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Abstract 59 

There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor 60 

cardiometabolic health and neurodegenerative conditions. Although research has demonstrated 61 

deleterious effects of obesity on brain structure and function, the majority of studies have used 62 

conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While 63 

sensitive to gross features of body composition, such global anthropomorphic features fail to describe 64 

regional differences in body fat distribution and composition, and to determine visceral adiposity, 65 

which is related to a range of metabolic conditions. In this mixed cross-sectional and longitudinal 66 

design (interval mean and standard deviation = 19.7 ± 0.5 months), including 790 healthy individuals 67 

(mean (range) age = 46.7 (18-94) years, 53% women), we investigated cross-sectional body magnetic 68 

resonance imaging (MRI, n = 286) measures of adipose tissue distribution in relation to longitudinal 69 

brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We estimated 70 

tissue-specific brain age at two time points and performed Bayesian multilevel modelling to 71 

investigate the associations between adipose measures at follow-up and brain age gap (BAG) at 72 

baseline and follow-up. We also tested for interactions between BAG and both time and age on each 73 

adipose measure. The results showed credible associations between T1-based BAG and liver fat, 74 

muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains 75 

in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects 76 

between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of 77 

the study period in people with higher measures of adipose tissue. The results show that specific 78 

measures of fat distribution are associated with brain ageing and that different compartments of 79 

adipose tissue may be differentially linked with increased brain ageing, with potential to identify key 80 

processes involved in age-related transdiagnostic disease processes. 81 

 82 

 83 
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1. Introduction 85 

An increasing body of evidence supports close body-brain connections in ageing, with 86 

cardiovascular disease (CVD), cognitive decline, and dementia sharing various 87 

cardiometabolic risk factors (Qiu & Fratiglioni, 2015). Among these, obesity subsists as a 88 

key risk factor (Bhupathiraju & Hu, 2016; Luppino et al., 2010), with evidence extending the 89 

links to include mental disorders (Bahrami et al., 2020; Ditmars et al., 2021; Luppino et al., 90 

2010; Perry et al., 2021; Quintana et al., 2017; Rajan & Menon, 2017; Ringen et al., 2018; 91 

Scott et al., 2008) and age-related neurocognitive and neurological conditions including 92 

dementia and stroke (Anstey et al., 2011; Strazzullo et al., 2010). 93 

 Higher adipose tissue levels as indexed by waist circumference (WC), waist-to-hip 94 

ratio (WHR), body mass index (BMI), and increased subcutaneous (ASAT) and visceral 95 

(VAT) adipose tissue measures have all been associated with global brain volume decreases 96 

(Debette & Markus, 2010; Gunstad et al., 2005; Mulugeta et al., 2021; Ward et al., 2005). 97 

Moreover, regional findings have consistently shown negative associations between obesity 98 

and brain grey matter volume (Gurholt et al., 2020; Pannacciulli et al., 2006; Taki et al., 99 

2008; Walther et al., 2010) and white matter microstructure, including reduced white matter 100 

tract coherence (Friedman et al., 2014; Willette & Kapogiannis, 2015), white matter integrity 101 

(Marks et al., 2011; Stanek et al., 2011; Xu et al., 2013), microstructural changes in 102 

childhood (Rapuano et al., 2020), and increased axonal and myelin damage (Mueller et al., 103 

2011; Xu et al., 2013) based on diffusion MRI. White matter volumetric studies have 104 

revealed less consistent findings, reporting both positive (Walther et al., 2010), negative (Raji 105 

et al., 2010) and no (Gunstad et al., 2005) significant associations between brain white matter 106 

volume and adiposity. 107 

While there is a wealth of research focusing on conventional anthropomorphic 108 

measures such as BMI, not all individuals with a higher BMI have the same disease risks 109 

(Mulugeta et al., 2021). A study assessing 27,000 individuals from 52 countries identified 110 

abdominal obesity as one of nine key risk factors that accounted for most of the risk of 111 

myocardial infarction worldwide (Yusuf et al., 2004). However, while some obese 112 

individuals develop health problems such as lipid abnormalities and type 2 diabetes (Lacobini 113 

et al., 2019), others are metabolically healthy. Partly motivated by this heterogeneity and 114 

complexity of fat distribution and cardiometabolic health, body MRI has recently emerged as 115 

a novel opportunity to investigate adipose tissue distribution beyond anthropomorphic 116 

measures (Linge et al., 2018, 2019, 2020, 2021). 117 
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Research utilising body MRI has found associations between visceral adiposity tissue 118 

(VAT) and muscle fat infiltration (MFI) and coronary heart disease (CHD) and type 2 119 

diabetes (T2D) (Linge et al., 2018). Moreover, higher liver fat has been associated with T2D 120 

and lower liver fat with CHD (Linge et al., 2018). Cross-sectional analyses investigating 121 

body and brain MRI associations have reported negative associations between liver fat, MFI 122 

and cerebral cortical thickness while thigh muscle volume was positively associated with 123 

brain stem and accumbens volumes (Gurholt et al., 2020). 124 

Advanced multimodal brain MRI provides a wealth of information reflecting 125 

structural and functional characteristics of the brain. Brain age prediction using machine 126 

learning and a combination of MRI features provides a reliable approach for reducing the 127 

complexity and dimensionality of imaging data. The difference between the brain-predicted 128 

age and an individual’s chronological age, also referred to as the brain age gap (BAG), can be 129 

used to assess deviations from expected age trajectories, with potential utility in studies of 130 

brain disorders and ageing (Cole et al., 2017; Kaufmann et al., 2019). This has clear clinical 131 

implications for patient groups, where studies have reported larger brain age gaps in patients 132 

with various neurological and psychiatric disorders (Han et al., 2020; Høgestøl et al., 2019; 133 

