
24.8+4.3
0.83+0.1
2.2 (0.4-5.5)

7.1 (1.1-19.8)

2.2 (1.5-3.3)
31.7 (12.0-82.5)
3.9 (1.24-27.8)
77.5 (42.7-90.5)

0.8 (0.14-2.0)

3.3(0.51-8.5)

8.3 (4.5-17.2)

106 (39%)
106/0
56.7 + 16.9
55.3+17.9
57.7+17.3
141 +6.4
0.92+5.0
25.3+2.9
0.93+0.07

166 (61%)
0/166
57.1+13.6
57.6+16.0
56.6 + 15.0
053+7.2
-0.51+5.4
253+ 4.4
0.86 +0.08
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Figure 1. Available baseline and follow-up data. All participants are shown. Participants with data at baseline
are visualised in green dots (N = 790). Of these participants, those with longitudinal measures of brain MRI are
connected to corresponding timepoint two orange dots (N = 272). The y axis shows index which reorders data to

sort by age at first timepoint. Subplot shows density of age distribution at baseline.

2.2. MRI acquisition

MRI was performed at Oslo University Hospital, Norway, on a GE Discovery MR750 3T
scanner. Brain MRI was collected with a 32-channel head coil. T1-weighted data were
acquired with a 32-channel head coil using a 3D inversion recovery prepared fast spoiled
gradient recalled sequence (IR-FSPGR; BRAVO) with the following parameters: TR: 8.16

ms, TE: 3.18 ms, flip angle: 12°, voxel size: 1x1x1 mm3, FOV: 256 x 256 mm?, 188 sagittal

slices, scan time: 4:43 min. DTI data were acquired with a spin echo planar imaging (EPI)
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sequence with the following parameters: repetition time (TR)/echo time (TE)/flip angle: 150

ms/83.1 ms/90°, FOV: 256 x 256 mm?, slice thickness: 2 mm, in-plane resolution: 2x2 mm,
60 non-coplanar directions (b = 1000 s/mm?) and 5 b = 0 volumes, scan time: 8:58 min. In
addition, 7 b = 0 volumes with reversed phase-encoding direction were acquired.

Body MRI was performed with a single-slice 3D dual-echo LAV A Flex pulse
sequence to acquire water and fat separated volumetric data covering head to knees. The

following parameters were used: TE: minimum, flip angle: 10°, FOV: 50 x 50 mm, slice
thickness: 5 mm, scan time: 2:32 min. For proton density fat fraction (PDFF) assessment in

the liver, a single-slice 3D multi-echo IDEAL IQ pulse sequence was used with the following

parameters: TE: minimum, flip angle: 3°, FOV: 45 x 45 mm?, slice thickness: 8 mm, scan

time: 0:22 min.

The Cam-CAN training set participants were scanned on a 3T Siemens TIM Trio
scanner with a 32- channel head-coil at Medical Research Council (UK) Cognition and Brain
Sciences Unit (MRC-CBSU) in Cambridge, UK. High-resolution 3D T1-weighted data was

collected using a magnetisation prepared rapid gradient echo (MPRAGE) sequence with the

following parameters: TR: 2250 ms, TE: 2.99 ms, inversion time (T1): 900 ms, flip angle: 9°,
FOV of 256 x 240 x 192 mm:; voxel size = 1x1x1 mm, GRAPPA acceleration factor of 2,
scan time 4:32 min (Dixon et al., 2014). DTI data was acquired using a twice-refocused spin
echo sequence with the following parameters: TR: 9100 ms, TE: 104 ms, FOV: 192 x 192
mm, voxel size: 2 mm, 66 axial slices using 30 directions with b = 1000 s/mm?, 30 directions
with b = 2000 s/mm?, and 3 b = 0 images (Dixon et al., 2014).

