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Summary 

We examined 169 genomes of SARS-CoV-2 and found that they can be classified into 

two major genotypes, Type I and Type II. Type I can be further divided into Type IA 

and IB. Our phylogenetic analysis showed that the Type IA resembles the ancestral 
SARS-CoV-2 most. Type II was likely evolved from Type I and predominant in the 

infections. Our results suggest that Type II SARS-CoV-2 was the source of the 
outbreak in the Wuhan Huanan market and it was likely originated from a 

super-spreader. The outbreak caused by the Type I virus should have occurred 
somewhere else, because the patients had no direct link to the market. Furthermore, 

by analyzing three genomic sites that distinguish Type I and Type II strains, we found 

that synonymous changes at two of the three sites confer higher protein translational 

efficiencies in Type II strains than in Type I strains, which might explain why Type II 

strains are predominant, implying that Type II is more contagious (transmissible) than 

Type I. These findings could be valuable for the current epidemic prevention and 
control. 

 

Introduction 

The outbreak of the coronavirus disease 2019 (COVID-19), caused by a novel 

coronavirus named “Severe Acute Respiratory Syndrome CoronaVirus 2 
(SARS-CoV-2) ”, has now been detected in over 60 nations and lead to more than 

80,000 confirmed cases and ~3,000 deaths 
(http://2019ncov.chinacdc.cn/2019-nCoV/global.html). Although the spread of 

SARS-CoV-2 in China seems to be largely contained, the confirmed cases outside 

China have been rising. Therefore, the risk of global pandemic of SARS-CoV-2 is still 
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growing. Currently, the outbreak sources and the transmission history of 

SARS-CoV-2 is far from well-understood. Revealing the evolutionary history of 

different SARS-CoV-2 samples allows us to infer the virus transmission routes and to 

identify novel mutations associated with the transmissions. Such information will be 
valuable for vaccine development and disease control.  

Our recent study showed that SARS-CoV-2 form a sister group to two SARS-like 

bat viruses (bat-SL-CoVZC45 and bat-SL-CoVZXC21) [1] that were collected in 

Zhoushan, Zhejiang Province, China, from 2015 to 2017 [2]. A subsequently released 

sequence of a bat coronavirus (BatCoV RaTG13) isolated in Yunnan in 2013 was 

found to be more similar to the sequences of SARS-CoV-2 [3], which is confirmed by 

our phylogenetic analysis based on whole genome sequences (Figure S1). Therefore, 
we used BatCoV RaTG13 and the two SARS-like bat viruses (bat-SL-CoVZC45 and 

bat-SL-CoVZXC21) as an outgroup to study the origin and transmission history of 
SARS-CoV-2. 

 

Materials and Methods 

The complete genomes of SARS-CoV-2 samples were obtained from GISAID 

(www.gisaid.org), NCBI and NMDC (http://nmdc.cn/#/nCov/). Alignment of the 
complete genome sequences and that of BatCoV RaTG13 was carried out by MAFFT 

[4].  

We identified genome variable sites from the sequence alignment using Noisy [5]. 

Variants that are present in at least two samples were used in our subsequence analysis. 

Some samples have unusually large number of mutation sites, which could be due to 
due to sequencing or assembly errors. These sequences were also excluded in our 

analysis. 

We inferred the phylogeny of the SARS-CoV-2 isolates based on the variable sites 
using the maximum likelihood (ML) method by FastTree [6]. The tRNA Adaptation 

Index (tAI), an indicator of codon translational efficiency, was computed using the 

tool Bio::CUA (https://metacpan.org/release/Bio-CUA), and the numbers of human 

tRNA genes for each codon (used for computing tAI) were downloaded from 

http://gtrnadb.ucsc.edu. 

 

Results and discussions  

We obtained 169 complete genomes of SARS-CoV-2 samples and identified 

variable sites based on whole genome alignment (Figure 1). In most cases, different 
SARS-CoV-2 genomes only differ in 0 to 3 sites. A total number of 207 variable sites 

were identified (Figure S2). It shows that the amplitude of mutations is small, and 
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their evolution history can be inferred from these variable sites.  

