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1.  Introduction 

  

The National Agricultural Statistics Service (NASS) has increasingly been using 

calibration to produce parameter estimates and a delete-a-group (DAG) jackknife to measure the 

precision of these estimates.   In surveys where the DAG jackknife is used, each sample element 

k is given R+1 weights: the element’s sampling weight after incorporating all nonresponse and 

calibration adjustments, wk, and R jackknife replicate weights, wk(r), with r =  1, ..., R.   

NASS usually sets R at 15 or 30.  The former produces variance estimators for univariate 

statistics with 14 nominal degrees of freedom and thus only a modest fattening of coverage 

intervals (the t-value for a two-sided 95% coverage interval is 2.145, not much larger than 1.96 

under infinite degrees of freedom).   Unfortunately, for constructing multivariate test statistics, 

more replicates may be needed, which is why the agency sets R = 30 for some surveys.   Most 

NASS surveys have thousands on primary sampling units (individual farms), rendering delete-

one jackknives impractical. 

Be that as it may, we do not claim here that the DAG jackknife is theoretically superior to 

other variance-estimation methods.  Rather, our goal is to investigate an empirical limitation of 

the DAG jackknife because that is the method NASS uses.   

The theory underpinning the use of the DAG jackknife  and all jackknives for that 

matter  is asymptotic.  See Kott (1998; 2001).   We are interested here in evaluating the 

limitations of the asymptotics.  In particular, we will be concerned with how well the DAG 

jackknife methodology works for parameter estimators defined within a domain when the 

(respondent) sample size in that domain is small.   This is an issue of particular concern to 

analysts working with data from the third phase of the Agricultural Resources and Management 

Survey (ARMS-III; see USDA 2007), NASS’s principal survey of the economic condition of US 

farms.   

Complicating matters is that the weights for the ARMS-III sample are heavily calibrated.  

This means initial element sample weights, inverses of the element selection probabilities 

(perhaps partially adjusted for nonresponse and/or coverage errors), are adjusted so that the 
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sample-weighted sums of certain benchmark (calibration) variables equal totals derived from 

outside sources.   

In the analyses presented here, we will restrict our attention to a Poisson sample without 

nonresponse.  This is the simplest sample design with variable sample weights.  After reviewing 

the theory for a more general version of linear calibration, our empirical investigations will be 

confined to perhaps the simplest form of calibrated-weighting: poststratification.   By focusing on 

this relatively simple setup (Poisson sampling with poststratification), we hope to shed light on 

the particular issue of the usefulness of the DAG jackknife methodology – and the alternative 

linearization methodology – for a parameter estimate within a domain when the estimator’s 

weights are calibrated to benchmark totals at a higher level of aggregation than the domain.     

A well-known limitation of the DAG jackknife is that it ignores the impact of large 

sampling fractions on finite-population variances.  This is of little import to most analysts of 

ARMS-III data because these analysts are less interested in finite-population parameter estimates 

than in estimating the parameters of the models generating the finite population under 

investigation.    This subject, as well as other aspects of the theory, is explored in Section 2.  

Section 3 lays out the framework for the empirical investigaion, the results of which are reported 

in Section 4.  Section 5 offers some concluding remarks.  

 

2.  Some Theory 

2.1.  Preliminaries 

  Let ak be the initial sample weight for element k.  Let zk = (zk1, ..., zkP) denote a row vector 

of calibration variables associated with k, for which the population total(s), Tz, is known.  Most 

of the calibration weighting in practice involves a variant of least squares, where the calibrated 

weights have the linear form:  

 

                       wk = ak + (Tz j j
j S

a z )[ ' )]j j j j
j S

a c z z
-1

akckzk' 

for some set of constants {ck}, where S denotes the (respondent) sample. By design, S wkzk = Tz.   
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The ck are often chosen to restrict the range of the wk.   A more general linear form is discussed in 

Estevao and Särndal (2000).    