2.3. DTI processing and TBSS analysis

Processing steps for single-shell diffusion MRI data in the test set followed a previously
described pipeline (Maximov et al., 2019), including noise correction (Veraart et al., 2016),
Gibbs ringing correction (Kellner et al., 2016), corrections for susceptibility induced
distortions, head movements and eddy current induced distortions using topup
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy
(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson & Sotiropoulos, 2016). Isotropic

smoothing was carried out with a Gaussian kernel of 1 mm3 implemented in the FSL
function fsimaths. DTI metrics were estimated using dtifit in FSL and a weighted least
squares algorithm. Processing steps for the training set followed a similar pipeline with the

exception of the noise correction procedure.
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Voxelwise analysis of the fractional anisotropy (FA) data was carried out using Tract-
Based Spatial Statistics (TBSS) (Smith et al., 2006), as part of FSL (Smith et al., 2004). First,
FA images were brain-extracted using BET (Smith, 2002) and aligned into a common space
(FMRI58_FA template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson,
& Smith., 2007; Jenkinson et al., 2012), which uses a b-spline representation of the
registration warp field (Rueckert et al., 1999). Next, the mean FA volume of all subjects was
created and thinned to create a mean FA skeleton that represents the centres of all tracts
common to the group. Each subject's aligned FA data was then projected onto this skeleton.
The mean FA skeleton was thresholded at FA > 0.2. This procedure was repeated in order to
extract axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). fsimeants
was used to extract the mean skeleton and 20 regions of interest (ROI) based on a
probabilistic white matter atlas (JHU) (Hua et al., 2008) for each metric. Including the mean

skeleton values, 276 features per individual were derived in total.

2.4. FreeSurfer processing

T1-weighted MRI data were processed using FreeSurfer (Fischl, 2012) version 7.1.0 for the
test set and version FreeSurfer version 5.3 for the training set. To extract reliable area,
volume and thickness estimates, the test set including follow-up data were processed with the
longitudinal stream (Reuter et al., 2012) in FreeSurfer. Specifically, an unbiased within-

subject template space and image (Reuter & Fischl, 2011) is created using robust, inverse

consistent registration (Reuter et al., 2010). Several processing steps, such as skull stripping,

Talairach transforms, atlas registration as well as spherical surface maps and parcellations are
then initialized with common information from the within-subject template, significantly
increasing reliability and statistical power (Reuter et al., 2012). Due to the longitudinal
stream in FreeSurfer influencing the thickness estimates, and subsequently having an impact
on brain age prediction (Hggestgl et al., 2019), both cross-sectional and longitudinal data in
the test set were processed with the longitudinal stream. All reconstructions were visually
assessed and edited by trained research personnel. Cortical parcellation was performed using
the Desikan-Killiany atlas (Desikan et al., 2006), and subcortical segmentation was
performed using a probabilistic atlas (Fischl et al., 2002). 269 FreeSurfer based features were
extracted in total, including global features for intracranial volume, total surface area, and

whole cortex mean thickness, as well as the volume of subcortical structures.

2.5. Quality control (QC) procedure
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A detailed description of the complete QC procedure for the final sample is available in
(Beck et al., 2021b). Briefly, for DTI we derived various QC metrics (see Supplementary
material; SI Table 1), including temporal signal-to-noise-ratio (tSNR) (Roalf et al., 2016) to
flag data deemed to have unsatisfactory quality. For T1-weighted data, QC was carried out
using the ENIGMA cortical QC protocol including three major steps: outlier detection,
internal surface method, and external surface method. Following the removal of datasets with
inadequate quality (n = 30), the separate T1 and DTI datasets were merged with BMI and
WHR measures, leaving the final sample used for the study at N = 1062 datasets from 790
individuals, among which N = 286 had body MRI data available.

Body MRI QC was carried out using a multivariate outlier detection algorithm, where
anomalies in the data are detected as observations that do not conform to an expected pattern
to other items. Using the R package mvoutlier (Filzmoser et al., 2005), potential outliers were
flagged using the Mahalanobis distance (SI Figures 1 and 2). Informed by an interactive plot
using the chisg.plot function, manual outlier observations of each of these flagged values
deemed none of them as true outliers, leading to no further removal from the initial 286 body
MRI dataset.

