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Bayesian Small Area Models under Inequality
Constraints with Benchmarking and Double Shrinkage

Balbogin Nandram?* Nathan B. Cruze! Andreea L. Erciulescu! Lu Chen?

Abstract

We present a novel methodology to benchmark county-level estimates of crop area totals to a preset
state total subject to inequality constraints and random variances in the Fay-Herriot model. For
planted area of the United States Department of Agriculture, it is necessary to incorporate the
constraint that the estimated totals, derived from survey and other auxiliary data, are no smaller
than administrative planted area totals prerecorded by other agencies. These administrative totals
are treated as fixed and known, and this additional coherence requirement adds to the complexity of
benchmarking the county-level estimates. A fully Bayesian analysis of the Fay-Herriot model offers
an appealing way to incorporate the inequality and benchmarking constraints, and to quantify the
resulting uncertainties, but sampling from the posterior densities involves difficult integration, and
reasonable approximations must be made. First, we describe a single-shrinkage model, shrinking
the means while the variances are assumed known. Second, we extend this model to accommodate
double shrinkage, borrowing strength across means and variances. This extended model has two
sources of extra variation, but because we are shrinking both means and variances, it is expected
that this second model should perform better in terms of precision and goodness of fit. Both models
are applied to simulated data sets with properties resembling the Illinois corn crop.

KEY WORDS: Devroye method; Fay-Herriot model; Grid method; Hierarchical Bayesian model,
Metropolis sampler.
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1 INTRODUCTION

For many problems in official statistics, it is necessary to incorporate constraints in model-based
inference. For example, in small area estimation, there may be constraints on the model estimates,
which are to be benchmarked to a target. These may be known lower (or upper) bounds for county
estimates, which should “add up” to the state estimate, obtained earlier. One practical example is
the estimation of planted acres for counties within states, with a state estimate obtained earlier,
when there are survey data and administrative data that can provide lower bounds to the county
estimates, which are required to add up to the state estimate. While we focus on an application
in agriculture, we develop a methodology to solve the problem in which small area estimates are
needed to satisfy certain lower bounds and these estimates are further benchmarked to an estimate
at a higher level via the top down approach.

In the United States, official county-level estimates of crop yield, total production, and to-
tal acreage published by United States Department of Agriculture (USDA) National Agricultural
Statistics Service (NASS) are important. These official estimates may determine the amount of pay-
ments to be made to farmers and ranchers enrolled in several programs administered by other USDA
agencies including the Farm Service Agency (FSA) and the Risk Management Agency (RMA). Ac-
cordingly, NASS strives to improve the accuracy, reliability, and coverage of its official crop county
estimates. As described in a report titled Improving Crop County Estimates by Integrating Multiple
Data Sources (National Academies of Sciences, Engineering, and Medicine 2017), one way to do
so is to use defensible models that include multiple sources of variability and other auxiliary data.
The report highlighted many of the challenges faced by NASS and emphasized the role model-
based inference can play in the publication of official county estimates. The findings of the report
were further discussed in Cruze et al. (2019), and the authors identified coherence of crop area
estimates with known, same-year administrative acreage totals as a significant need for the NASS
crops county estimates program.

Constraints on estimates may enter in the form of order or shape restrictions (e.g., Nandram,
Sedransk and Smith 1997; Silvapulle and Sen 2005; Chen and Nandram 2022) or in the form
of inequality constraints (Sen and Silvapulle 2002). The latter type of restriction is of particular

interest as it relates to the coherence of tabulated crop estimates in the presence of available



administrative data curated by USDA. Benchmarking estimates for smaller geographic domains
to those of larger geographic areas is one common form of equality constraint encountered in
official statistics. For example, several past NASS studies have achieved this by ratio adjustment
(raking) made after model output analysis (e.g., Erciulescu, Cruze, and Nandram 2018, 2019,
2020); see also Steorts, Schmid and Tzavidis (2020) and the references therein for an informative
review on benchmarking. While the emphasis of the present work is methodological, we note that
a recent NASS-authored case study and companion paper (Chen, Cruze, and Nandram 2022) on
the constrained planted area problem, single shrinkage model, will appear in a forthcoming issue
in the Journal of Official Statistics, adding to the growing literature on statistical inference under
inequality constraints. Also, we note that our main contributions are on the inequality constraints.

Non-probability data are not devoid of errors. First, it is understood that while participation in
agricultural support programs is popular in the United States, the voluntary enrollment in FSA and
RMA programs contributes to potential under-coverage (a downward bias) in these administrative
acreage totals. Moreover, rates of participation in these support programs may differ each year, by
commodity crop, by state, or even more locally within state. Other nonsampling errors, however,
are believed to be minimized through FSA and RMA quality controls. For example, farmers certify
their enrolled acreages with FSA agents on geolocated field boundaries, and farmers are subject
to penalties for falsifying their reports. With these properties in mind, the available administrative
totals are viewed by NASS and USDA as informative lower bounds and publication of coherent
tabular data on planted area requires: 1) that county acreage totals sum to the state acreage totals
that are published prior to the release of county estimates, and 2) that official county-level planted
area estimates honor the lower bound constraint in each county.

Additionally, we consider possible gains from double shrinkage by borrowing strength from
means and variances simultaneously. Both frequentist and Bayesian model-based estimation tech-
niques for the sampling variances have been considered in the literature for the area-level models.
For example, see Wang and Fuller (2003); You and Chapman (2006); Gonzalez-Manteiga et al.
(2010), Erciulescu and Berg (2014); Maiti, Ren and Sinha (2014); and Dass et al. (2012). Recently,
Erciulescu, Cruze and Nandram (2019) incorporated double shrinkage in estimates of unconstrained
harvested area totals.

Let éi,i = 1,...,/¢, denote the observed direct estimates of total acreage for ¢ counties, and



&f,i =1,...,¢, denote the corresponding observed variances for the ¢ counties; to avoid hat no-
tations when fractions are written, sometimes we prefer to use S’i2 instead of 62-2. The Fay-Herriot
(area-level) model (Fay and Herriot 1979; see also, Rao and Molina 2015) is a standard model in

small area estimation for the él where:

0; | 0; " Normal(6;,62),i =1,...,¢, (1)
and at the second stage,

0; | 8,82 "™ Normal(/3,62),i = 1,..., 1, (2)

where z; is a p-vector of covariates with an intercept and f3 is a p-vector of regression coefficients.
In a full Bayesian analysis of this model, prior distributions of model parameters are assumed; a
priori we take (8, §?) = W(@)ﬂ(éQ), where 7(62) is proper but 7(B) = 1 is improper.
Procedurally, NASS state estimates of planted area (denote these state targets by the scalar
a) are determined and published prior to the publication of county-level estimates. Nandram, Er-
ciulescu and Cruze (2019) developed a full Bayesian Fay-Herriot model incorporating the bench-
marking constraint Zle 0; = a directly into the model. This was achieved by deleting the last area
to accommodate the benchmarking constraint. They empirically showed that, in practice, it does
not really matter much which area is deleted in order to incorporate the benchmarking constraint.
We now want to refine this model to accommodate benchmarking and inequality constraints on
the 6;. In addition to the benchmarking constraint, we need to add the county-specific inequality

constraints
9i20i7i:17"‘7£7 (3)

where the ¢; are fixed, known quantities that represent administrative values provided by FSA
or RMA. (In practice, when both data sources are present, the larger of the two is used to es-
tablish the lower bound, ¢;.) In NASS planted acres data, some of the direct estimates of planted
area totals may be more than one or two standard errors below their corresponding c;, thereby

creating some difficulties for the model estimates to be larger than the ¢;. It is worth noting that



a= Zle 0; > Zle ¢; = c¢. That is, the estimation processes that generate state targets also respect
the available administrative totals at state level, however, the benchmarking constraint can create
additional difficulties when the target is only slightly larger than ¢, i.e., as £ — 1 from below. We
need to add the inequality constraints to the Fay-Herriot model specified in (1), (2) and the priors to
get the joint posterior density of 8;,7 = 1,...,£. In order to incorporate the inequality constraints
into the Bayesian Fay-Herriot model, we propose the following simplification. In departure from
Nandram, Erciulescu and Cruze (2019), we incorporate the inequality constraints directly while
only partially incorporating the benchmarking constraint into the Bayesian Fay-Herriot model.
That is, we will incorporate the constraints, ¢; < 6;,i = 1,..., ¢, together with the restriction that
Zle 0; < a into the model. When the latter inequality is enforced, a raking of model estimates to
the state total a in an output analysis will still satisfy all individual county inequality constraints.
Incorporating double shrinkage into the inequality-constrained model entails additional computa-
tional considerations. Therefore, our key contributions are to provide small area estimates, which
are subjected to inequality constraints, benchmarked to a target, and we describe a single shrinkage
model (sample variances fixed) and two double shrinkage models (sample variances random).

In this paper, we discuss a novel methodology to solve these dual problems by modifying the
Bayesian Fay-Herriot model described in Nandram, Erciulescu, and Cruze (2019) to accommodate
both benchmarking and inequality constraints into the Bayesian area-level models of Equations
(1) and (2). Additionally, we extend the model to accommodate double shrinkage of means and
variances. In Section 2, we introduce the methodology for single-shrinkage model in the presence of
inequality constrained totals. In Section 3, we describe the methodology for the double-shrinkage
model, gamma regression, and the log-linear model is discussed in Appendix B; again double-
shrinkage models incorporate inequality constrained totals. Special emphasis is given to the com-
putation that facilitates these approaches. In Section 4, as confidentiality of USDA survey and
administrative data is a concern, simulated data sets with properties resembling those of the Illi-
nois corn crop are generated and used to fit and assess these models. We offer concluding remarks in
Section 5, noting that constrained acreage methodologies were successfully incorporated in NASS

official statistics beginning with the 2020 crop year.



2 METHODOLOGY UNDER THE SINGLE SHRINKAGE MODEL

In this section, we develop the methodologies and computational strategies to incorporate in-
equality constraints and benchmarking procedures into the Bayesian area-level models of Equations
(1) and (2). This provides the single shrinkage model in which the sampling variances are assumed
fixed and known.

Our strategy is to use the composition rule (i.e., multiplication rule of probability) to draw
samples from the posterior density (3, 6? | é, 6?) and then to draw samples from (6 | 3, 62, é, 6%).
Both of these problems are difficult. In this section, we have used the shrinkage prior for §2 (i.e.,
7(6%) = 1/(1 +6%)%,8% > 0) to avoid impropriety of the posterior density. Letting ¢ = 1/(1 + 62)2,
then ¢ ~ Beta(1,1) (i.e., uniform) and this is similar to the half Cauchy prior 7(§%) = m,
which translates to ¢ ~ Beta(.5,.5). In addition, both densities are in the Snedecor f form, where
the first density is a f(2,2) and the Cauchy version is a f(1,1); the f(2,2) is mathematically a bit
more convenient when we transform to (0, 1).

Let V.= {0 : 6; > ¢;;i = 1,...,¢, Zle 0; < a}.Here, this conditional posterior density,
(0] B, 52, é, QQ), is subject to the inequality constraint and the constraint Zle 0; < a, where a is
the benchmarking target. Note that the inequality is strict because with the equality, one of the 6;
becomes redundant. This redundancy has to be taken into consideration when the model is fit (a
much more difficult problem), but with the inequality constraint we do not need to do so (a much
easier problem). That is, we need to draw 61, ..., 6y subject to the constraints 6; > ¢;,i = 1,...,¢
and Zle 0; < a. Note again that the benchmarking constraint is only partially included in the
Fay-Herriot model. We will use a Gibbs sampler to carry out this sampling procedure, and the
benchmarking constraint will be fully incorporated in an output analysis from the Gibbs sampler
using a raking procedure.

The joint prior density is

(6, 8,6%) — (3, 57)— iz L0 = 2i0)/6}/0

) ) ‘ / eV, (4)
Joev Tizy &4(0: — 15)/6} /5 df

where ¢(+) is the standard normal density. Indeed, this is a very awkward joint prior density with

the normalization constant a function of (3, 52). Then, using Bayes’ theorem, the joint posterior



density is

¢ - ¢ .
08,6 10.6) n( ) oLt (SR T ol €V ()

It is difficult to use Markov chain Monte Carlo methods to efficiently draw samples from 7 (0, 3, 52
6.6%) in (5).

We now show how to draw samples from 7 (6, 3, 52| é, {72) using numerical integration, the Gibbs
sampler and the Metropolis sampler. [Note that in the discussion below, apart from Zle 0; < a, it
does not matter whether we use “less than or equal” symbols because the 6; are continuous random

variables.|

We first show how to draw the #; using the Gibbs sampler. For the constraints, we have ¢; <

l
0;,1=1,...,¢, and Zle 0; < a. This means that Zle ¢ < Zle 0; < a, and so max(ci,ch —
i=1

l l
Z 0;) < b; < a-— Z 0,1 = 1,...,L. Therefore, the support of the conditional posterior

J=Lj#i j=1,j#i
density of 0; given ;) = (61,...,0;—1,0i11,...,0,), is

L 4 L
max(ci,ch— Z Qj)<9i<a— Z Qj,i:L...,g.
i=1 =Ly =1

It is easy to show that the conditional posterior density is

0; | 03y, B, 0%, 0,62 ~ Normal{\if; + (1 — X)xiB, (1 — A;)82}, \; = 6%/ (5% + 6),

4 L 14
ui:max(ci,ch— Z 9j)<0@'<a— Z Gj:vi,izl,...,é. (6)
j=1

J=1,j#i J=1,j#i

Now, we want to draw 6; subject to the constraint, u; < §; < v;. To sample X ~ Normal(u,0?),a <

X < b, we have the following result (see Devroye 1986),

X =p+od! {(1 —U)®(T‘)+U@(b_“)},

g



where U ~ Uniform(0,1) and ®(-) and ®~1(-) are respectively the cdf and the inverse cdf of the
standard normal density. We use the Gibbs sampler to draw a sample # in (6). This is obtained by
drawing u; < 0; <wv;,i =1,...,n, each in turn.