To simplify matters, we assume here a Poisson sample without nonresponse.  The ak are 

inverses of the element selection probabilities, k.  We further assume the ck are all equal to 1, 

and there is a vector  such that zk  =1 for all k S (e.g., one of the components of zk is always 

1).  As a result of these assumptions, the calibrated weights can be rendered:  

                                            

                                                     1( ' ) '.k j j j k k
j S

w a azT z z z                                                 (1) 

 

(To see why replace S ajzj  in Tz   S ajzj  by S aj ' zj' zj = ' S ajzj' zj.)   This also allows the 

DAG jackknife to have certain desirable properties (see Kott 2006a).    

To compute DAG jackknife replicate weights, the sample is randomly ordered and then 

systematically divided into R mutually exclusive groups.  The complements of the groups are the 

replicate groups, denoted S(1), …,  S(R ).  Each S(r) contains roughly (R 1)/R of the sample.  One 

way to compute the replicate weights is with  

 

                  wk(r) = 
1

R
R

wk + (Tz 

( )

1
r

R
R

j S

wjzj)[

( )

' )]

r

j j j
j S

a z z
-1

akzk'                         (2) 

  

when k  S(r) , and 0 otherwise.  (See Kott 2006b.)  By design, 
( )

( ) .
r

k r kS w zz T   If we replaced 

the aj  and ak  in equation (2) by their near equalities wj and wk, we could write 

( )

1
( ) ( ' ) '.

r
k r j j j k kSw w wxT z z z    

 

2.2.  A Parameter Estimate 

We will be interested in a (vector) parameter estimate of the form:  

  

                                                b = ( 'j j j
j S

w h x )
-1

'j j j
j S

w yh ,                                              (3) 

 

where hj and xj are row vectors of the same length (xj  may or may not have components in 

common with zj).  When hj = xj has more than one component, b is a sample-weighted regression 
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coefficent.  When hj = 1 and xj = xj are scalars, b = b is a sample-weighted ratio.  When, in 

addition, xj  =1, b is a sample-weighted mean.  

The DAG jackknife (matrix) variance estimator for b is  

 

                                                              VJ = 1
( ) ( )

1

( )( ) ',
R

R
r rR

r

b b b b                                                       (4) 

 

where b(r) = ( S wj(r)hj'xj)
-1

S wj(r)hj'yj.  Note that we have yet to specify exactly what b is 

estimating, making it difficult to judge how good a job VJ  does at measuring its accuracy.    

If the goal of b is to estimate the limit of B = ( U hj'xj)
-1

Uhj'yj as the population U grows 

arbitrarily large, then the jackknife can be shown to be an asymptotically unbiased estimator for 

the variance matrix of b under mild conditions we assume to hold.  In particular, we assume 

conditions are such that both B and its limit, call it B*, exist.   

Sample selection is essentially two-phased in this framework.  The population can be 

viewed as a simple random sample drawn from an infinite conceptual population.  This is 

followed by the actual Poisson selection of the sample.  Effectively, we have a Poisson sample 

from the infinite population, where the orginal sampling weights, the ak, reflect the relative sizes 

of the inverses of the sample-selection probabilities.  

We are interested in estimating the limit of B, as opposed to the finite population 

parameter itself, because we are looking for insights into the underlying model generating the 

population values.  This is what interests most analysts studying the ARMS-III.   Ideally, the 

underlying model is linear and can be expressed in this following two-part form:  

  

                                                yk = xk  + k,                                                                 (5.1) 

                                                   with E( k|{ xj, zj, hj, Ij;  j  U}) = 0,                                      (5.2)   

 

where Ij =1 when j is in the sample, 0 otherwise.  The k are uncorrelated and have bounded 

variances, 2 .k
  Under this model, the probability limit of B is .  

Although it is often instructive to evaluate variance estimators under the linear model in 

both parts of equation (5), the DAG jackknife has been designed to work (under mild conditions) 
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whether or not the model, as specified, holds.   For example, equation (5.2) effectively specifies 

that the design is ignorable since the expectation of k  is zero regardless of which elements are 

selected for the sample.  In practice, the sample design may not be ignorable. Still, the model in 

equation (5.1) may hold with E( k|{ xj, hj;  j  U}) = 0.  The probability limit of B remains  in 

this case.  