Kaufmann et al., 2019; Pardoe et al., 2017; Sone et al., 2019; Tønnesen et al., 2020). 134 

Recent evidence has demonstrated that the rate of brain ageing may be dependent on a 135 

range of life events and lifestyle factors (Cole, 2020; Sanders et al., 2021), and characteristics 136 

related to cardiovascular health and obesity, including WHR and BMI (Beck et al., 2021b; de 137 

Lange et al., 2020; Franke et al., 2014; Kolbeinsson et al., 2020; Kolenic et al., 2018; Ronan 138 

et al., 2016). 139 

In the current study, our primary aim was to identify interactions between adipose 140 

tissue measures based on body MRI and tissue specific (DTI and T1-weighted) measures of 141 

brain age. We investigated cross-sectional associations of tissue specific BAG and detailed 142 

adipose tissue measures (body composition) and, for comparison, conventional 143 

anthropomorphic measures (BMI and WHR) used in a recent study (Beck et al., 2021b). 144 

Next, we tested for associations between longitudinal brain age and body composition at 145 

follow-up and investigated associations between each adiposity measure and longitudinal 146 

BAG. Adopting a Bayesian statistical framework, we hypothesised that higher abdominal fat 147 

ratio, weight-to-muscle ratio, total (abdominal) adipose volume, visceral fat index, muscle fat 148 

infiltration, and liver fat percentage would be associated with older appearing brains, with 149 

stronger associations in the body MRI measures than for traditional anthropomorphic 150 
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features. Further, we hypothesised that indices of obesity are associated with accelerated 151 

brain ageing as reflected in larger changes in BAG between baseline and follow-up. 152 

 153 

2. Material and methods  154 

2.1. Sample description 155 

Two integrated studies - the Thematically Organised Psychosis (TOP) (Tønnesen et al., 2018) 156 

and StrokeMRI (Richard et al., 2018) - formed the initial sample, which included 1130 157 

datasets from 832 healthy participants. All procedures were conducted in line with the 158 

Declaration of Helsinki and the study has been approved by the Norwegian Regional 159 

Committees for Medical and Health Research Ethics (REC). All participants provided written 160 

informed consent, and exclusion criteria included neurological and mental disorders, and 161 

previous head trauma. 162 

Following the removal of 68 datasets after quality checking (QC) of the MRI data 163 

(see section 2.5), the final sample included 1062 brain MRI datasets collected from 790 164 

healthy participants aged 18-94 years (mean ± standard deviation (SD) at baseline: 46.8 ± 165 

16.3). This included longitudinal data (two time-points with 19.7 months interval, on average 166 

(min = 9.8, max = 35.6) from 272 participants. Of the 790 included participants, body MRI 167 

data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, 168 

SD = 15.6). Demographic information is summarised in Table 1 and Figure 1. 169 

An independent training sample from the Cambridge Centre for Ageing and 170 

Neuroscience (Cam-CAN: http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; Shafto et al., 171 

2014; Taylor et al., 2017) was used for brain age prediction (section 2.6). After QC, MRI data 172 

from 622 participants were included (age range = 18–87, mean age  standard deviation = 173 

54.2  18.4).174 
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Table 1. Descriptive characteristics of the study sample. 

 Baseline 

brain MRI 

Follow-up 

brain MRI 

Body MRI Males at 

baseline 

Females at 

baseline 

Males at 

follow-up 

Females at 

follow-up 

N subjects 790 272 286 372 (47.1%) 418 (52.9%) 106 (39%) 166 (61%) 

Sex (Males/Females) 372/418 106/166 110/176 372/0 0/418 106/0 0/166 

Age (mean  SD) 46.7 ± 16.3 56.9 ± 15.0 57.6 ± 15.6 45.4 ± 16.3 48.0 ± 16.3 56.7 ± 16.9 57.1 ± 13.6 

Predicted Age T1 46.6 ± 17.4 56.7 ± 16.8 57.8 ± 17.7 44.6 ± 16.8 48.4 ± 17.3 55.3 ± 17.9 57.6 ± 16.0 

Predicted Age DTI 46.5 ± 16.9 57.0 ± 15.9 58.2 ± 16.9 46.9 ± 16.7 47.1 ± 17.0 57.7 ± 17.3 56.6 ± 15.0 

BAG T1 -0.15 ± 6.4 -0.23 ± 6.9 0.2 ± 6.9 -0.8 ± 5.9 0.5 ± 6.9 -1.41 ± 6.4 0.53 ± 7.2 

BAG DTI -0.2 ± 5.1 0.05 ± 0.9 0.5 ± 5.4   0-5 ± 5.1 -0.9 ± 5.0 0.92 ± 5.0 -0.51 ± 5.4 

BMI, kg/m2 25.2 ± 4.06 25.0 ± 3.7  25.6 ± 3.7 24.8 ± 4.3 25.3 ± 2.9 25.3 ± 4.4 

Waist-to-hip ratio (WHR) 0.87 ± 0.09 0.9 ± 0.09  0.91 ± 0.1 0.83 ± 0.1 0.93 ± 0.07 0.86 ± 0.08 