The final step is to rake up 6y, ...,60, to the target a for each iterate. So that the final iterates

are

= ——"0
> j=1 0
and posterior inference can be made about 61, ..., 6, using these raked vectors of iterates. It is now
clear why Zle < a. Note again that this is a straight forward output analysis from the Gibbs
sampler.
We next show how to draw samples from (3, 52 | @ Q ) using numerical integration and the

Metropolis sampler. The joint posterior density of (3, ¢ %) is

52) Joev [Tizs 6{(0: — 218)/5}6{(0: — 0:)/6:} d9

m(8,6% | 0,6%) o (B,
(8,67 16,6%) ocm(B feeszM{(@—l‘@/‘s}dG

which, by completing the squares, can be simplified to

(8,067 0,8%) < w(B3,6*)[[ [ 6{(0: — £i8)//52 INHR(B,6%), (7)

with

/ H¢{ — Mg /Tz} d9
R(B,0” :

LVH“ 8)/6} db

where p; = \if; + (1—X\;)z}p and 7'2-2 = (1-X)d2%,i=1,...,£ We will use the Metropolis sampler

to fit (7). There are two key issues, which are to construct an efficient proposal density and to
compute the ratio, R(f3,4§%), of the two integrals in (7).

First, we consider how to construct a proposal density. We have samples of (@,52) from the
Fay-Herriot model. We can now transform 42 to 8,41 = log(6%) and add it as the last component
to get a new vector 8 with p+1 components. Now fit a multivariate normal density to the samples,

B~ Normal(@ , 022), where @ and 3 are the posterior mean and covariance matrix of the samples



from the Fay-Herriot model, and /02 ~ Gamma(n/2, 1/2) to complete the (p+1)-variate Student’s
t density on n degrees of freedom, where 7 is a tuning constant.

Second, we describe how to estimate the ratio of the integrals in (7). Let V = {0:¢<0; <
00, = 1,...,¢}; we have actually selected an upper bound for each ;. Note that V' C V, and
perhaps V is not much bigger than V. Let I0cV)=1if0 cV and I(f € V) = 0 otherwise.
Then,

/
/ R0 ) CORTOR
9€V .
R(@? 52) =

/eev @eV) H¢{ — 2;8)/5} do

Now, R(f, 62) can be calculated using Monte Carlo methods. As an importance function, we use

the conditional posterior densities of the 6;,i = 1,..., ¢, constrained on V. That is,
0; | @,62 ind Normal(u;, 72), ¢; < 0; < 00,i=1,...,1L. (8)

It is now easy to draw samples Q(h), h=1,...,M, in (8), where M = 1000 or so; see Devroye
(1986). Then, a Monte Carlo estimator of R(f3,§?) is

h=1
S I e v) H — 2;8)/0}
o 1ol e“ i)/}
Note that for each h, once GZ(h),i =1,...,4, are drawn from the proposal density, we simply need

to check that Zle th) < a. However, it is possible that this Monte Carlo estimator does not exist,
and this clearly occurs when 9 )¢ V,h=1,...,M (all M), and in this case we use the modified

estimator,

me’ _ ZH 9 — Ly 5)/5}

h 14i=1 —Mz /Tz}

That is, we simply replace V by V to form an approximation in the case that the Monte Carlo
estimator might not exist. In either case, we have drawn the 6; as in (8), where 6; | 3,462 nd

Normal(u;, 72), ¢; < 0; < 00,i = 1,...,£. Tt is possible for some of the Q(h) to be in V, and in this



case if the number of Q(h) € V is at least M /2, we use the former estimator.

Our procedure gives us 1,000 samples from the posterior density of (3, 62) using the Metropolis
sampler. Then the more important samples of 01, ..., 60, are obtained using the Gibbs sampler. For
each of the 1,000 iterates of (f3, 62) from the Metropolis sampler, we run the Gibbs sampler to say,
100 iterations or so, and pick the last set of 61, ..., 68y. This is not too expensive and it is reasonably
efficient. In this method, it is not really necessary to monitor the Gibbs sampler for convergence

because we need only one value but a “burn-in” is required.

3 METHODOLOGY UNDER THE DOUBLE SHRINKAGE MODEL

Two double shrinkage models are introduced, where we model both the sample variances and the
means. The inequality constraints are also included. Here borrowing of strength occurs via both the
means and the variances. For the specification of variances, the first uses a gamma regression model
and the second uses a log-linear model. In Section 3, we model the sample variances using gamma
regression; Section 3.1 describes the method and Section 3.2 describes the computation; further
computations are shown in Appendix A. In Appendix B, we describe the second double shrinkage
model for the sample variances using the log-linear model. Even a full Bayesian treatment of the log-

linear model offers remarkable computational advantages relative to the gamma regression model.

3.1 Gamma Regression Model

For ¢ areas, we have the survey estimates éi, their standard errors S;, and the sample sizes
n; > 2 (sample sizes must be at least 2). We start with a convenient model that builds upon our

work on the Fay-Herriot model. We assume that

0; | 0;,02 nd Normal(;,02),i=1,...,¢,
;—1)5? ; —1 1
(nz . )Sz ‘ 01'2 l,n\,d Gamma(nl 77)’7: _ 17 ’g’
o; 2 2

1
where X ~ Gamma(a,b) means that f(z) = b%% Le~b /T'(a), z > 0. Note that we are assuming 6;

and Si2 are independent. Under the first assumption, the 6; and 012 are not estimable, but the first

10



and second assumptions together make 6; and 02-2 estimable. A priori, we assume that

6; | 8,62 "™ Normal(z8,6%),i = 1,..., ,

ae~ LY

2

; «
0;2|04,:y%dGamma(§, ),i=1,...,¢.

These assumptions on §; and o2 provide double shrinkage (shrinking both means and variances).
Here, we have assumed that the two sets of covariates are the same, but they can, of course, be
different. It is worth noting that the prior for a? is conjugate providing some simplicity in the
computations; see Nandram and Erhardt (2004) for similar specifications for the corresponding

binomial and Poisson models. Our prior for the hyperparameters is

1 1
2 2
> 0.
77(@,5,'],04)0((1 522 (1 a)z,é,a_O

That is, flat priors are assumed for § and v, shrinkage priors (proper) are assumed on 62 and a,
and all parameters are independent. Note that §? and o are nonnegative, and so we prefer to use
a shrinkage prior. At this point, there are virtually no mathematical, computational or scientific
benefits using other noninformative priors for a.