An even weaker formulation is possible.  Observe the B has been defined so that  

U (hk' [yk xkB]) = 0.  Although many would argue that the following is not really a linear model 

at all, the way B is defined suggests that if the equation (5.1) holds with only E(hk' k) = 0, then 

the probability limit of B remains .   This formulation is called the “extended linear model” in 

Kott (2007).    

 

2.3.  Domain Estimates 

The asymptotics supporting the use of VJ  (with or without the model in equation (5)) 

require both the expected sample size (recall the sample is Poisson so its size is random) and R to 

be large.  We will be concerned in the next several sections with domain estimates of the form: 

bd = ( S djwjhj'xj)
-1

S djwjhj'yj, where dj = 1 when element j is in the domain of interest, 0 

otherwise.  Notice that if we redefine hj  as djhj , then bd has exactly the same form as b in 

equation (3).  Viewed this way, the realized sample sizes for bd and the original b are exactly the 

same!  Nevertheless, it seems intuitive that when the expected overall sample size is in the 

hundreds but the sample size within the domain is less than, say, 30, the asymptotics supporting 

b might not support bd.  (Although the sample within a domain is independently drawn with 

Poisson sampling, the domain estimator in our setup is computed using calibration weights that 

depend on the entire sample.)  

There is theory behind this intuition.  For the asymptotics to work, statistics like the 

components of S wjhj'xj within the nonlinear expression ( S wjhj'xj)
-1

 need to have small relative 

variances when the sample size is large.  If most of the sample values of a component are zero, 

then that may not be the case.  The “mild conditions” we cavalierly added to our requirements for 

VJ  to be asymptotically unbiased may be violated.  
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2.4.  Why the DAG Jackknife Works (Asymptotically) 

We now take a temporary, but useful, digression. An alternative way to estimate the 

variance of b is through linearization (see, for example, Demnati and Rao, 2004).  Let  

 

                      

1

1

( ' ) '( *), and

( ' ) '( ). (6)

k j j j k k k
j S

k j j j k k k
j S

w y

w y

U h x h x B

u h x h x b

 

Then  b – B* can ideally be rendered as Δ = S wkUk .  Of course, Uk is unknown.  It will 

ultimately be replaced by uk.  For now, however, assume it is known.  An idealized linearization 

variance estimator for b is  

             

2 1 1( ) [ ( ' ) ' ][ ( ' ) ' ] '.IL k k k j j j j k k j j j j
k S j U j U j U j U

wV b U z z z z U U z z z z U           (7) 

Often, b is treated as an estimator for B, and 2
kw  in the above equation is replaced by 2

ka (1  k). 

The 1  k disappears when b estimates B*.  Note that 1( ' ) 'k k j j j jU UU z z z z U serves 

as the population regression residual (of the component of Uk on zk) due to the calibration.  Why 

we put 2
kw  in the above equation rather than the asymptotically equivalent 2

ka  will be made clear 

presently.  

Observe that if the linear model in equation (5) holds,  and the population is large enough 

both for the distinction between B and  to be ignored and for ( U zj' zj)
-1

U zj' Uj to  be 

effectively equal to a matrix of zeros,  then VIL(b) is 2 ( ')k k kS w E U U  = 

1 2 1( ' ) ' ( ') ( ' )j j j k k k k k j j jS S Sw w E wh x h h x h , which is an unbiased estimator for the 

variance of b under the linear model no matter what the sample size.  An actual linearization 

estimator for b, like 
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2 1 1( ) [ ( ' ) ' ][ ( ' ) ' ] ',L k k k j j j j j j k k j j j j j j
k S j S j S j S j S

w a a a aV b u z z z z u u z z z z u           (8) 

must rely on information available in the sample and thus needs a large-enough sample size. 

It should be realized, however, that the potential scarcity of nonzero xj when estimating a 

domain-specific parameter has no impact on the size of  S ajzj' zj .  The number of nonzero xj 

does have an effect on S wjhj' xj in uk.  Moreover, even under the model in equation (5), which 

treats S wjhj' xj as a constant, the number of nonzero xj affects b. 