Visceral adipose tissue (VAT) 

(min-max) 

  2.7 (0.4-9.2) 3.7 (0.6-9.2) 2.2 (0.4-5.5)   

Abdominal subcutaneous 

adipose tissue (ASAT) 

  6.3 (1.1-19.7) 4.9 (1.5-13.4) 7.1 (1.1-19.8)   

Thigh muscle volume (TMV)   2.6 (0.6-1.5) 3.3 (2.3-4.2) 2.2 (1.5-3.3)   

Weight-to-muscle ratio (WMR)   29.3 (12.0-82.5) 25.6 (19.4-33.9) 31.7 (12.0-82.5)   

Liver PDFF (Liver fat)   4.3 (1.1-29.8) 4.9 (1.1-29.8) 3.9 (1.24-27.8)   

Fat ratio   74.5 (34.9-90.5) 70.0 (34.9-84.7) 77.5 (42.7-90.5)   

Visceral abdominal adipose 

tissue index (VAT index) 

  0.9 (0.14-2.9) 1.1 (0.2-2.9) 0.8 (0.14-2.0)   

Total abdominal adipose tissue 

index (Total adipose) 

  3.0 (0.51-8.5) 2.6 (0.57-5.3) 3.3 (0.51-8.5)   

Muscle fat infiltration (MFI)   7.6 (3.6-17.2) 6.9 (3.6-12.8) 8.3 (4.5-17.2)   
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 175 

  176 

Figure 1. Available baseline and follow-up data. All participants are shown. Participants with data at baseline 177 

are visualised in green dots (N = 790). Of these participants, those with longitudinal measures of brain MRI are 178 

connected to corresponding timepoint two orange dots (N = 272). The y axis shows index which reorders data to 179 

sort by age at first timepoint. Subplot shows density of age distribution at baseline. 180 

 181 

2.2. MRI acquisition 182 

MRI was performed at Oslo University Hospital, Norway, on a GE Discovery MR750 3T 183 

scanner. Brain MRI was collected with a 32-channel head coil. T1-weighted data were 184 

acquired with a 32-channel head coil using a 3D inversion recovery prepared fast spoiled 185 

gradient recalled sequence (IR-FSPGR; BRAVO) with the following parameters: TR: 8.16 186 

ms, TE: 3.18 ms, flip angle: 12◦, voxel size: 1×1×1 mm3, FOV: 256 × 256 mm2, 188 sagittal 187 

slices, scan time: 4:43 min. DTI data were acquired with a spin echo planar imaging (EPI) 188 
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sequence with the following parameters: repetition time (TR)/echo time (TE)/flip angle: 150 189 

ms/83.1 ms/90◦, FOV: 256 × 256 mm2, slice thickness: 2 mm, in-plane resolution: 2×2 mm, 190 

60 non-coplanar directions (b = 1000 s/mm2) and 5 b = 0 volumes, scan time: 8:58 min. In 191 

addition, 7 b = 0 volumes with reversed phase-encoding direction were acquired. 192 

Body MRI was performed with a single-slice 3D dual-echo LAVA Flex pulse 193 

sequence to acquire water and fat separated volumetric data covering head to knees. The 194 

following parameters were used: TE: minimum, flip angle: 10◦, FOV: 50 x 50 mm, slice 195 

thickness: 5 mm, scan time: 2:32 min. For proton density fat fraction (PDFF) assessment in 196 

the liver, a single-slice 3D multi-echo IDEAL IQ pulse sequence was used with the following 197 

parameters: TE: minimum, flip angle: 3◦, FOV: 45 x 45 mm2, slice thickness: 8 mm, scan 198 

time: 0:22 min. 199 

The Cam-CAN training set participants were scanned on a 3T Siemens TIM Trio 200 

scanner with a 32- channel head-coil at Medical Research Council (UK) Cognition and Brain 201 

Sciences Unit (MRC-CBSU) in Cambridge, UK. High-resolution 3D T1-weighted data was 202 

collected using a magnetisation prepared rapid gradient echo (MPRAGE) sequence with the 203 

following parameters: TR: 2250 ms, TE: 2.99 ms, inversion time (TI): 900 ms, flip angle: 9◦, 204 

FOV of 256 × 240 × 192 mm; voxel size = 1×1×1 mm, GRAPPA acceleration factor of 2, 205 

scan time 4:32 min (Dixon et al., 2014). DTI data was acquired using a twice-refocused spin 206 

echo sequence with the following parameters: TR: 9100 ms, TE: 104 ms, FOV: 192 × 192 207 

mm, voxel size: 2 mm, 66 axial slices using 30 directions with b = 1000 s/mm2, 30 directions 208 

with b = 2000 s/mm2, and 3 b = 0 images (Dixon et al., 2014). 209 

 210 

2.3. DTI processing and TBSS analysis 211 

Processing steps for single-shell diffusion MRI data in the test set followed a previously 212 

described pipeline (Maximov et al., 2019), including noise correction (Veraart et al., 2016), 213 