2.6 Brain age prediction

We performed brain age prediction using T1-weighted and DTI data using XGBoost

regression (https://xgboost.readthedocs.io/en/latest/python), which is based on a decision-tree

ensemble algorithm used in several recent brain age prediction studies (Beck et al., 2021b; de
Lange et al., 2019, 2020; Kaufmann et al., 2019; Richard et al., 2020). BAG was calculated
using (predicted age- chronological age) for each of the models, providing T1 and DTI-based
BAG values for each individual. The BAG estimates were residualised for age to account for
age-bias (de Lange & Cole, 2020; Liang et al., 2019).

2.7. Adipose tissue measures

For body MRI measures of adipose tissue distribution, missing entries were identified (SI
Figure 3) before being imputed using the MICE package (van Buuren & Groothuis-
Oudshoorn, 2011) in R, where five imputations were carried out using the predictive mean
matching method (package default). The distribution of the original and imputed data was
inspected (SI Figure 4) and the imputed data were deemed as plausible values. Of the five

imputations, the first was used for the remainder of the study.
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To investigate the associations between the adipose tissue measures, hierarchical
clustering of the variables was performed using hclust, part of the stats package in R (R Core
Team, 2012), which uses the complete linkage method to form clusters. Five cluster groups
were revealed. Principle component analysis (PCA) was performed using prcomp, part of the
stats package in R (R Core Team, 2012), to visualise the variation present in the dataset. The
PCA-derived scree plot (SI Figure 5) revealed that 79.4% of the variance was explained by
the first two dimensions. Sl Figure 6 provides a visualisation of the hierarchical clustering
and Sl Figure 7 provides a graph of PCA variables relatedness.

Informed by the cluster formations and PCA, left and right anterior and posterior
thigh muscle and fat infiltration volumes were combined to form two average measures of
thigh muscle volume and thigh muscle fat percentage. Moreover, raw data was converted to
body composition features following calculations provided in (Linge et al., 2018). The final
adipose tissue measures included liver fat, describing the PDFF in the liver; visceral adipose
tissue index (VAT index), which is VAT normalised by height?, describing the intra-

abdominal fat surrounding the organs; total adipose, which is the total abdominal fat (VAT

and ASAT) normalised by height?; weight-to-muscle ratio (WMR), which is body weight

divided by thigh muscle volume; fat ratio, which is the total abdominal fat divided by total
abdominal fat and thigh muscle volume; and muscle fat infiltration (MFI). Figure 2 shows the
body MRI for two participants. Figure 4 shows the associations between the adiposity
measures in a network correlation graph, created using the ggraph (Epskamp et al., 2012) R

package. For a correlation matrix of adiposity measures see Sl Figure 8.
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Figure 2. Body MRI. Showing two participants with a coronal slice from their MRI scan with VAT (pink) and
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Fat ratio VAT index

Sex
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4 6 10 20 3 6 9 12 15

Total Adipose Liver fat MF1

ASAT (blue), and thigh muscle segmentations.

0.6 0.8 1.0 20 30 40
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Figure 3. Distribution of the adiposity measures. Density plots for each variable, split by sex (male = green,

female = orange). Vertical lines represent mean values for each sex.
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2.8. Statistical analysis

All statistical analyses were performed using R, version 3.6.0 (www.r-project.org/) (R Core
Team, 2012). Bayesian multilevel models were carried out in Stan (Stan Development Team,
2019) using the brms (Blrkner, 2017, 2018) package. For descriptive purposes, we tested
associations between each adiposity measure and age. Each adiposity measure was entered as
the dependent variable while age was entered as the independent fixed effects along with sex
and time.

To address the primary aim of the study, we tested for associations between tissue
specific BAG and each adiposity measure. BAG (for T1 and DTI separately) was entered as
the dependent variable with each adiposity measure separately entered as the independent
fixed effects variable along with age, sex, and time.

To test our hypothesis that adiposity influences brain ageing we tested for
associations between longitudinal changes in BAG and body MRI measures at follow-up
using Bayesian multilevel models. Similarly, we tested for interactions between age and
adiposity measures on BAG. For each of the models, timepoint and age were included in the
models where appropriate, while sex was added to both models.