 Let us now turn to the DAG jackknife  in equation (4).  Observe that under the model in 

equation (5),  

 

( ) ( )

( ) ( )

1 1
( ) ( )

( ) ( )

( ' ) ' ( ' ) '

r r

r r

j j j j j j j r j j j r j j
j S j S j S j S

w w w w

b b b β b β

h x h h x h  

( )

( ) ( ) ( )

1
( ) 1

1 1
( ) ( )1

or

( ' ) ' ' (9)

( ' ) ' ( ' ) ' .

r

r r r

R
r j j j j j j j j jR

j S j S j S

R
j j j j j j j r j j j r j jR

j S j S j S j S

w w w

w w w w

b b h x h h

h x h h x h

 

 

It takes some work, but the second line on the right-hand side of equation (9) can be shown to be 

asymptotically dominated by the first line under mild conditions (which can be dubious for 

domain estimates).  This is true even when the model fails and j is replaced by yk  xkB*.  

Plugging only the first line into the right-hand side of equation (4), it is not hard to show that the 

result would be an unbiased estimator the variance of b under the model in equation (5).  This 

unbiasedness is only asymptotic when the model fails, and S wjhj'xj cannot be viewed as fixed. 

 

3.   Setting Up an Empirical Investigation  

 

The simulations discussed in the next section assume a simple form of calibration: 

poststratication.  The population is divided into P mutually exclusive classes, and  zk  in equation 
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(1) is a row vector of class-indicators.  That is to say, zkp = 1 when k is in class p, 0 otherwise.  

Letting Np be the population size of class p, and Sp the part of the sample is class p (which we 

assume is not empty) the calibrated weight for a sampled element in class p is 

                                                             .

p

p
k k

j
j S

N
w a

a
                                                           

  
(10) 

 

It is a simple matter to derive equation (10) from (1).  

 The r-th replicate weight for a sample element in class p can be derived from equation 

(2).  It is 0 for k not in S(r), and  

                                                          

( )

( )

p r

p
k r k

j
j S S

N
w a

a
                                                     (11) 

otherwise.  

 One estimator we will investigate is the sample-weighted domain mean:   

 

                                                            ,

k k k
k S

dS
k k

k S

w d y

y
w d

                                                         (12)                                            

 

in which hk in equation (3) is equal to the scalar dk (an indicator of domain membership) and xk is 

the scalar 1.  The other is the simple domain-specific weighted simple regression coefficient: 

 

                                                     
2

,

k k k dS k dS
k S

d

k k k dS
k S

w d x x y y

b
w d x x

                                    (13) 

 

which is the second component of b in equation (3) when xk = (1  xk), and  hk = dkxk.  There are 

alternative ways to define the variables in equation (3) to produce dSy and bd. One such was 

discussed in the previous section.    We will also be interested in the “degenerate” case where all 

the dk = 1, and dSy and bd  are the whole-sample weighted means and weighted simple regression 
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coefficient, respectively.  

 The R replicate estimates for dSy  and bd  can be calculated by substituting wk(r) for wk  to 

compute each ( )dS ry  and then substituting wk(r ) for wk , ( )dS ry  for dSy , and ( )dS rx  for dSx  to 

compute each bd(r).   The DAG jackknife in equation (4) has the simplified scalar form: 

 

                                                                       vJ = 
21

( )
1

( ) .
R

R
rR

r

b b                                                       (14) 

 

 The idealized linearization and linearization variance estimators in equations (7) and (8) 

are not so simply rendered.  For dSy ,  B  becomes the scalar B = dUy U dkyk / U dk, so that  

Uk = Uk = ( S wjdj)
-1

dk(yk   dUy ) and uk = ( S wjdj)
-1

dk(yk   dSy ).  Note that both are zero when 

k is not in the domain.  Plugging into equations (7) and (8), we get  

 

                             

2

12

1

2
( ) ,  and

p

p

N

j j dUP
j

k k k dU
p k S p

IL dS

k k
k S

d y y

w d y y
N

v y

w d

                