Gibbs ringing correction (Kellner et al., 2016), corrections for susceptibility induced 214 

distortions, head movements and eddy current induced distortions using topup 215 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy 216 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson & Sotiropoulos, 2016). Isotropic 217 

smoothing was carried out with a Gaussian kernel of 1 mm3 implemented in the FSL 218 

function fslmaths. DTI metrics were estimated using dtifit in FSL and a weighted least 219 

squares algorithm. Processing steps for the training set followed a similar pipeline with the 220 

exception of the noise correction procedure. 221 
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Voxelwise analysis of the fractional anisotropy (FA) data was carried out using Tract-222 

Based Spatial Statistics (TBSS) (Smith et al., 2006), as part of FSL (Smith et al., 2004). First, 223 

FA images were brain-extracted using BET (Smith, 2002) and aligned into a common space 224 

(FMRI58_FA template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson, 225 

& Smith., 2007; Jenkinson et al., 2012), which uses a b-spline representation of the 226 

registration warp field (Rueckert et al., 1999). Next, the mean FA volume of all subjects was 227 

created and thinned to create a mean FA skeleton that represents the centres of all tracts 228 

common to the group. Each subject's aligned FA data was then projected onto this skeleton. 229 

The mean FA skeleton was thresholded at FA > 0.2. This procedure was repeated in order to 230 

extract axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). fslmeants 231 

was used to extract the mean skeleton and 20 regions of interest (ROI) based on a 232 

probabilistic white matter atlas (JHU) (Hua et al., 2008) for each metric. Including the mean 233 

skeleton values, 276 features per individual were derived in total. 234 

 235 

2.4. FreeSurfer processing 236 

T1-weighted MRI data were processed using FreeSurfer (Fischl, 2012) version 7.1.0 for the 237 

test set and version FreeSurfer version 5.3 for the training set. To extract reliable area, 238 

volume and thickness estimates, the test set including follow-up data were processed with the 239 

longitudinal stream (Reuter et al., 2012) in FreeSurfer. Specifically, an unbiased within-240 

subject template space and image (Reuter & Fischl, 2011) is created using robust, inverse 241 

consistent registration (Reuter et al., 2010). Several processing steps, such as skull stripping, 242 

Talairach transforms, atlas registration as well as spherical surface maps and parcellations are 243 

then initialized with common information from the within-subject template, significantly 244 

increasing reliability and statistical power (Reuter et al., 2012). Due to the longitudinal 245 

stream in FreeSurfer influencing the thickness estimates, and subsequently having an impact 246 

on brain age prediction (Høgestøl et al., 2019), both cross-sectional and longitudinal data in 247 

the test set were processed with the longitudinal stream. All reconstructions were visually 248 

assessed and edited by trained research personnel. Cortical parcellation was performed using 249 

the Desikan-Killiany atlas (Desikan et al., 2006), and subcortical segmentation was 250 

performed using a probabilistic atlas (Fischl et al., 2002). 269 FreeSurfer based features were 251 

extracted in total, including global features for intracranial volume, total surface area, and 252 

whole cortex mean thickness, as well as the volume of subcortical structures. 253 

 254 

2.5. Quality control (QC) procedure 255 
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A detailed description of the complete QC procedure for the final sample is available in 256 

(Beck et al., 2021b). Briefly, for DTI we derived various QC metrics (see Supplementary 257 

material; SI Table 1), including temporal signal-to-noise-ratio (tSNR) (Roalf et al., 2016) to 258 

flag data deemed to have unsatisfactory quality. For T1-weighted data, QC was carried out 259 

using the ENIGMA cortical QC protocol including three major steps: outlier detection, 260 

internal surface method, and external surface method. Following the removal of datasets with 261 

inadequate quality (n = 30), the separate T1 and DTI datasets were merged with BMI and 262 

WHR measures, leaving the final sample used for the study at N = 1062 datasets from 790 263 

individuals, among which N = 286 had body MRI data available. 264 

Body MRI QC was carried out using a multivariate outlier detection algorithm, where 265 

anomalies in the data are detected as observations that do not conform to an expected pattern 266 

to other items. Using the R package mvoutlier (Filzmoser et al., 2005), potential outliers were 267 

flagged using the Mahalanobis distance (SI Figures 1 and 2). Informed by an interactive plot 268 

using the chisq.plot function, manual outlier observations of each of these flagged values 269 

deemed none of them as true outliers, leading to no further removal from the initial 286 body 270 

MRI dataset. 271 

 272 

2.6 Brain age prediction 273 

We performed brain age prediction using T1-weighted and DTI data using XGBoost 274 

regression (https://xgboost.readthedocs.io/en/latest/python), which is based on a decision-tree 275 

ensemble algorithm used in several recent brain age prediction studies (Beck et al., 2021b; de 276 

Lange et al., 2019, 2020; Kaufmann et al., 2019; Richard et al., 2020). BAG was calculated 277 

using (predicted age- chronological age) for each of the models, providing T1 and DTI-based 278 

BAG values for each individual. The BAG estimates were residualised for age to account for 279 

age-bias (de Lange & Cole, 2020; Liang et al., 2019). 280 

 281 

2.7. Adipose tissue measures 282 

For body MRI measures of adipose tissue distribution, missing entries were identified (SI 283 

Figure 3) before being imputed using the MICE package (van Buuren & Groothuis-284 