In our model, we include the inequality constraint, 6; > ¢;,i = 1,..., ¢, Ele 0; < a, where a is
the target. Note again that we only partially include the benchmarking constraint. It is convenient
that this is the same region as for single shrinkage model, V' = {6 : 0; > ¢;,i = 1,... ¢, Zle 0; < a}.

Therefore, the prior densities for the §; remain the same,

[Ti_, ¢{(6: — 2}B)/5}
70, 8,6%) = (B, 6 =1 <t , 0
@80 =nd )fgev [Tiz) ¢{(6: —2}8)/5} do” ~

Y

where ¢(-) is the standard normal density. It is convenient to define Q = (6,52;],04). Then, the

joint prior density is

[T, &{(0; — 2/8)/5}
fgev [T, 6{(0: — /8)/6} db

11



. H{ T )21 o) 2 e ”E”/Qﬁvmam} 0ev. (9)

By independence, the joint density of (@, §2), is

i=1

l
. 1

2 2 _||
f(Q:‘? ‘Q7Q—7Q>_ {Uz

l

x TT {10 = 1)/202) 0 D/2(s2) D21 002208 (i, — 1) /23 (10)

=1

Finally, using Bayes’ theorem, the joint posterior density is proportional to the product of (9)

and (10) and it can be shown to be

) 1
0,020 0,2 62,7,
(0,0 | 0,5%) ocm(B,0%,y a)fgev Hle o{(6; — 2}B)/5} db

Z !
« H {(ae—.@;:}//2)a/2(1/0.12)04/24—16—(0(8‘?il/Qaf)/l—\(a/Q)}

=1

‘ 1 0 — (i + (1= Azl 16—l
. Pl { (1-— Ai)<52¢ ( (1 — \;)02 \/62/)\i¢( \/62/)\Z-)

ni—1)/2,~(ni—1)s2/20?
XH{[(ni—n/zgg]u Dizenbot) g e, "

where \; = 62/(62 +0?),i=1,... L.

It now follows from (11) that the conditional posterior densities of the 6; are

0; | 0%,9,0,52 "™ Normal{\if; + (1 — A\)}8, (1 — A\)6%hi=1,....0, O € V. (12)

12



Now, one can integrate out the 6; from (11) to get the joint conditional posterior density of g2,

(02 | 9,0, 5%) / H{ b+ A= X)zi),y ) )92 df

1 \)02

0
XH{f Ve }H{<1/0?><m-+a—1>/2+1e—{<m—”5““e et -

i=1

Note that the term, [, Hle ¢{(6; — 2}B3)/8} db, is not a function of the o7 and has been elimi-
nated together with other such terms.

Now, one can integrate out the o7 from (11) to get the joint posterior density of €,

(@ ]8,5%) o 7(5,5% 7, a)ﬁ{( T(a/2) T(ni+a—1)/2) }
=1

e TV )2)272 {((n; — 1)S? + ae %) /2}(n+a=1)/2

! - ()\9+( xﬂ o

1 mﬁ . 2
XH{WV/M \/6% )IG,: (al,bl)}] do?, (14)

=1

where a; = (n; + a —1)/2 and b; = {(n; — 1)S? + ae~%7}/2 and IG(a,b) is the inverse gamma

density, which is given by f(c) = b?(2)¢Te=%¢/T'(a),c > 0.

3.2 Computation for the Gamma Regression Model

Our strategy is to draw samples from the joint posterior density of  in (14). This is a difficult
task, but once this is accomplished, we can use the multiplication rule to draw samples of the a?
from (13) and then the 0; from (12). This strategy is useful if there are a large number of counties;
the state of Texas has 254 counties. We draw the 6; in the same manner as described in Section 2.
It is more difficult to draw samples of o2. We describe how to draw samples from (2 in (14). The

basic strategy has two key steps.

13



First, we fit the double shrinkage model without the inequality constraints and the benchmark-
ing. This gives an approximate sample of size M = 1000 iterates from the posterior density of €2
that we obtained using a Metropolis sampler. The details of this first step are given in Appendix A.

Second, we convert this approximate sample to a sample from the posterior density with the
inequality constraint and the benchmarking. We use the M iterates from the first step to construct
a multivariate Student’s t density for (83,log(6?),7,log(a)). At each of the iterate obtained from
the first step, we run a Metropolis sampler with the multivariate Student’s t density 100 times and
picked the last one. In this divide-and-conquer manner, we minimize the chance of the Metropolis
sampler getting stuck. We want the Metropolis sampler to move from the starting value at least
once; no other monitoring is necessary; if it does not move at least once, we discard this run. It
is good that this procedure gives a sample of M independent iterates of (2. However, this step is
time-consuming and for the current simulated data it took roughly sixteen hours.

Now, we describe how to use the accept-reject algorithm to draw samples of 02-2. We can rewrite

(13) as

w(0? | 9,0,5%) / H{ b+ A=Az |, )02

1—&)

R e AV(CEpY

I0cV)
VE }/Hv ‘e I e NG

xé{f¢

i=1

% H{ 1/o2)m +a—1)/z+16_{(ni_1)s§+ae@27}/203} ’ (15)

where VO V and V is a larger rectangular set.
Note that the first and third terms in (15) are probabilities. It is also true that the second
. . . Y 0;,—T ﬁ 1 ¢
term in (15) is a probability because [];_, {\/ gb(\/m)} < {m} . Therefore, we can use an
accept-reject sampler to draw the O'Z-2.

Note that, by construction, the first term in (15) is a product over ¢ = 1,...,¢. This is also true

for the second term. So if we ignore the third term, we can independently draw 03 G (aj, bi),i =
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1,..., ¢ (unrestricted distributions) and take it with probability,

oM+ A N)gif)y 62d0x{f¢>

QGV (1 - )\z)

ol

to complete the accept-reject algorithm. It is possible that there are several rejections before an
acceptance, but this rarely happens. If there are 25 rejections, we simply draw the af from their
unrestricted distributions, o? nd IG(a;,bi),i=1,...,¢.

The remaining question then is how to calculate

I AR A YN e W
c=| 106ev) VA
00" fpep Tl o A R9EgZ0y /T =X

dh.

A Monte Carlo estimator of C' is

. 1 X
=7 Z ](@(h)

h=1

where 6" "% Normal{\f; + (1 — \)z8, (1 — M)62}, ¢ < 6 < oo h = 1,..., M = 1000,i =
1,..., L

However, the term, +; Zﬁil 1 (Q(h) € V), is difficult to incorporate into the accept-reject sam-
pler. We have overcome the difficulty in the following manner. We have computed C and found
that more than 60% of the C' leads to acceptance of all the 02-2,1' =1,...,¢. When the 0? are not

accepted, we draw samples from their unrestricted distributions, o? G (aj, b;),i=1,...,¢.