                         

2

2

1

2
( ) .

p

p

j j j dS
P j S

k k k dS
p k S p

L dS

k k
k S

w d y y

w d y y
N

v y

w d

                 (15) 

 

For bd as an estimator for the limit of 
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2

,

k k dU k dU
k U

d

k k dU
k U

d x x y y

B
d x x

   

it helps to first redefine xk  as (1  xk  dSx ), with hk = dkxk  redefined accordingly, so that   

S wjhj' xj  is diagonal.  The scalars Uk and uk become  

 

                                                    

2

2

, and

,

k k dS k
k

j j j dS
j S

k k dS k
k

j j j dS
j S

d x x e
U

w d x x

d x x r
u

w d x x

     

where 

 
is the population residual (for the regression coefficient), and

is the sample residual.

k k dU k dU d

k k dS k dS d

e y y x x B

r y y x x b
    

Note that Uk and uk are again zero when k is not in the domain.  

We can now conclude                                                                                                                                                                          

2

12

2
2

2

2

2
2

( ) , and

( ) . (16)

p

p

p

p

N

j j dS j
j

k k k dS k
k S p

IL d

j j j dS
j S

j j j dS j
j S

k k k dS k
k S p

L d

j j j dS
j S

d x x e

w d x x e
N

v b

w d x x

w d x x r

w d x x r
N

v b

w d x x
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It was partly in response to the complicated nature of the equations (15) and (16) that 

NASS decided to use the DAG jackknife rather than linearization for the ARMS-III.  In the next 

section, we also evaluate simplified versions of each: 

                          

2
2

1

2
( ) ,

p

P

k k k dS
p k S

SL dS

k k
k S

w d y y

v y

w d

                                          (17) 

and 

                                        

22

2
2

( ) .
p

k k k dS k
k S

SL d

j j j dS
j S

w d x x r

v b

w d x x

                                            (18) 

These simplified versions effectively assume there is no gain (reduction in variance) from 

poststratification.  

 

4.  A Simulation Study 

 

We began our simulation study with an ARMS-III respondent sample of 986 farms in 

California.  Our original plan was to use this sample and its final weights to generate a 

population.   

Each farm in the sample had associated with it a frame value based on previous sales 

data.  We called this value xk.  Classes were created by partitioning the x-values in 22 intervals, 

where the smallest interval was [0, 10 000), the largest interval was [750 000, ), and 20 

intervals of equal width were spaced between 10,000 and 750,000.   

We assigned a fraction of the 986 farms to domains of interest systematically.  One such 

domain cotained 5% of the population.  A second 10%.  A third 20%.    

Each farm in the sample also had a final weight associated with it, which we integerized 

and labeled ak .  At this point, each sampled farm had attached to it an x-value, an a-value, a class 

identifier, and three yes/no domain identifiers.  We reproduced each sampled farm and its 
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attachments 10,000 times.   

Our original idea was also to include survey-reported sales as the y-value for each of the 

986 sampled farms and to create a fixed population of size N = 
9,860,000

ak .  That is to say, the y, 

x, class identifier, and domain identifiers for each sampled farm k would be replicated 10,000ak  

times in the population.  This would create a very large population with the same moments of y 

and x as the a-weighted sample.  Independent samples could then be drawn from the putative 

population by giving each element replicated from k a Poisson selection probability of 

1/(10,000ak).   The expected size for each sample would be 986.  

Alas, no matter how large we made the simulated population, we found the results 

unsettling.  This was because there could only be 986 possible realizations of the y-variable.  

Even if these y-values were orginally generated from a normal distribution, the roughly 49 that 

would fall into the smallest domain of interest could (and sometimes did) behave very 

idiosyncratically.   Consequently, we decided that we needed to generate the y-values for each 

putative population unit directy from a model.  

We used two models to generate the y-values.  Both had the form: 

 

                                       yk = 0 + 1 xk
 
+ 2 log(ak) + k,                                           (19) 

 

 where the k were independent draws from a N(0, 100
2
) distribution, 0 = 50,  and 1 = 2.  For 

one of the models, labeled Model 1, we set  = 1, and 2 = 0.  It  is a simple linear model under 

an ignorable sampling mechanism.  For the other, labeled Model 2, we set  = 1.1, and 2 = 100.    