Oudshoorn, 2011) in R, where five imputations were carried out using the predictive mean 285 

matching method (package default). The distribution of the original and imputed data was 286 

inspected (SI Figure 4) and the imputed data were deemed as plausible values. Of the five 287 

imputations, the first was used for the remainder of the study. 288 
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To investigate the associations between the adipose tissue measures, hierarchical 289 

clustering of the variables was performed using hclust, part of the stats package in R (R Core 290 

Team, 2012), which uses the complete linkage method to form clusters. Five cluster groups 291 

were revealed. Principle component analysis (PCA) was performed using prcomp, part of the 292 

stats package in R (R Core Team, 2012), to visualise the variation present in the dataset. The 293 

PCA-derived scree plot (SI Figure 5) revealed that 79.4% of the variance was explained by 294 

the first two dimensions. SI Figure 6 provides a visualisation of the hierarchical clustering 295 

and SI Figure 7 provides a graph of PCA variables relatedness. 296 

Informed by the cluster formations and PCA, left and right anterior and posterior 297 

thigh muscle and fat infiltration volumes were combined to form two average measures of 298 

thigh muscle volume and thigh muscle fat percentage. Moreover, raw data was converted to 299 

body composition features following calculations provided in (Linge et al., 2018). The final 300 

adipose tissue measures included liver fat, describing the PDFF in the liver; visceral adipose 301 

tissue index (VAT index), which is VAT normalised by height2, describing the intra-302 

abdominal fat surrounding the organs; total adipose, which is the total abdominal fat (VAT 303 

and ASAT) normalised by height2; weight-to-muscle ratio (WMR), which is body weight 304 

divided by thigh muscle volume; fat ratio, which is the total abdominal fat divided by total 305 

abdominal fat and thigh muscle volume; and muscle fat infiltration (MFI). Figure 2 shows the 306 

body MRI for two participants. Figure 4 shows the associations between the adiposity 307 

measures in a network correlation graph, created using the qgraph (Epskamp et al., 2012) R 308 

package. For a correlation matrix of adiposity measures see SI Figure 8. 309 
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                          310 

Figure 2. Body MRI. Showing two participants with a coronal slice from their MRI scan with VAT (pink) and 311 

ASAT (blue), and thigh muscle segmentations. 312 

 313 

 314 

Figure 3. Distribution of the adiposity measures. Density plots for each variable, split by sex (male = green, 315 

female = orange). Vertical lines represent mean values for each sex. 316 

 317 
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2.8. Statistical analysis 318 

All statistical analyses were performed using R, version 3.6.0 (www.r-project.org/) (R Core 319 

Team, 2012). Bayesian multilevel models were carried out in Stan (Stan Development Team, 320 

2019) using the brms (Bürkner, 2017, 2018) package. For descriptive purposes, we tested 321 

associations between each adiposity measure and age. Each adiposity measure was entered as 322 

the dependent variable while age was entered as the independent fixed effects along with sex 323 

and time. 324 

To address the primary aim of the study, we tested for associations between tissue 325 

specific BAG and each adiposity measure. BAG (for T1 and DTI separately) was entered as 326 

the dependent variable with each adiposity measure separately entered as the independent 327 

fixed effects variable along with age, sex, and time. 328 

To test our hypothesis that adiposity influences brain ageing we tested for 329 

associations between longitudinal changes in BAG and body MRI measures at follow-up 330 

using Bayesian multilevel models. Similarly, we tested for interactions between age and 331 

adiposity measures on BAG. For each of the models, timepoint and age were included in the 332 

models where appropriate, while sex was added to both models. 333 

In order to prevent false positives and to regularize the estimated associations we 334 

defined a standard prior around zero with a standard deviation of 1 for all coefficients. For 335 

each coefficient of interest, we report the mean estimated value and its uncertainty measured 336 

by the 95% credible interval of the posterior distribution, and calculated Bayes factors (BF) 337 

using the Savage-Dickey method (Wagenmakers et al., 2010). For a pragmatic guide on 338 

Bayes factor (BF) interpretation, see SI Table 2. 339 

 340 

3. Results 341 

3.1. Brain age prediction 342 

SI Table 3 summarises age prediction accuracy in the training and test sets. Briefly, the 343 

models revealed high accuracy, as previously reported (Beck et al., 2021b), with R2 = 0.72 344 

and 0.73 for the T1 and DTI models, respectively. 345 

 346 

3.2. Adiposity measures and brain age gap 347 

3.2.1. Descriptive statistics 348 

Table 1 shows descriptive statistics, Figure 3 shows the distributions within women and men 349 

for each adiposity measure, and Figure 5 shows the correlations between adiposity measures 350 

for women and men. 351 
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 352 

Figure 4. Associations between adiposity measures. Network correlation graph showing correlations between 353 

adiposity measures and age, where the green lines indicate positive associations, and orange lines (none present) 354 

indicate negative associations. Strength of association marked by thickness of each line, with the thickest line 355 

shown equating to r = 0.86. Abbreviations: MFI – muscle fat infiltration; Fat – fat ratio; WHR – waist-to-hip 356 

ratio; VAT – visceral abdominal tissue index; WMR – weight-to-muscle ratio; Total A – total adipose; BMI – 357 

body-mass index; Liver – liver fat. 358 

 359 

 360 

Figure 5. Associations between adiposity measures (and age) split by sex. Scatter plot matrix showing 361 