Their phylogenetic relationships reveal two major genotypes from the 
SARS-CoV-2 samples, namely Type I and II (Figures 1A, S3 and S4). The genomes 

of the two types mainly differ at three sites (Figure 1B), which are 8750, 28112, and 

29063, using the genome coordinates of sample MN938384.1 as a reference. 
Specifically, the nucleotides at the three sites are T, C, and T/C in Type I, and C, T, 

and C in Type II, respectively. Based on the nucleotide at the site 29063, the Type I 

strains can be further divided into Type IA and IB. The number of genomes belonging 

to Type IA, IB and II are 11, 37, and 121, respectively.  

We found that the three sites in Type IA and two in Type IB are identical to those 
in three bat viruses BatCoV RaTG13 [3], bat-SL-CoVZC45 and 

bat-SL-CoVZXC21[2](Figure 1B), suggesting that the Type I may be more closely 
related to the ancestral human-infecting strain than Type II. Therefore, in the principle 

of parsimony, Type IA resembles the most ancestral lineage of SARS-CoV-2, and 
Type IB was derived from Type IA by a new mutation at site 29063. In addition, Type 

II may have originated from a Type IB strain by accumulating mutations at sites 8750 

and 28112.  

 Two environmental samples isolated from the Huanan market 

(Wuhan/IVDC-HB-envF13-20 and 21) belong to Type II, and no samples from Type I 
have a direct link to the Huanan market (such as Wuhan/WH04/2020 [7]). These 

observations suggest that the outbreak in the Huanan market was triggered by the 
Type II virus and that the initial transmission of Type I viruses to humans might have 

occurred somewhere else in Wuhan, probably preceding the outbreak of Type II in the 

Huanan market. Our speculation is in line with earlier reports that 14 of the first 

reported 41 cases had no link to the Huanan market [7-9].  

In addition to the above-mentioned transmission sources, we also found that there 
are several large clades in Type II (Group 1-3). The Group-1 of Type II are identical, 

suggesting they were likely originated from the same transmission source. Group-2 

and Group-3 share at least one mutation, indicating that they shared the same 
transmission source. As only a small portion of SARS-CoV-2 isolates have been 

sequenced, the actual numbers of infected patients in each group are expected to be 
much larger. We speculate that each group was likely from a source of super 

transmission or super-spreader. 

Because Type II strains account for most of the sampled genomes, it is reasonable 

to speculate that Type II is more contagious, assuming no strong sampling bias. To 

better understand why the Type II virus is more prevalent, we then focused on the 
three variable genomic sites that distinguish Type II from Type I strains. First, we 

noticed the mutations at 8750 and 29063 are synonymous (in gene orf1ab and N, 
respectively) and the one at 28112 is nonsynonymous, leading to a change from 
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Leucine to Serine in the gene ORF8. Interestingly, we found that the two synonymous 

changes both confer higher translational efficiencies for the Type II strains than for 

Type I (Figure 2), based on the number of tRNA genes matching each codon and 

tRNA Adaptation Index (tAI) [10]. We speculate that the higher translational 
efficiencies might have enabled faster production of Type II virus particles, facilitated 

its spread, and led to its dominance in infections, implying that Type II is more 
contagious (transmissible) than Type I. If our speculation is correct, this would 

provide guidelines for treating Type I and II patients differently.  

In summary, our results illustrate the presence of two major genotypes of 

SARS-CoV-2, suggesting of at least two, possibly three, major outbreak sources 

(Figure 3). The outbreak in the Huanan market may not be the initiation transmission 
of SARS-CoV-2 to human, and thus the location of initial transmission to humans 

remain to be determined. As most samples detected belong to Type II, it indicates that 
Type II is more transmissible. We identified three genomic variants that separate the 

two types of SARS-CoV-2. Our data suggest that two variants are linked to improved 
translation efficiency in Type II. The impacts of these genomic variants could be 

further evaluated by comparing the symptoms of patients infected by each type of 

viruses. Particularly, some asymptomatic carriers have been recently found [11]. It is 

worth examining whether these asymptomatic cases are enriched in Type I. With more 

sequencing data of SARS-CoV-2, we expect a more complete understanding of 

transmission history.   