Ten thousand simulated samples were effectively drawn from the putative population 

with y-values generated by one of the two versions of equation (19) in the following maner.  A 

farm in the original sample was associated with a particular x-value, class and domain identifiers, 

and with ak  y-values generated from equation (19) with certain settings.  Each y-value, together 

with its associated x-value, class identifier, and domain identifiers, was given an independent 

1/ak probability of being selected into a simulated sample. As a result, the estimated size for each 

simulated sample was 986.  We expected 49.3 farms to be in each 5%-domain sample, 98.6 in 

each 10%-domain sample, and 197.2  in each 20%-domain sample.   
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Estimated means and simple regression coefficients were calculated from the simulated 

samples using equations (12) and (13) respectively.    

The targets of the estimated means and simple regression coefficients were parameters of 

a conceptual infinite population.  In the text, such parameters were labelled (when scalars) B*.  

We computed analogous and near-identical large-population B-values thusly.  We generated 

986,000 y-values under the respective versions of equation (19); 10,000 for each original farm k.   

Such a y-value, together with an associated x-value, class identifier, and domain identifiers, was 

repeated ak  times.  The mean  y-value and the slope the linear regression of the yk on the xk were 

then computed for this simulated population and for the three designated domains of the 

population.      

Table 1 displays the relative empirical  biases from using alternative methods for 

estimating the mean squared error of b (which could be either either dSy  and bd ) as an estimator 

for B.  These relative empirical biases are computed using  

 

                                           

10,000 10,000
2

1 1
10,000

2

1

( )

,

( )

t t
t t

t
t

v b B

R

b B

  

 

where bt and vt are computations of the parameter estimate and its estimated variance based on 

the t
th

 simulated sample.  The estimated standard errors on these statistics tended to be between 

0.015 and 0.02.    

The empirical variance as a fraction of empirical mean squared error was always over 

96% for every b with an estimated mean squared error on the table.  Consequently, whether we 

treat the DAG jackknife and its linearization counterparts as estimators of  variance or mean-

squared-error makes little practical difference.   

As the table shows, the empirical biases from using the DAG jackknife in equation (14) 

are all positive, while the biases from using the full linearization estimator in equations (15) (for 

the mean) and (16) (for the simple regression coefficient) are almost all negative.  Both tend to 

get worse, in absolute terms, as the domain sample size decreases.  This happens whether 
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estimating the mean squared error of  a domain mean or a simple regression coefficient or 

whether  generating the y-values with Model 1 or Model 2.    

When estimating means, the relative empirical biases are always under 10% in absolute 

terms using either the full linearization variance estimator or the DAG jackknife with 15 or 30 

replicates.  Using the simplified linearization estimator in equation (17), however, appears badly 

biased for the full-population mean under either model.  This variance estimator gets better as the 

domain sample size gets smaller.  It is reasonable to conclude that the effect on mean estimation 

of poststratification (which was done at the full-sample level) becomes less powerful the smaller 

the domain of interest.  

Estimating the mean squared error of the full-sample simple regression coefficient using 

the simplified linearization in equation (18) works well under Model 1 because the  

poststratification is irrelevant in the context where the y-values are generated by a linear form of 

equation (19), and the k k dUe y y k dU dx x B  are uncorrelated with the ak.   

We do not obseve much difference between the full and simplified linearization variance 

estimators for the full-sample simple regression coefficient under Model 2.  The impact of 

poststriatification appears to be overwhelmed by the correlation between the ek and the ak in this 

context.    

For the 5% domain (domain sample sizes of around 50), none of the variance estimators 

for the estimated simple regression coefficient have relative empiricial biases of less than10% in 

absolute terms under either Model 1 or Model 2.  The two jackknives work much better for the 

10% domain (domain sample sizes of around 100), however, as do the two linearization 

estimators under Model 1.   