Pearson correlations between adiposity measures. Green points represent males, orange points represent 362 

females. 363 
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 364 

3.3. Bayesian multilevel models 365 

3.3.1. Descriptive results 366 

For descriptive purposes, associations between each adiposity measure and age were tested. 367 

Results are summarised in the Supplementary Material, including visualisation of reported 368 

effects (SI Figures 9-10). 369 

 370 

3.3.2. Associations between BAG and adiposity measure 371 

Figure 7 shows posterior distributions of the estimates of the coefficients reflecting the 372 

associations between each adiposity measure and BAGs, and Figure 8 shows credible 373 

intervals and evidence ratios. SI Figure 11 shows network correlation graph of correlations 374 

between adiposity measures and each BAG, and SI Table 5 provides summary statistics. 375 

The tests revealed anecdotal evidence in favour of an association with DTI BAG for 376 

fat ratio (BF = 0.91, β = -0.50), while moderate evidence in favour of no association was 377 

revealed between DTI BAG and VAT index (BF = 3.12, β = -0.05), liver fat (BF = 2.90, β = 378 

-0.13), and anecdotal evidence for WMR (BF = 2.73, β = -0.13), total adipose (BF = 2.02, β 379 

= -0.31), MFI (BF = 2.63, β = 0.17), WHR (BF = 1.92, β = 0.26), and BMI (BF = 2.62, β = -380 

0.21). 381 

Strong evidence in favour of an association with T1 BAG was provided for liver fat 382 

(BF = 0.09, β = 1.0), with moderate evidence for MFI (BF = 0.17, β = 0.92), and anecdotal 383 

evidence for WMR (BF = 0.40, β = 0.77). The tests revealed moderate evidence in favour of 384 

no association between T1 BAG and WHR (BF = 3.40, β = 1.73), and BMI (BF = 3.47, β = -385 

0.17), and anecdotal evidence for fat ratio (BF = 2.5, β = -0.12), total adipose (BF = 2.50, β = 386 

0.09), VAT index (BF = 1.53, β = 0.40). 387 

 388 
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Figure 6. Associations between adiposity and BAG. The figure shows posterior distributions of the estimates 390 

of the standardised coefficient. Estimates for each variable on DTI BAG on the left and T1 BAG on the right. 391 

Colour scale follows direction evidence, with positive values indicating evidence in favour of an association and 392 

negative values evidence in favour of the null hypothesis. Width of distribution represents the uncertainty of the 393 

parameter estimates. 394 

 395 

 396 

Figure 7. BAG and adiposity: Estimate credible intervals and evidence ratios. Left-side plot shows 397 

estimates with 95% credible intervals while the right-side figure shows likelihood of null where values above 398 

one indicate evidence in favour of the effect being null, and values below one indicate evidence in favour of an 399 

effect. T1 BAG associations are represented by orange points, and DTI BAG by green points. 400 

 401 

3.3.3. Interaction effects of time and adiposity measure on brain age gap 402 

Figure 9 shows posterior distributions of the estimates of the coefficient for the interaction 403 

between time and each adiposity measure and DTI and T1 BAGs, and Figure 10 shows 404 

credible intervals and evidence ratios. For full table of results see SI Table 5.  405 

For DTI BAG, the evidence supporting an interaction with time was anecdotal for 406 

WHR (BF = 0.44, β = 0.39) (SI Figure 12). The models revealed moderate evidence in 407 

favour of no interaction with time for WMR (BF = 3.24, β = 0.02), fat ratio (BF = 3.12, β = -408 

0.14), and BMI (BF = 3.43, β = 0.17), with anecdotal evidence for VAT index (BF = 2.93, β 409 

= -0.13), total adipose (BF = 2.73, β = -0.21), liver fat (BF = 2.51, β = -0.21), and MFI (BF = 410 

1.41, β = 0.43). 411 

For T1 BAG, the evidence supporting an interaction with time was moderate for 412 

WHR (BF = 0.30, β = 0.50) and MFI (BF = 0.29, β = 0.87), indicating faster pace of brain 413 

ageing among people with higher WHR and MFI (SI Figure 12). The models also revealed 414 

anecdotal evidence for WMR (BF = 0.57, β = 0.66). The evidence of no associations was 415 

anecdotal for fat ratio (BF = 1.72, β = 0.34), VAT index (BF = 1.49, β = 0.41), total adipose 416 
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(BF = 1.79, β = 0.34), and liver fat (BF = 1.17, β = 0.53), and moderate for BMI (BF = 3.35, 417 

β = 0.17). 418 

 419 

 420 

Figure 8. Interaction effects between adiposity and time on BAG. The figure shows posterior distributions of 421 

the estimates of the standardised coefficient. Estimates for the interaction effect of time and each adiposity 422 

measure on DTI BAG on the left and T1 BAG on the right. 423 

 424 

 425 

Figure 9. Interaction effects between adiposity and time on BAG: Estimate credible intervals and 426 

evidence ratios. Left-side plot shows estimates with 95% credible intervals while the right-side figure shows 427 

likelihood ratios. T1 BAG effects are represented by orange points, and DTI BAG by green points. 428 