In order to prevent false positives and to regularize the estimated associations we
defined a standard prior around zero with a standard deviation of 1 for all coefficients. For
each coefficient of interest, we report the mean estimated value and its uncertainty measured
by the 95% credible interval of the posterior distribution, and calculated Bayes factors (BF)
using the Savage-Dickey method (Wagenmakers et al., 2010). For a pragmatic guide on
Bayes factor (BF) interpretation, see SI Table 2.

3. Results
3.1. Brain age prediction

S| Table 3 summarises age prediction accuracy in the training and test sets. Briefly, the

models revealed high accuracy, as previously reported (Beck et al., 2021b), with R? = 0.72

and 0.73 for the T1 and DTI models, respectively.

3.2. Adiposity measures and brain age gap

3.2.1. Descriptive statistics

Table 1 shows descriptive statistics, Figure 3 shows the distributions within women and men
for each adiposity measure, and Figure 5 shows the correlations between adiposity measures

for women and men.
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Figure 4. Associations between adiposity measures. Network correlation graph showing correlations between
adiposity measures and age, where the green lines indicate positive associations, and orange lines (none present)
indicate negative associations. Strength of association marked by thickness of each line, with the thickest line
shown equating to r = 0.86. Abbreviations: MFI — muscle fat infiltration; Fat — fat ratio; WHR — waist-to-hip
ratio; VAT — visceral abdominal tissue index; WMR — weight-to-muscle ratio; Total A — total adipose; BMI —

body-mass index; Liver — liver fat.
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Figure 5. Associations between adiposity measures (and age) split by sex. Scatter plot matrix showing
Pearson correlations between adiposity measures. Green points represent males, orange points represent

females.
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3.3. Bayesian multilevel models

3.3.1. Descriptive results

For descriptive purposes, associations between each adiposity measure and age were tested.
Results are summarised in the Supplementary Material, including visualisation of reported
effects (SI Figures 9-10).

3.3.2. Associations between BAG and adiposity measure
Figure 7 shows posterior distributions of the estimates of the coefficients reflecting the
associations between each adiposity measure and BAGs, and Figure 8 shows credible
intervals and evidence ratios. SI Figure 11 shows network correlation graph of correlations
between adiposity measures and each BAG, and Sl Table 5 provides summary statistics.
The tests revealed anecdotal evidence in favour of an association with DTI BAG for
fat ratio (BF = 0.91, p = -0.50), while moderate evidence in favour of no association was
revealed between DTI BAG and VAT index (BF = 3.12, # =-0.05), liver fat (BF =2.90, =
-0.13), and anecdotal evidence for WMR (BF = 2.73, p = -0.13), total adipose (BF = 2.02,
=-0.31), MFI (BF = 2.63, # = 0.17), WHR (BF = 1.92, # = 0.26), and BMI (BF = 2.62, = -
0.21).

Strong evidence in favour of an association with T1 BAG was provided for liver fat
(BF =0.09, g = 1.0), with moderate evidence for MFI (BF =0.17, p = 0.92), and anecdotal
evidence for WMR (BF = 0.40, g = 0.77). The tests revealed moderate evidence in favour of
no association between T1 BAG and WHR (BF = 3.40, f = 1.73), and BMI (BF =3.47, = -
0.17), and anecdotal evidence for fat ratio (BF = 2.5, # = -0.12), total adipose (BF = 2.50, g =
0.09), VAT index (BF = 1.53, g = 0.40).

DTI BAG

Liver_fat

WHR MFI

MFI

VAT _index
WMR
Liver_fat

BMI
Total_Adipose Fat_ratio

Fat_ratio BMI

WMR

VAT _index
WHR
Total_Adipose
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Figure 6. Associations between adiposity and BAG. The figure shows posterior distributions of the estimates
of the standardised coefficient. Estimates for each variable on DTI BAG on the left and T1 BAG on the right.
Colour scale follows direction evidence, with positive values indicating evidence in favour of an association and
negative values evidence in favour of the null hypothesis. Width of distribution represents the uncertainty of the

parameter estimates.

WMR WMR

WHR WHR

VAT _index VAT _index

Total_Adipose Total_Adipose

MFI MFI

Liver_fat Liver_fat °

Fat_ratio Fat_ratio

BMI BMI

0 1 2

Figure 7. BAG and adiposity: Estimate credible intervals and evidence ratios. Left-side plot shows
estimates with 95% credible intervals while the right-side figure shows likelihood of null where values above
one indicate evidence in favour of the effect being null, and values below one indicate evidence in favour of an

effect. T1 BAG associations are represented by orange points, and DTI BAG by green points.