4 SIMULATION STUDY

Both NASS survey data and USDA administrative acreage data are subject to confidentiality
protections, therefore, we describe a means of simulating data with similarity to Illinois corn crop
data that have been used extensively in recent NASS studies on crop county estimates and use it
to show the key features of our benchmarking procedure with inequality constraints. As a practical
matter, participation in farm support programs can vary by crop and by state. Some of the survey

estimates may already satisfy the lower bound constraint, i.e., some 6; > ¢;, so that the lower bound
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constraints imposed on model estimates for these areas may be loose or non-binding restrictions in
those counties. However, in states with high rates of enrollment in farm support programs, like the
corn crop in Illinois, administrative totals may capture large parts of the population, so that direct
estimates, subject to sampling error, fall below to the administrative totals in many counties. The
model estimates of the counties must be constrained by the lower bounds and the benchmarking
target as well.

In Section 4.1, we describe the simulation plan, where we describe several simulated data sets.
In Section 4.2, we present results under the single shrinkage model with the inequality constraints.
In Section 4.3, we present results under the double shrinkage model for the gamma regression model
and the log-linear model, again with the inequality constraints. At the same time, we have compared
these models with the direct estimates (DE), the estimates from the Bayesian Fay-Herriot model
(ME), without benchmarking or inequality constraints, and the Bayesian Fay-Herriot model with
random benchmarking (MERB) at both the county level and at the level of agricultural statistic

districts (discussed below).

4.1 Description of the Simulated Data Sets

Nandram, Erciulescu, and Cruze (2019) simulated a data set similar to the one in Battese,
Harter and Fuller (1988); see also Toto and Nandram (2010) and Nandram, Toto and Choi (2011).
These data are on planted acres of corn and soybeans for 37 segments with 12 counties in the
state of Iowa and there are two covariates. (Like Illinois, Iowa is a large corn producing state in
the United States.) By simulating from these data, we can create a data set with as many areas
we please. In particular Illinois has ¢ = 102 counties grouped in 9 smaller-than-state regions called
Agricultural Statistics Districts (ASDs). The data are processed to obtain the survey estimates and
standard errors. In our simulated data, based on the actual sizes of the ASDs, we have taken the
first set of counties to be in the first ASD, the second set to be in the second ASD and so on
so that the first 12 counties correspond to the first ASD, the next 11 correspond to the second,
and the remaining ASDs have 9, 11, 7, 13, 15, 12, 12 counties, respectively. In the process of
simulating acreage data, we also added a random effect for each ASD. The sample sizes within the
counties are chosen uniformly in (2, 74), a realistic range of sample sizes across the state comparable

to actual Illinois corn data reported during the 2014 crop year (Erciulescu, Cruze, and Nandram
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2018, 2019). Additionally, county-level coefficients of variation C'V; will be simulated uniformly
from within the range of (.08,.93); these extremes are comparable to values reported in Erciulescu,
Cruze, and Nandram (2020) in reference to the 2015 crop year. Given simulated survey estimates
and coeflicients of variation, computed standard errors are obtained 6; = C'V; x éZ Thus, we have
a data set with the survey estimates, éi, survey standard error, 6; and sample sizes, n; for the "
county, i =1,...,£.

The last piece to be simulated is the data corresponding to the administrative acreage values,
i.e., lower bounds, ¢;. For simplicity, we call these the FSA values throughout the simulation. In

order to reflect the relationship between the FSA values and the survey estimates for Illinois, we

assume the following equation holds,

where U; 4 Uniform(—s, s) and s is taken to be a suitable value (e.g., s = .10). However, the
key problem is how to set the benchmarking target. In the real problem, we will know the target,
but the target has to be larger than the sum of the lower bounds. Therefore, it is sensible to take
the target to be a = ¢/d, where ¢ = Zle ¢; and specify 0 < d < 1. The completeness of the
administrative data relative to the state total can vary by state and crop, but in Illinois, this value

will often be close to 1.

4.2 Results under the Single Shrinkage Model

In applying the methodology for an inequality-constrained model with fixed variances developed
in Section 2, we specify a plausible value of d = .99 indicating the simulated administrative data
embody 99% of the state-level planted area total for corn in Illinois. In this first instance, we restrict
the range of coefficients of variation to (0.05,0.25). Figure 1 shows the simulated survey estimates
of é, versus the FSA values ¢; (top panel) and the posterior mean of 6; versus the FSA values ¢;
under the Bayesian Fay-Herriot model with inequality constraint and benchmarking, not including
double shrinkage (call this model MFSA-NDS). In the top panel, we can see many points are above
or below the 45° straight line through the origin. (This resembles a realistic pattern shown in Figure

4 of Erciulescu, Cruze, and Nandram (2020), as applied to the 2015 Illinois corn crop.) Where the
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survey estimates for many counties are below their corresponding FSA values, all points in the
bottom are immediately above the 45° straight line through the origin, indicating that all MFSA-
NDS estimates are no smaller than their corresponding FSA values. Moreover, the sum of the 102
MFSA is equal to the state total, satisfying the benchmarking requirement by raking to the state
target.

In Table 1, we present results for Illinois simulated data. We compare the results with our new
model that incorporates the inequality constraints (FSA values are lower bounds of the model
estimates). Specifically, we compare estimates from DE, ME and MERB and the single shrinkage
Bayesian Fay-Herriot model with inequality constraint and benchmarking (MFSA-NDS).

The minimum, median and maximum posterior coefficients of variation (expressed as percents,
%) are smaller than the other two models (ME, MERB), even more so for the direct estimates
(DE). Of course, as expected, the coefficients of variation for the ASDs are smaller than those for
the counties; there is one exception (5.13 versus 5.31 in Table 1). We note that, as expected, the
coefficients of variation are in decreasing order (DE, ME, MERB, MFSA), and modeling appears
beneficial, but more importantly we can accommodate the FSA values in our model (MFSA) and

provide much smaller coefficients of variation.

Table 1: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, fixed variances

Level Statistic DE ME MERB MFSA-NDS

min 5.13 4.76 4.79 0.57

County median 15.57 10.67 10.58 0.97
max 24.93 15.80 15.34 5.22

min 5.31 2.54 2.39 0.24

ASD median 10.60 3.25 3.01 0.30

max 14.81 3.92 3.51 0.39

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates, CV (.05 — .25) and d = .99.

4.3 Results under the Double Shrinkage Model

Fitting the double shrinkage model with the inequality constraints of Section 3 and denoting

these estimates as MFSA-DS, we fit the model to the data already generated for Section 4.2. That
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Figure 1: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-
NDS for 6 versus FSA values for Illinois and the simulated data, not double shrinkage, CV (.05—.25)

and d = .99.
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is, data for which the simulated CV; € (0.05,0.25) and d = .99. Summaries of the coefficients in
variation for the MFSA-DS are given in Table 2, with the first four columns duplicated from Table
1. We notice a small difference between the double shrinkage model and the single shrinkage model.
Over counties the maximum C'V under the double shrinkage model is a bit smaller than the one
under the MFSA-NDS models, 3.58% versus 5.22% for the fixed-variances case, but over ASDs
(aggregates of counties within) there are smaller differences between the two approaches.