Table 2 displays the coefficients of variation for the various variance esitmators.  A 30-

replicate DAG jackknife has more stability (a small coefficient of variation) than a 15-replicate 

version.   Linearization is more stable than either jackknife.  Stability decreases with the size of 

the domain sample.  It is less for the variance estimator of the simple regression coefficient than 

the mean.   
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Table 1 

Relative Biases of Alternative Estimators for Mean Squared Error 

_____________________________________________________________________ 

                                   Estimated Mean                     Estimated Regression Coefficient                               
______________________________________________________________________________________ 

 

  Domain        

Proportion     DAG Jackknife     Linearization      DAG Jackknife     Linearization 

 of Sample     R =15  R = 30    Full  Simplified    R =15  R = 30    Full  Simplified         

______________________________________________________________________________________ 

 

 Model 1  

    5%         0.076  0.078    -0.069    0.041      0.126   0.116   -0.241    -0.232  

   10%         0.026  0.010    -0.041    0.078      0.086   0.093   -0.036    -0.024 

   20%         0.018  0.002    -0.029    0.151      0.040   0.016   -0.040    -0.012  

  100%         0.016  0.032     0.000    3.717      0.061   0.035   -0.010    -0.007 

______________________________________________________________________________________ 

 

 Model 2 

   5%          0.059  0.066    -0.075    0.019      0.248   0.249   -0.195    -0.182 

  10%          0.038  0.049    -0.015    0.088      0.048   0.047   -0.176    -0.180 

  20%          0.024  0.022    -0.013    0.137      0.048   0.005   -0.133    -0.112  

 100%          0.018  0.019     0.004    2.347      0.069   0.099   -0.123    -0.165 

 

 

Table 2 

Coefficients of Variation of Alternative Estimators for Mean Squared Error 

_____________________________________________________________________   

                                   Estimated Mean                     Estimated Regression Coefficient                               
______________________________________________________________________________________ 

 

  Domain        

Proportion     DAG Jackknife     Linearization      DAG Jackknife     Linearization 

 of Sample     R =15  R = 30    Full  Simplified    R =15  R = 30    Full  Simplified         

______________________________________________________________________________________ 

 

 Model 1 

    5%          0.76   0.68     0.59     0.60      0.90    0.83     0.56     0.56 

   10%          0.55   0.46     0.36     0.36      0.55    0.48     0.36     0.36 

   20%          0.47   0.37     0.25     0.24      0.47    0.39     0.27     0.27 

  100%          0.50   0.42     0.32     0.16      0.62    0.56     0.46     0.47 

______________________________________________________________________________________ 

 

 Model 2 

    5%          0.76   0.70     0.60     0.63      1.13    1.09     0.70     0.69 

   10%          0.56   0.47     0.38     0.36      0.76    0.69     0.51     0.49 

   20%          0.47   0.37     0.26     0.25      0.62    0.55     0.43     0.42 

  100%          0.52   0.43     0.34     0.18      0.66    0.54     0.36     0.36  
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5. Concluding Remarks 

 

We are hesitant to make overly bold claims from the results of our limited empirical 

study.   Nevertheless, we were pleased to see that using a delete-a-group jackknife with as few as 

15 replicates on a heavily calibrated sample, one containing 22 poststrata, produced reasonable 

and conservative variance measures for an estimated mean based on samples containing as few as 

50 domain members.  Variance measures for an estimated simple regression coefficient did not 

behave as well until domain samples were roughly twice as large.  They did, however, remain 

competitive with more complicated linearization-based alternatives.   These alternatives were 

more stable but also consistently underestimated true mean squared errors. 

 It seems to us that the DAG jackknife is a reliable variance-estimation tool for simple 

ratios like the population mean with domain sample sizes in the 50 and above range.  On the 

other hand, we would not be comfortable using the DAG jackknife for estimating the variance of 

regression coefficients with less than 100 in-scope sample units.   This discomfort extends to all 

“model-free” variance-estimation methods.  When sample sizes get too small, we strongly 

suspect one needs to assume a model and estimate variances using a technique appropriate for 

that model.       
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