 

Acknowledgments. We acknowledge the authors and the originating and submitting 
laboratories of the nucleotide sequences from the Global Initiative on Sharing All 

Influenza Data’s EpiFlu Database, NCBI and NMDC (http://nmdc.cn/#/nCov/).  

Potential conflicts of interest. All authors: No reported conflicts. 

 

Figure 1. A phylogenetic tree of the 169 SARS-CoV-2strains and their genomic 
variants. 

A, A maximum likelihood (ML) phylogenetic tree of the human SARS-CoV-2 with 

approximately ML method by FastTree (http://meta.microbesonline.org/fasttree/). The 

phylogenetic tree was constructed using the sequence alignment shown in B. The two 

groups, Type I and Type II, are colored in blue and red, respectively.  

B, Sequence alignment of the SARS-CoV-2 genomes where only major variable sites 
are shown. Each line corresponds to one branch in the phylogenetic tree to the left. 

The corresponding sites from the strain BatCoV RaTG13 are shown on the top 

separated by a red line. Three type-specific variants are marked in red arrows, 
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corresponding to the genomic positions 8750, 28112, and 29063, respectively; the 

coordinates are referred to the sequence MN938384.1.  

Figure 2. The codon changes caused by the three variant sites in Figure 1. The tAI 
values were computed using Bio::CUA (https://metacpan.org/release/Bio-CUA), and 

the numbers of human tRNA genes were downloaded from http://gtrnadb.ucsc.edu. 

 

Figure 3. A simple SARS-CoV-2 virus transmission model.  

The SARS-CoV-2 may have two or three sources of transmissions, corresponding to 

the three genotypes we identified here, Type IA, Type IB and Type II. 

 

Supplementary Figure 1. The SARS-CoV and SARS-CoV-2 phylogenetic tree uses 
MERS-CoV as an outgroup. 

Supplementary Figure 2. Sequence alignment of 169 COVID-19 genomes where 
only the variable sites are shown. 

Supplementary Figure 3. A maximum likelihood (ML) phylogenetic tree of the 
human COVID-19 virus. The phylogenetic tree was constructed using the genome 

sequence alignment. The two groups, Type I and Type II, are colored in blue and red, 

respectively. 

Supplementary Figure 4. A maximum likelihood (ML) phylogenetic tree of the 
human COVID-19 virus. The phylogenetic tree was constructed using the variable 

sites shown in Supplementary Figure 2. The two groups, Type I and Type II, are 
colored in blue and red, respectively.  
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Codon # Anticodon 
tRNA genes; tAIa

Codon # Anticodon 
tRNA genes; tAI

Codon # Anticodon 
tRNA genes; tAI

SNP position 8750 28112 29063
RaTG13 (bat) AGT (Ser) 0; 0.16 TCA (Leu) 4; 0.14 TTT (Phe) 0; 0.20
Type I AGT (Ser) 0; 0.16 TCA (Leu) 4; 0.14 TTT (Phe) 0; 0.20

Type II AGC (Ser) 8; 0.28 TTA (Ser) 4; 0.14 TTC (Phe) 10; 0.34
a: this column shows the number of tRNA genes in human genome with anticodons matching the considered codons. 
tAI is a measure of codon’s translational efficiency10, the higher the more efficient. 
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2 mutations            8750: T->C
                              28112: C->T
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Location:  ?  

Type II source
Major outbreak source 
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1 mutations,  
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Codon # Anticodon 
tRNA genes; tAIa

Codon # Anticodon 
tRNA genes; tAI

Codon # Anticodon 
tRNA genes; tAI

SNP position 8750 28112 29063
RaTG13 (bat) AGT (Ser) 0; 0.16 TCA (Leu) 4; 0.14 TTT (Phe) 0; 0.20
Type I AGT (Ser) 0; 0.16 TCA (Leu) 4; 0.14 TTT (Phe) 0; 0.20

Type II AGC (Ser) 8; 0.28 TTA (Ser) 4; 0.14 TTC (Phe) 10; 0.34
a: this column shows the number of tRNA genes in human genome with anticodons matching the considered codons. 
tAI is a measure of codon’s translational efficiency10, the higher the more efficient. 

Fig 2
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