The top panel in Figure 2 once again plots the survey estimates versus FSA values (identical
to top panel, Figure 1), and the lower panel is a plot of the posterior means versus the FSA values
under the double shrinkage model with benchmarking and inequality constraints. The lower panel
of Figure 2 is only slightly different from that of Figure 1, in part because the value d = 0.99 implies
that there is little slack between the state target and the total of administrative data summed over
all counties in the state.

Table 2: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, double shrinkage, gamma model

Level Statistic DE ME MERB MFSA-NDS MFSA-DS
min 5.13 4.76 4.79 0.57 0.55
County median 15.57 10.57 10.58 0.97 1.01
max 24.93 15.80 15.34 5.22 3.58
min 5.31 2.54 2.39 0.24 0.26
ASD median 10.60 3.25 3.01 0.30 0.34
max 14.81 3.92 3.51 0.42 0.41

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates. MFSA-DS refers to the double shrinkage model with benchmarking and inequality
constraint, CV (.05 — .25) and d = .99.
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Figure 2: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-
DS for 6 versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression,
cv (.05 —.25) and d = .99.
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For the purposes of demonstrating the log-linear model, a second data set with slightly different
features has been generated. Namely, we specify lower coverage of the FSA values (d = 0.95) and
allow a higher range of values of survey coefficients of variation, (0.08,0.93), comparable to the
actual survey coefficients of variation observed during the 2015 crop year. We present summaries
of the CVs in Table 3. Again we notice a small difference between the log-linear double shrinkage
model and the single shrinkage model at the ASD level. Differences in coefficients of variation at the
county level are minimal for the lower half of all counties, but the maximum county CV obtained
from the double shrinkage model (23.94%) is substantially smaller than the maximum CV obtained
under the single shrinkage model (fixed-variances case) (44.92%).

In its upper panel, Figure 3 depicts the new simulated survey estimates versus their corre-
sponding FSA values, while the lower panel shows the posterior means of the log-linear MFSA-DS
model versus the corresponding FSA values. In contrast to the d = .99 data set of the previous
sections, the present d = .95 data set represents a looser lower-bound constraint. Accordingly, the
resulting county acreage estimates, which also sum to the state total, are all visibly above the 45°
line. For comparison, the MFSA-DS estimates obtained under gamma regression are plotted in the
lower panel of Figure 4. The two approaches to double shrinkage yield similar (not identical) point
estimates given the same state target and administrative lower bound constraints.

In contrast to the computationally expensive gamma regression which required in excess of
16 hours of run time, results of the log-linear model were obtained in a matter of minutes, and
additional opportunities to speed up the process may be possible through approximate Bayesian
computation described in Appendix B. It is worth noting that all samplers were coded in Fortran

90 on a server with Intel Xeon E5-2690 2.90GHz processor with eight cores.

5 CONCLUSIONS

Beginning with the 2020 crop year, NASS successfully converted its county-estimates data prod-
uct into a system model-based estimates of planted area, harvested area, total production, and yield
per harvested acre. The official estimates for 13 different commodity crops grown nationwide now
include a benchmarking of county estimates to predetermined state targets, and lower bound con-

straints on planted area. Motivated by the needs of the NASS crop estimation program to produce
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Figure 3: Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA
for 6 versus FSA values for Illinois and the simulated data, double shrinkage, log-linear model;
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Table 3: Coefficients of Variation (%) for Illinois simulated data for 102 counties and 9 Agricultural
Statistical Districts, double shrinkage, log-linear model

Level Statistic DE ME MERB MFSA-NDS MFSA-DS
min 8.57 7.73 7.90 2.57 2.54
County median 52.90 17.83 17.16 4.56 4.92
max 92.70 24.25 24.82 44.92 23.94
min 18.90 5.11 3.78 1.17 1.11
ASD median 37.70 6.15 4.71 1.83 1.43
max 52.10 7.19 5.81 2.65 1.63

NOTE: MFSA is the new benchmarking model with FSA values as lower bounds for the model
estimates. MFSA-DS refers to the double shrinkage model with benchmarking and inequality
constraint, CV (.08 — .93) and d = .95.

coherent published tables across all parameters and with respect available administrative data, we
have shown how to incorporate the area-specific inequality constraints and benchmarking into the
Fay-Herriot model. Single shrinkage model and double shrinkage models are available. Because there
are difficulties in performing full Metropolis samplers, we overcame these computational difficulties
by making additional reasonable approximations in the double shrinkage model.

It is possible to extend the hierarchical Bayesian model so that all the constraints are actually
included in it. That is, @ isin V = {6 : ¢; < 0; >_"" ; 6; = a}, where a is the benchmarking target and
€1, --.,Cp are the FSA values. So that the hierarchical Bayesian model (i.e., extended version of the
Bayesian Fay-Herriot model) has 6 € V. We have attempted to do so for the simplest model, the
Bayesian Fay-Herriot model, but the problem is extremely difficult. It requires the computation of
orthant probabilities (e.g., Ridgway 2016, Geweke 1991, Genz 1992) at each step of a Markov chain
Monte Carlo sampler. There are no such problems mentioned in Rao and Molina (2015), although
they have used the raking procedure for benchmarking only, not the inequality constraints, where
the 6; > ¢;, the FSA problem.

Nevertheless, incorporating the total constraint into the hierarchical Bayesian model will be
beneficial because it will help protect against model failure so prominent in small area estimation,
and one needs to be careful with this. Toto and Nandram (2010), Nandram and Sayit (2011) and
Nandram, Toto and Choi (2010), Nandram, Erciulescu and Cruze (2019) and Janicki and Vesper

(2017) were able to incorporate a much simpler constraint (i.e., Y ;- ; §; = a) in a complete Bayesian
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analysis. But as is evident, it is much more difficult to incorporate the constraint # € V, and it
is a problem we would like to solve in the future. We can add random effects on both means
and variances to accommodate sub-areas (counties within ASDs). However, the computations are
difficult and approximations beyond those based on Markov chain Monte Carlo methods need to
be considered. Currently, we are doing research in this area.

In Appendix C, we have comments on generalizion. It is possible to avoid the inequality con-
straint using a logarithmic transformation, but this method looses generality or it makes unnec-
essary approximation. OQur solution remains strong for both the single shrinkage model and the

double shrinkage model.