 429 

3.3.4. Interaction effects of age and adiposity measure on brain age gap 430 

Figure 11 shows posterior distributions of the estimates of the coefficient for the interaction 431 

between age and each adiposity measure and DTI and T1 BAGs, and Figure 12 shows 432 

credible intervals and evidence ratios. For full table of reported results see SI Table 5.  433 

The analysis provided anecdotal evidence in support of an interaction effect with age 434 

on DTI BAG for WHR (BF = 0.44, β = 0.36). Anecdotal evidence was also provided in 435 

support of no interaction effect for WMR (BF = 1.92, β = 0.30), liver fat (BF = 2.26, β = 436 

0.17), MFI (BF = 1.06, β = 0.49), fat ratio (BF = 2.75, β = 0.18), VAT index (BF = 2.29, β = 437 
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0.22), and BMI (BF = 2.81, β = 0.21), with moderate evidence for total adipose (BF = 3.20, β 438 

= -0.01). 439 

The support of an interaction effect with age on T1 BAG was very strong for WHR 440 

(BF = 0.01, β = 0.68), and moderate for WMR (BF = 0.13, β = 1.00), fat ratio (BF = 0.24, β 441 

= 0.87), VAT index (BF = 0.24, β = 0.94), liver fat (BF = 0.25, β = 0.94), and MFI (BF = 442 

0.12, β = 1.03), indicating these adiposity measures may be increasingly important predictors 443 

of BAG with increasing age. The models further indicated anecdotal evidence for total 444 

adipose (BF = 0.34, β = 0.76) and BMI (BF = 0.62, β = 0.42). 445 

 446 

 447 

Figure 10. Interaction effects between adiposity and age on BAG. The figure shows posterior distributions of 448 

the estimates for the interaction effect between age and each variable on DTI BAG on the left and T1 BAG on 449 

the right. 450 

 451 

 452 

Figure 11. Interaction effects between adiposity and age on BAG: Estimate credible intervals and 453 

evidence ratios. Left-side plot shows estimates with 95% credible intervals while the right-side figure shows 454 

likelihood ratios. T1 BAG effects are represented by orange points, and DTI BAG by green points. 455 

 456 

4. Discussion 457 
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Despite increasing evidence of shared mechanisms across several metabolic conditions and 458 

cardiovascular and neurodegenerative diseases, we are yet to fully understand the complex 459 

associations of adipose tissue and brain age. The current cross-sectional and longitudinal 460 

findings support that higher measures of adipose tissue – particularly higher liver fat and MFI 461 

– are associated with an older-appearing brain and faster brain ageing. Both overall brain age 462 

gap and the rates of change in brain age over time were associated with specific adipose 463 

tissue measures at follow-up, including thigh muscle fat infiltration, weight-to-muscle ratio, 464 

and liver fat. 465 

 466 

4.1. Adiposity and brain age: cross-sectional analysis 467 

Our findings demonstrated associations between liver fat, MFI, WMR and T1 BAG, 468 

indicating older-appearing brains in individuals with higher adipose tissue measures. DTI 469 

BAG associations were less common, with evidence supporting no associations with VAT 470 

index and WHR. These findings are in line with the hypothesis that body MRI adipose tissue 471 

measures are associated with ageing of the brain as indicated by brain MRI morphology 472 

measures. Moreover, the findings extend previous work linking adiposity measures, including 473 

links to grey matter volume (Debette & Markus, 2010; Gunstad et al., 2005; Jørgensen et al., 474 

2017; Ward et al., 2005) and white matter microstructural properties based on diffusion MRI 475 

(Marks et al., 2011; Mueller et al., 2011; Stanek et al., 2011; Xu et al., 2013), with conflicting 476 

evidence for white matter volume (Friedman et al., 2014; Willette & Kapogiannis, 2015). The 477 

discrepancy may be due to methodological differences, e.g. between previous regional 478 

associations and our global brain age approach. Future research estimating regional brain age 479 

models trained with more advanced diffusion MRI features may offer improved sensitivity 480 

and specificity (Beck et al., 2021a). 481 

MFI has previously been linked to metabolic risk factors (Therkelsen et al., 2013) and 482 

insulin resistance in obesity (Goodpaster et al., 2000). Higher liver fat has been found among 483 

diabetics (Bamberg et al., 2017; Linge et al., 2018) and prediabetics without previous 484 

cardiovascular conditions (Bamberg et al., 2017). Studies have also reported no significant 485 

association between CHD or cardiovascular events and elevated liver fat (Neeland et al., 486 

2015). Moreover, while comparing patients with non-alcoholic fatty liver disease (NAFLD) 487 

to controls, Hagström et al., (2017) reported no significant difference in cardiovascular 488 

related death. Conflicting results however, have linked NAFLD with cardiovascular disease 489 

(Brea et al., 2017), suggesting a complex interplay between regional adipose tissue and 490 

metabolic health. 491 
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This complexity has recently been corroborated by findings of 62 genetic loci 492 

associated with both higher adiposity and lower cardiometabolic risk (Huang et al., 2021), 493 

possibly reflecting protective mechanisms. Although speculative, this heterogeneity is likely 494 

also reflected in connection to brain health, which for some individual genetic architectures 495 

may offer protection against brain pathology while simultaneously increasing the risk for 496 

obesity. Further studies exploiting larger sampler are needed to pursue this hypothesis and 497 

attempt to dissect the heterogeneity using genetic data (Huang et al., 2021) in combination 498 

with brain imaging. 499 

 500 

4.2. Adiposity and brain ageing: longitudinal evidence 501 

Our longitudinal analyses revealed that the rate of brain ageing across the study period was 502 

associated with adiposity measured at follow-up, with evidence for WHR from our 503 

anthropometric measures, and MFI and WMR from adipose tissue distribution measures. 504 