3.3.3. Interaction effects of time and adiposity measure on brain age gap
Figure 9 shows posterior distributions of the estimates of the coefficient for the interaction
between time and each adiposity measure and DTI and T1 BAGs, and Figure 10 shows
credible intervals and evidence ratios. For full table of results see S| Table 5.

For DTI BAG, the evidence supporting an interaction with time was anecdotal for
WHR (BF = 0.44, p = 0.39) (Sl Figure 12). The models revealed moderate evidence in
favour of no interaction with time for WMR (BF = 3.24, § = 0.02), fat ratio (BF =3.12, = -
0.14), and BMI (BF = 3.43, # = 0.17), with anecdotal evidence for VAT index (BF = 2.93, S
=-0.13), total adipose (BF = 2.73, # = -0.21), liver fat (BF = 2.51, p = -0.21), and MFI (BF =
1.41, p =0.43).

For T1 BAG, the evidence supporting an interaction with time was moderate for
WHR (BF = 0.30, g = 0.50) and MFI (BF =0.29, g = 0.87), indicating faster pace of brain
ageing among people with higher WHR and MFI (SI Figure 12). The models also revealed

anecdotal evidence for WMR (BF = 0.57, # = 0.66). The evidence of no associations was
anecdotal for fat ratio (BF = 1.72, § = 0.34), VAT index (BF = 1.49, = 0.41), total adipose
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(BF =1.79, p =0.34), and liver fat (BF = 1.17, # = 0.53), and moderate for BMI (BF = 3.35,
£=0.17).

DTI BAG

TP:MFI
TP:MFI

TP:WHR TP-WMR

TP-BMI TP:Liver_fat

TP:WMR TP:WHR
TP:VAT index TP:VAT_index

TP:Fat_ratio TP:Total_Adipose
TP:Total_Adipose TP:Fat_ratio
TP:Liver_fat TP:BMI

-1 0 1 2 -1 0 1 2
Figure 8. Interaction effects between adiposity and time on BAG. The figure shows posterior distributions of

the estimates of the standardised coefficient. Estimates for the interaction effect of time and each adiposity
measure on DTI BAG on the left and T1 BAG on the right.
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Figure 9. Interaction effects between adiposity and time on BAG: Estimate credible intervals and
evidence ratios. Left-side plot shows estimates with 95% credible intervals while the right-side figure shows
likelihood ratios. T1 BAG effects are represented by orange points, and DTI BAG by green points.

3.3.4. Interaction effects of age and adiposity measure on brain age gap

Figure 11 shows posterior distributions of the estimates of the coefficient for the interaction
between age and each adiposity measure and DTl and T1 BAGs, and Figure 12 shows
credible intervals and evidence ratios. For full table of reported results see SI Table 5.

The analysis provided anecdotal evidence in support of an interaction effect with age
on DTI BAG for WHR (BF = 0.44, # = 0.36). Anecdotal evidence was also provided in
support of no interaction effect for WMR (BF = 1.92, g = 0.30), liver fat (BF = 2.26, =
0.17), MFI (BF = 1.06, # = 0.49), fat ratio (BF = 2.75, # = 0.18), VAT index (BF = 2.29, § =
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0.22), and BMI (BF = 2.81, g = 0.21), with moderate evidence for total adipose (BF = 3.20, S
=-0.01).

The support of an interaction effect with age on T1 BAG was very strong for WHR
(BF =0.01, g =0.68), and moderate for WMR (BF = 0.13, # = 1.00), fat ratio (BF = 0.24, §
= 0.87), VAT index (BF = 0.24, 8 = 0.94), liver fat (BF = 0.25, # = 0.94), and MFI (BF =
0.12, p = 1.03), indicating these adiposity measures may be increasingly important predictors

of BAG with increasing age. The models further indicated anecdotal evidence for total
adipose (BF =0.34, # = 0.76) and BMI (BF =0.62, 5 = 0.42).