APPENDIX A Double-Shrinkage Model Fitting—Gamma Regres-
sion

Dropping the inequality constraint of the double shrinkage model (see 11), the joint posterior

density is

(0,0%.9219,5%) < 7(8,6%,7,0) [ ] {(aefm /2>a/2<1/a?>“/2“e<ae“~”'~y/20f>/r<a/2>}

1 bi = (N + (L= X)zif)\ 1 b —aif
<11 { TED Ik ( 1= 002 ) \/52/Ai¢( NCbY )}

x [T {0 — 1) /207 Vst 2emmimn/20E L (A1)
i=1
where \; = 62/(62+07),i = 1,..., L. Conditional on €, @, @2, it is clear that (;, 0?) are independent
over ¢ = 1,...,£. This is the key difference between the double-shrinkage model with and without
the inequality constraints.
Our strategy is to first sample the posterior density ({2 | @, @2) Once this is done, we draw
samples from the joint conditional posterior density of 7T(q2 ] Q,@, 52) Then, finally we obtain

the required samples from 7(6 | g2,Q,@, 52) Thus, after draws are obtained for €, we use the
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multiplication rule to get the o7 and 6; (i.e., , the o7 and 6; are drawn simultaneously).

It follows from (A.1) that the conditional on gQ, Q, @, ,52, the 0; are independent and
0; | 0%,9,0, 52 "™ Normal{\if; + (1 — X))z}, (1 — A)6% i = 1,..., L. (A.2)

Conditional on Q,@, 52, the 01-2 are independent. Therefore, integrating out the 6; from (A.1),

we have the conditional posterior density of af is

b, o _x
m(o? ] Q,0,5%) o \/)Ticb(w)[(1/02)(”“La_l)/2“6_{(”"_1)512”6 “yaet) (A.3)

LY ’

i =1,...,¢. Note unnecessary constants are dropped (e.g., parameters conditioned on).

Now, one can integrate out the 6; and 012 from (A.1) to get the joint posterior density of €2,

‘ I(a/2) T(ni+a—1)/2)
(e~ 217 /2)2/2 {((n; — 1)S} + ae~1i7) /2}(nte=1)/2

: <1 0, — '3
X SENIG 2 (ag, by)do? b A4
:{/0 T ) Gty } (A4)
where a; = (n; +a —1)/2 and b; = {(n; — 1)S? + ae=%i7} /2. Here, IG,(a,b) is the inverse gamma
density and is given by f(z) = b*()**e=/*/T(a),z > 0.

It is easy to sample the O‘Z-Q in (A.3) using the accept-reject sampler; simply draw 01-2 | Q, @, §’2 ~

IG(a;,b;) and take it with probability \/A»Zgb(il/g%f) Then, clearly the 6; are easy to draw from
(A.2). The main problem now is how to sample the joint posterior density of € in (A.4). We will
use the Metropolis sampler to do so.

Once we obtain a sample from (A.4), we convert it to a sample from (14), our main objective.
This is accommodated by another Metropolis sampler that we execute in a novel manner. We prefer
to use proposal densities that will provide independent chains. This is obtained by taking draws
from a multivariate Student’s t density (to be constructed). We will not use a long run because with

a Metropolis sampler, the chain tends to get stuck a long time, introducing long-range dependence

to the sample, thereby giving poor mixing that is inefficient. Instead we run several chains, say
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M = 1000 chains. Each chain is run with a random start from an approximate density for 100
iterates, and the last one is taken. Only minor monitoring is needed to ensure reasonable jumping
rates. If the chain does not move from the initial random start, it is not used in the final sample.
In the end, we get a random sample of M iterates from the required density in (A.4).

We describe how to obtain samples from the posterior density of Q1 = (3, 52,7, a). There are
three steps. The first step obtains a sample of M starting values, the second step is to obtain a
proposal density for Metropolis sampler at each of the starting values, and the third step is to make
a short run of 100 iterates of each of the Metropolis samplers in second step.

First, we integrate out the §; and we replace the o2 by S2,i = 1,...,¢. Given @, §’2, then (8, 5?)
and (7, ) are independent; so they can be sampled separately to get M = 1000 independent starts.
We have obtained these M starts using simple approximations.

Second, at each start, we run a Gibbs sampler to get a?,i =1,...,¢, and Q. This is done by
drawing the O'Z-Q from their exact conditional posterior densities using rejection sampling. Then, given
gQ, S2, (@,(52) and (v, a) are again independent, and draws from their respective joint posterior
densities are taken in a similar manner. It is worth noting that given §2, the distribution of B is
multivariate normal and 3 can be integrated out to get the conditional posterior density of 62 that
can be sampled using a grid. However, this is not the case for (7, @) because the conditional posterior
density of v given « is nonstandard (i.e., not multivariate normal). Thus, we approximate the
posterior density of v using a multivariate normal density, and with this approximation, sampling
of (7, a) takes place in the same manner as for (3,6%).

Third, we run the second step 1100 times with a “burn-in” of 100 runs and we use the M = 1000
samples to construct a multivariate Student’s ¢ density for Q, = (5,log(6?), 7, log(a)), which we
use as a proposal density in a Metropolis sampler to sample the exact posterior density. This is
performed 100 times and the last iterate is selected. Each random start contributes to the sample of
M = 1000 iterates of 2, or €2 from the posterior density under the double shrinkage model without
the inequality constraint and the benchmarking.

To complete the entire procedure, for each €2,, we sample aiz from their conditional posterior
densities using rejection sampling to access the posterior densities more efficiently. Then, more
importantly, the 6; are drawn from their conditional posterior densities (normal is this case). The

entire procedure took roughly four hours, and the jumping rates are mostly larger than 5%.
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APPENDIX B Doubel Shrinkage Model Fitting—Log-Linear Model

We describe the double shrinkage log-linear model and show how to fit. The main purpose
is to show that there are additional gains in computational speed using approximate Bayesian
computation.

Our model is similar to the one in Section 3, where assuming that 6, and 51.2 are pairwise

independent,
0; | 6;, 07 ind Normal(6;,02),i=1,...,4,
; —1)5? ; —1 1
(= DSV | 6209 Gamana(" 1 1) 21
o; 2 2

(]
However, a priori, we assume that

0; | B1,67 “ Normal(z}81,63),i =1,...,6,0 €V,

with the log-linear model on the o2,
In(o?) | B2, 03 nd Normal(z}32,63),i = 1,...,¢,

where we also assume that 6; and a? are pairwise independent. Note that we also have the restriction

¢ € V.Because we will use an approximate Gibbs sampler to fit the model, we assume that

7(B1, B2, 62,03) %% (i.e., posterior propriety is not an issue provided that the design matrix is

full rank).
Then, letting D = (é, s~2), the joint posterior density of 0, (;:2, B1, 62, B2, 62 is given by
L (6-61)2/202 [T5_y &{(6: — 2B1)/61}

V4
W(070275175%7ﬂ276§ ’D)O( e
S ) £[1 2102 Joev [Ty ¢{(0; — 2}B1)/61}df

11y mi—1 1
y H {(nz - )(nil)/Qe(nil)sf/Zo'iQe(ln(gf)%';@Q)Z/Qﬁ%} 7@ eV

52 53 o2 VoL

2 =1
Our strategy in the computation is to sample the exact conditional posterior density of 6;,i =

1,...,¢, and J?,i = 1,...,¢. However, we want to replace the conditional posterior densities of

B1, 62 and B2, 62 by approximate posterior densities. The main issue now is how to do this latter
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task.