While evidence for WHR was present for both T1-weighted and DTI BAGs - which largely 505 

replicates a recent report from the same cohort (Beck et al., 2021b) - evidence for MFI and 506 

WMR were only observed for T1-weighted BAG, where greater adipose tissue was 507 

associated with increased rate of brain ageing. Conversely, evidence in favour of no 508 

interaction effect with time was found for BMI. This supports that BMI alone may not 509 

represent a clinically relevant proxy, as it fails to distinguish from lean mass while ignoring 510 

regional fat distribution, in particular the visceral components (Evans et al., 2012; Roberson 511 

et al., 2014). 512 

 While experimental evidence is needed to establish causality, our findings suggest 513 

that adipose tissue distribution affects brain ageing and may lead to older appearing brains in 514 

generally healthy individuals. These observations are in line with previous studies, both from 515 

clinical groups and population-based cohorts. Non-alcoholic fatty liver disease, for example, 516 

has been previously linked to smaller total brain volume (Weinstein et al., 2018) and cortical 517 

and cerebellar structures (Gurholt et al., 2020), while muscle fat infiltration has been 518 

negatively associated with cortical structures (Gurholt et al., 2020). While more research into 519 

adipose tissue distribution is warranted, the current results suggest that increased liver fat, 520 

muscle fat infiltration, and weight-to-muscle ratio may contribute to accelerate brain ageing. 521 

 522 

4.3. Brain age and adiposity: interactions with age 523 

For DTI BAG, our findings demonstrated an interaction effect with age and WHR, while T1 524 

BAG interaction effects were present for age and WMR, fat ratio, total adipose, VAT index, 525 
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liver fat, MFI, BMI, and WHR. The findings indicate that adiposity measures may be 526 

increasingly important predictors of BAG with increasing age. In contrast, we observed no 527 

evidence of interaction effects between age and BMI on DTI or T1 BAGs. Previous research 528 

has produced mixed results, with studies reporting an interaction of BMI and age on white 529 

matter volume but no interaction on cortical surface area or thickness (Ronan et al., 2016). 530 

Further research is warranted to elucidate the degree to which associations between adiposity 531 

and brain structure change over the course of the lifespan. 532 

 533 

4.4. Strengths and limitations 534 

The current study benefitted from a mixed cross-sectional and longitudinal design enabling 535 

brain changes to be tracked across time. The prediction models for brain age had high 536 

accuracy, and separate T1-weighted and DTI brain age gaps provided tissue-specific 537 

measures of brain age with potential to reveal specific associations with the included 538 

adiposity measures. 539 

 Several limitations should be considered when evaluating the findings. First, while the 540 

longitudinal brain MRI data represent a major strength, the follow-up sample size is 541 

relatively small, and the body MRI data was only collected at the follow-up examination. The 542 

subsequent loss of power is reflected in the width of body MRI posterior distributions, 543 

indicating a higher level of uncertainty compared to BMI and WHR, which had available 544 

longitudinal measures and a larger sample size. Next, although body composition measures 545 

based on MRI offer high accuracy in terms of fat and muscle distributions and are therefore a 546 

potentially valuable supplement to conventional anthropomorphic features, future studies 547 

including biological markers such as immune and inflammation assays and lipid 548 

measurements might provide even higher specificity and opportunities for further subtyping. 549 

Indeed, inflammation has demonstrated effects on brain function and structure (Rosano et al., 550 

2011) and has been dubbed to have a central role in the obesity-brain connection (O’Brien et 551 

al., 2017). Moreover, including detailed assessments of dietary routines, alcohol intake, and 552 

physical exercise is vital in order to better understand the complex processes at play. For 553 

example, physical activity has been associated with lower brain age (Dunås et al., 2021; 554 

Sanders et al., 2021) and higher grey and white matter measures (Sexton et al., 2016), while 555 

excess alcohol intake is well documented in influencing liver and brain health (Agartz et al., 556 

1999; Rehm et al., 2010). Lastly, the current sample is predominantly ethnic Scandinavian 557 

and Northern European, restricting our ability to generalise to wider populations, and future 558 

studies should aim to increase the diversity in the study population. 559 
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 560 

4.5. Conclusion 561 

Combining body MRI and brain age prediction based on brain MRI allows for probing 562 

individual body composition profiles and brain patterns and trajectories which may confer 563 

risk for cardiometabolic disease and neurodegenerative disorders. More knowledge and 564 

further development of automated tools for individual phenotyping in this domain may 565 

inform public health priorities and interventions. With evidence of different adiposity 566 

subtypes being differentially linked with different brain phenotypes and cardiometabolic 567 

diseases, precision methods that look at fat distribution can potentially be more informative 568 

than conventional anthropomorphic measures. This in turn will provide a more effective tool 569 

for development of treatment strategies that focus on individual risk of metabolic disease, as 570 

well as disentangling the associations between body and brain health. 571 
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