DTI BAG
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Age:WMR
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-1 0 1 2 -1 0 1 2 3
Figure 10. Interaction effects between adiposity and age on BAG. The figure shows posterior distributions of

the estimates for the interaction effect between age and each variable on DTI BAG on the leftand T1 BAG on
the right.
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Figure 11. Interaction effects between adiposity and age on BAG: Estimate credible intervals and
evidence ratios. Left-side plot shows estimates with 95% credible intervals while the right-side figure shows
likelihood ratios. T1 BAG effects are represented by orange points, and DTI BAG by green points.

4. Discussion
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Despite increasing evidence of shared mechanisms across several metabolic conditions and
cardiovascular and neurodegenerative diseases, we are yet to fully understand the complex
associations of adipose tissue and brain age. The current cross-sectional and longitudinal
findings support that higher measures of adipose tissue — particularly higher liver fat and MFI
— are associated with an older-appearing brain and faster brain ageing. Both overall brain age
gap and the rates of change in brain age over time were associated with specific adipose
tissue measures at follow-up, including thigh muscle fat infiltration, weight-to-muscle ratio,

and liver fat.

4.1. Adiposity and brain age: cross-sectional analysis

Our findings demonstrated associations between liver fat, MFI, WMR and T1 BAG,
indicating older-appearing brains in individuals with higher adipose tissue measures. DTI
BAG associations were less common, with evidence supporting no associations with VAT
index and WHR. These findings are in line with the hypothesis that body MRI adipose tissue
measures are associated with ageing of the brain as indicated by brain MRI morphology
measures. Moreover, the findings extend previous work linking adiposity measures, including
links to grey matter volume (Debette & Markus, 2010; Gunstad et al., 2005; Jgrgensen et al.,
2017; Ward et al., 2005) and white matter microstructural properties based on diffusion MRI
(Marks et al., 2011; Mueller et al., 2011; Stanek et al., 2011; Xu et al., 2013), with conflicting
evidence for white matter volume (Friedman et al., 2014; Willette & Kapogiannis, 2015). The
discrepancy may be due to methodological differences, e.g. between previous regional
associations and our global brain age approach. Future research estimating regional brain age
models trained with more advanced diffusion MRI features may offer improved sensitivity
and specificity (Beck et al., 2021a).

MFI has previously been linked to metabolic risk factors (Therkelsen et al., 2013) and
insulin resistance in obesity (Goodpaster et al., 2000). Higher liver fat has been found among
diabetics (Bamberg et al., 2017; Linge et al., 2018) and prediabetics without previous
cardiovascular conditions (Bamberg et al., 2017). Studies have also reported no significant
association between CHD or cardiovascular events and elevated liver fat (Neeland et al.,

2015). Moreover, while comparing patients with non-alcoholic fatty liver disease (NAFLD)

to controls, Hagstrom et al., (2017) reported no significant difference in cardiovascular

related death. Conflicting results however, have linked NAFLD with cardiovascular disease
(Brea et al., 2017), suggesting a complex interplay between regional adipose tissue and

metabolic health.
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This complexity has recently been corroborated by findings of 62 genetic loci
associated with both higher adiposity and lower cardiometabolic risk (Huang et al., 2021),
possibly reflecting protective mechanisms. Although speculative, this heterogeneity is likely
also reflected in connection to brain health, which for some individual genetic architectures
may offer protection against brain pathology while simultaneously increasing the risk for
obesity. Further studies exploiting larger sampler are needed to pursue this hypothesis and
attempt to dissect the heterogeneity using genetic data (Huang et al., 2021) in combination

with brain imaging.

4.2. Adiposity and brain ageing: longitudinal evidence

Our longitudinal analyses revealed that the rate of brain ageing across the study period was
associated with adiposity measured at follow-up, with evidence for WHR from our
anthropometric measures, and MFI and WMR from adipose tissue distribution measures.
While evidence for WHR was present for both T1-weighted and DTI BAGs - which largely
replicates a recent report from the same cohort (Beck et al., 2021b) - evidence for MFI and
WMR were only observed for T1-weighted BAG, where greater adipose tissue was
associated with increased rate of brain ageing. Conversely, evidence in favour of no
interaction effect with time was found for BMI. This supports that BMI alone may not
represent a clinically relevant proxy, as it fails to distinguish from lean mass while ignoring
regional fat distribution, in particular the visceral components (Evans et al., 2012; Roberson
etal., 2014).