We consider the two simpler models for 6; and s?,i=1,...,0. These are
0; | B1,062 "™ Normal(z}81,6%),i = 1,...,£,7(B1,67) o 1/63,

and

In(s2) | Ba,65 " Normal(2,8,63),i = 1,..., 4, 7(Ba, 62) o 1/63.

Note that in the full model, we simply replace the 6; by 6; and 02-2 by s?. Here, the posterior densities
of (81, 62) and B2, 63), which are independent, have simple forms. Letting X denote the n x p design

matrix, then

_ nog 32
@1@,6%~Norma1{ﬁl,<x/x>16%},6%Q~IG{” p im0 = zif) }

2 2
where Bl = (X'X)tx’ é Therefore, the posterior density of 31 is a multivariate Student’s ¢ density,
and, in this case, it is easy to draw samples of 3 and 6%. In addition, letting z; = ln(s?),i =1,....,¢,

then

. _ n 2l 3)2
@2|g,dz~Norma1{ﬁz,<X'X>-15%},6%rg~IG{“ P iz (Z— 3i2) }

2 2
where (3 = (X'X)~tXx’ 2. Again, the posterior density of 82 is a multivariate Student’s ¢ density,
and it is easy to draw samples of 2 and 62. Our approximate Gibbs sampler runs by taking these
posterior densities as the conditional posterior densities. We need to do so because the computation
is difficult and time-consuming.

The joint density of (6;,02),i=1,...,¢, is

14

. £ R
78,07 | B1,5% B2, 3, D) o [ { — e @io02/202 | iz Ui = 2300/}
1=1

2102 erV Hf:l {(0; — z;B1)/61}df

V4
<I1 {<"’UZ by nim/2g-u-n)st /20 L —(n(o?)-ziB2)?/ 25%} HeV
=1 ?

/2763
Additional difficulties in the computation reside in this joint conditional posterior density. Observe

that because § € V, the 0; are not independent, the 01-2 are not independent and 6; and 02-2 are
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not pairwise independent. However, note that the 02-2 are independent in their joint conditional
posterior density, but the #; are not independent in their joint conditional posterior density. The aiz
are drawn using the grid method with range (%OSZ.2 ,10S2), fairly wide, and the 6; are drawn using
Devroye’s method.

For the Gibbs sampler, we used 2, 500 iterates as a burn-in and took every third iterate to get
a random sample of 1,000 iterates. We found that the Geweke tests for all the §; and the o? are
not significant and the effective sample sizes are all near the actual sample size of 1,000 (mostly all
of them are 1,000). Therefore, we have an efficient Gibbs sampler and amazingly the computation
took less than 20 seconds.

Next, we describe a slightly different computational method from the one described above.
However, we just need to say how to draw samples from the conditional posterior densities of
(B1,07) and (B2, 03).

The conditional posterior density of (32, 62) is straight forward (i.e., we simply need to replace

S? by 0?). So that, letting 2z; = In(0?),

(2

— n Ll 32
B2 | 2,03 ~ Normal{fa, (X'X)~'63},03 | 2 ~IG{” 2 2l 2if) }

It is more difficult to sample the conditional posterior density of (31, 52),

l /
1 4 0; — ! 0
W(31,6 10,0262, | D) x5, -kt PO 22V
01 erv [Tizy &1(0: — @i@l)/‘sl}dé’
We started by using the Metropolis sampler. After we have used two different proposal densities,
we found long-range dependence with low jumping rates, so we abandoned the Metropolis sampler.
We decided to use grid samplers as follows. We fit the simpler model, where letting X denote the

n X p design matrix,

R R R - n(0; — 2 By)?
81 16,67 ~ Normal{ By, (X'X) 6%}, 6%!@~1G{”2p,2“( — ) }

with 8 = (X'X)"1X’ é Therefore, we can now sample 81 and 67 using the multiplication rule.

Then, we find the posterior means (PM) and standard deviations (PSD) of each component of
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B1 and §2; we choose their supports to be PM + 6 * PSD with the lower bound for §? being
max(0., PM — 6 x PSD). [Almost the entire support of a unimodal density is within this range;
actually we have found the procedure to be nonsensitive to the choice of 6 to inference about the
¢1]. We now run the grid method within the Gibbs sampler to draw 3; and 82 with the supports
mentioned above for 3 and 7.

For the Gibbs sampler, we used 3,500 iterates as a burn-in and took every fourth iterate to get
a random sample of 1,000 iterates. We found that the Geweke tests for all the 6; and the 0'7;2 are
not significant and the effective sample sizes are all near the actual sample size of 1,000 (mostly all
of them are 1,000). Therefore, we have an efficient Gibbs sampler and amazingly the computation
took less than 40 seconds. This is double the time (still fast) for the approximate Gibbs sampler

above.

APPENDIX C Discussions on Generalization

We show that the problem is more ubiquitous than we have stated in this paper. Then, we discuss
issues with standard solutions using the logarithmic transformation. Recall that our problem is to
provide estimates subjected to the lower bound inequality constraints and an equality benchmarking
constraint. We discuss mainly the inequality constraint.

The Fay-Herriot model is

0; | 0; ind Normal(;, 52),
;] 8,6 " Normal(«}8,6%),i = 1,.... 1,

with prior m(3, 62). This is subjected to the inequality constraint, #; > ¢;;i = 1,...,¢, and the
benchmarking constraint, Zle 0; = a, where a is the target. Letting gzgz =0; — c,i=1,...,¢, and

¢ =3*_, ¢i. Then,

di | ¢; ™ Normal(¢;,62), (C.1)
¢: | 8,82 " Normal(/8,62), ¢ > 0,i = 1,..., 4, (C.2)
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with Zle ¢; = a— c; note that there is a change in the regression coefficients. Therefore, we have a
general problem with positivity constraints and a benchmarking constraint, and the problem is not
specific to agriculture. The solution of problem remains the same as we have done in this paper,
but we can use the logarithmic transformation to avoid the positivity constraint.

There are two ways to proceed without the positivity constraints.

a. Transform the ¢;, replacing ¢; by log(d;i) in (C.1). Note that some of the ®; can be negative,
thereby loosing some generality. For the case when they are positive, we can approximate
the means and the variances of the normal distribution in (C.1) using a first-order Taylor’s

series approximation. That is, log(d;) | ¢ ind Normal(log(¢;), ;—g) One can proceed in (C.2)

with either a log-normal regression or another distribution for positive size data (e.g., gamma

regression).

b. Transform the ¢;, replacing ¢; by e? in (C.1). This introduces non-conjugacy with (C.2),

thereby creating difficulties in computation.

Note again that benchmarking is done in an output analysis as we have done in this paper, and
both single shrinkage models and double shrinkage models can be done. When the logarithmic
transformation is used, back transformation to the original ¢; is problematic (e.g., Manandhar and

Nandram, 2021). However, the methodology in this paper provides our front line solution.
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