While experimental evidence is needed to establish causality, our findings suggest

that adipose tissue distribution affects brain ageing and may lead to older appearing brains in

generally healthy individuals. These observations are in line with previous studies, both from
clinical groups and population-based cohorts. Non-alcoholic fatty liver disease, for example,
has been previously linked to smaller total brain volume (Weinstein et al., 2018) and cortical
and cerebellar structures (Gurholt et al., 2020), while muscle fat infiltration has been
negatively associated with cortical structures (Gurholt et al., 2020). While more research into
adipose tissue distribution is warranted, the current results suggest that increased liver fat,

muscle fat infiltration, and weight-to-muscle ratio may contribute to accelerate brain ageing.

4.3. Brain age and adiposity: interactions with age
For DTI BAG, our findings demonstrated an interaction effect with age and WHR, while T1

BAG interaction effects were present for age and WMR, fat ratio, total adipose, VAT index,
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liver fat, MFI, BMI, and WHR. The findings indicate that adiposity measures may be
increasingly important predictors of BAG with increasing age. In contrast, we observed no
evidence of interaction effects between age and BMI on DTI or T1 BAGs. Previous research
has produced mixed results, with studies reporting an interaction of BMI and age on white
matter volume but no interaction on cortical surface area or thickness (Ronan et al., 2016).
Further research is warranted to elucidate the degree to which associations between adiposity

and brain structure change over the course of the lifespan.

4.4. Strengths and limitations

The current study benefitted from a mixed cross-sectional and longitudinal design enabling
brain changes to be tracked across time. The prediction models for brain age had high
accuracy, and separate T1-weighted and DTI brain age gaps provided tissue-specific
measures of brain age with potential to reveal specific associations with the included
adiposity measures.

Several limitations should be considered when evaluating the findings. First, while the
longitudinal brain MRI data represent a major strength, the follow-up sample size is
relatively small, and the body MRI data was only collected at the follow-up examination. The
subsequent loss of power is reflected in the width of body MRI posterior distributions,
indicating a higher level of uncertainty compared to BMI and WHR, which had available
longitudinal measures and a larger sample size. Next, although body composition measures
based on MRI offer high accuracy in terms of fat and muscle distributions and are therefore a
potentially valuable supplement to conventional anthropomorphic features, future studies
including biological markers such as immune and inflammation assays and lipid
measurements might provide even higher specificity and opportunities for further subtyping.
Indeed, inflammation has demonstrated effects on brain function and structure (Rosano et al.,
2011) and has been dubbed to have a central role in the obesity-brain connection (O’Brien et
al., 2017). Moreover, including detailed assessments of dietary routines, alcohol intake, and

physical exercise is vital in order to better understand the complex processes at play. For

example, physical activity has been associated with lower brain age (Dunas et al., 2021;

Sanders et al., 2021) and higher grey and white matter measures (Sexton et al., 2016), while
excess alcohol intake is well documented in influencing liver and brain health (Agartz et al.,
1999; Rehm et al., 2010). Lastly, the current sample is predominantly ethnic Scandinavian

and Northern European, restricting our ability to generalise to wider populations, and future

studies should aim to increase the diversity in the study population.
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4.5. Conclusion

Combining body MRI and brain age prediction based on brain MRI allows for probing
individual body composition profiles and brain patterns and trajectories which may confer
risk for cardiometabolic disease and neurodegenerative disorders. More knowledge and
further development of automated tools for individual phenotyping in this domain may
inform public health priorities and interventions. With evidence of different adiposity
subtypes being differentially linked with different brain phenotypes and cardiometabolic
diseases, precision methods that look at fat distribution can potentially be more informative
than conventional anthropomorphic measures. This in turn will provide a more effective tool
for development of treatment strategies that focus on individual risk of metabolic disease, as

well as disentangling the associations between body and brain health.
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